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Glucocorticoids (GCs) are widely used therapeutic agents to treat a broad

range of inflammatory conditions. Their functional effects are elicited by

binding to the glucocorticoid receptor (GR), which regulates transcription of

distinct gene networks in response to ligand. However, the mechanisms gov-

erning various aspects of undesired side effects versus beneficial immunomod-

ulation upon GR activation remain complex and incompletely understood. In

this review, we discuss emerging models of inflammatory gene regulation by

GR, highlighting GR’s regulatory specificity conferred by context-dependent

changes in chromatin architecture and transcription factor or co-regulator

dynamics. GR controls both gene activation and repression, with the repres-

sion mechanism being central to favourable clinical outcomes. We describe

current knowledge about 3D genome organisation and its role in spatiotempo-

ral transcriptional control by GR. Looking beyond, we summarise the evi-

dence for dynamics in gene regulation by GR through cooperative

convergence of epigenetic modifications, transcription factor crosstalk, molec-

ular condensate formation and chromatin looping. Further characterising

these genomic events will reframe our understanding of mechanisms of tran-

scriptional repression by GR.
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In the presence of infection, the body induces a strong

and potent local or systemic inflammatory response

comprising innate and adaptive immune cells that gen-

erate and respond to pro-inflammatory cytokines and

chemokines. While initially beneficial, an overactive

immune system and a dysregulated hyperinflammatory

state can cause more harm than good in the long term,

such as in the case of sepsis. Thus, the ability to safely
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regulate and dampen inflammation is of great value,

and in clinical settings, glucocorticoids (GCs) are com-

monly used to treat a variety of immune and inflam-

matory diseases.

Glucocorticoids, mainly cortisol, belong to a class of

evolutionarily conserved steroid hormones secreted in

a diurnal and stress-responsive manner from the

adrenal cortex upon activation of the hypothalamic–
pituitary–adrenal (HPA) axis [1]. Endogenous gluco-

corticoids, which exhibit potent developmental (e.g.

lung maturation), behavioural, metabolic and immuno-

suppressive effects, are released in different biological

and physiological circumstances and affect nearly

every part of the body’s cellular and molecular net-

work. For that reason, dysregulated secretion can

result in diverse pathological outcomes with opposite

extremes, such as Cushing’s syndrome and Addison’s

disease, caused by excess or lack of circulating GCs

respectively [2,3]. Due to their potent immunomodula-

tory and anti-inflammatory capacities, GCs have phar-

macologically been used to treat many types of

cancers, for example, non-Hodgkin lymphomas

(NHL), as well as both acute and chronic inflamma-

tory diseases, including bacterial and viral infections,

allergies, asthma, rheumatoid arthritis, inflammatory

bowel disease, multiple sclerosis and sepsis [4–7].
Moreover, due to their importance in pulmonary

development, GCs are routinely used to accelerate

lung maturation in pre-term neonates [8].

The main therapeutic use of GCs in infections and

inflammation aims at rapidly dampening cell-mediated

immunity by inhibiting the expression of pro-

inflammatory cytokines and chemokines, while simul-

taneously activating the expression of anti-

inflammatory immune mediators [9–12]. Monocytes

and macrophages are key players in the innate immune

system, which triggers the onset of an inflammatory

response upon recognition of pathogens. Through the

integration of inflammatory signals via pattern recog-

nition receptors, for example, Toll-like receptors

(TLRs), macrophages activate pro-inflammatory tran-

scription factors such as nuclear factor-kappa B (NF-

jB), activator protein 1 (AP-1), and interferon

response factors (IRFs) [13]. Additionally, macro-

phages sense immunological messengers such as inter-

ferons or interleukins via their cognate receptors,

which in turn activate tyrosine kinases, mainly of the

Janus kinase family, that then activate transcription

factors such as signal transducer and activator of tran-

scription (STATs) [14,15]. Together these transcription

factors drive the expression of inflammatory response

genes and, in clinical settings, serve as important tar-

gets for GC treatment.

Transcriptional profiles of GC-stimulated monocytes

reveal differential expression of hundreds of genes.

This includes, in addition to the glucocorticoid receptor

(GR) itself (Box 1), the activation of anti-inflam-

matory factors such as Dual specificity phosphatase

1 (DUSP1), Glucocorticoid-induced leucine-zipper

(GILZ), Interleukin-1 receptor associated kinase-M

(IRAK-M), TNF induced protein 3 (TNFAIP3), inhibi-

tor of nuclear factor kappa B (IjB) or Kr€uppel-like fac-

tors (KLF) 2 and 4 that can directly interfere with

inflammatory signalling [16–21]. Additionally, GC-

treatment represses transcriptional activation of pro-

inflammatory mediators involved in apoptosis, adhe-

sion and T-cell chemotaxis [22]. In macrophages, the

role of GCs in the resolution of inflammation is known

to extend beyond the regulation, synthesis and release

of short-term inflammatory mediators [23]. By influ-

encing macrophage differentiation and polarisation

towards an anti-inflammatory (M2) macrophage phe-

notype, GCs can indirectly exert immune suppression

through downstream factors [24–29]. For instance, in a

tail amputation model in zebrafish larva, GC treatment

has been shown to inhibit macrophage differentiation

towards a pro-inflammatory (M1) phenotype without

affecting macrophage migration to the site of injury

[28]. Consistently, macrophages from GILZ�/� mice

show an increased expression of pro-inflammatory M1

markers such as CD86, Major histocompatibility com-

plex class II, induced nitric oxide synthase, chemokine

(C-C motif) ligand 2, interleukin (IL)-6, and tumour

necrosis factor alpha (TNFa) upon IFN/ lipopolysac-

charide (LPS)-stimulation [25]. Concordantly, thera-

peutic administration of TAT-GILZ, a GILZ fusion

protein containing a trans-activator of transcription

peptide (TAT) to allow in vivo delivery, promotes reso-

lution of inflammation [25,26]. While neither loss nor

gain of GILZ seem to affect the expression of M2

macrophage markers, GILZ-deficiency does reduce

efferocytosis (the phagocytic removal of apoptotic

cells), a feature commonly associated with the M2

state and the resolution of inflammation [25,26,30].

Potentially, the capacity of GILZ to reduce the activa-

tion of M1-like macrophages tips the balance in

favour of M2 polarisation and enhanced efferocytosis,

further supporting a role for GCs in M1 and M2

macrophage differentiation and polarisation [25]. In

addition, through regulation of signal transduction

pathways and defined tissue-specific gene expression

programmes, GCs not only contribute to the resolu-

tion of inflammation but also to the cellular plasticity

of macrophages, which shape and regulate inflamma-

tory responses [31]. In purified human monocytes and

monocyte-derived macrophages, GC treatment has

2 FEBS Letters (2022) © 2022 Federation of European Biochemical Societies.

Glucocorticoids: How to tame your genes B. A. Strickland et al.



been shown to drive differentiation-associated expres-

sion changes of genes regulating cell-matrix adhesion,

MAP kinase signalling, metabolism and immune

responses [29,32]. These cell-intrinsic changes are

linked to remodelling of histone H3K27 acetylation

(H3K27ac) regions, often resulting in increased

H3K27ac signals [31,32]. ChIP-seq analyses have

found that these H3K27ac signatures are either occur-

ring directly at GR-binding sites or at other GR-

bound topologically associating domains (TADs) of

neighbouring chromosomal loci, suggesting that TADs

may accommodate information from distal GC

response elements [31,32]. Furthermore, mature

human M2 macrophages, differentiated in the pres-

ence of IL4, could be rendered responsive to Trans-

forming growth factor beta (TGF-b) by GC-induced

cell-surface expression of TGF-b receptor II (TGF-

bRII) [29]. In addition to IL10, M2 macrophages

express TGF-b, suggesting that the activation is par-

tially occurring in an autocrine fashion [33]. By regu-

lating the surface expression of TGF-bRII in a time-

and dose-dependent manner, TGF-b1-stimulated M2

macrophages activate a multi-step gene expression

programme [29]. This expression programme features

‘early response’ genes involved in transcriptional regu-

lation and signalling, and ‘late response’ genes

involved in (Th2) immune modulation, lipid metabo-

lism and atherosclerosis [29]. These actions ultimately

limit the pro-inflammatory function of tissue residen-

tial leukocytes and consequently the composition and

numbers of infiltrating immune cells, as observed in

murine models for acute lung injury (ALI), acute res-

piratory distress syndrome (ARDS) and chronic kid-

ney disease [Adriamycin-induced nephropathy (AN)]

[33–36]. In the case of ALI, methylprednisolone has

been shown to ameliorate LPS-induced lung and tissue

injury in vivo by blocking M1 polarisation and by

promoting M2 polarisation [33]. Notably, sorted

macrophages had, in co-culture with CD4+ na€ıve T

cells, the capacity to induce regulatory T-cell (Treg)

differentiation by secretion of IL-10 and TGF-b
[33,37]. Similarly, in AN chronic kidney disease

model, adoptive transfer of M2 macrophages limited

both renal inflammation and fibrosis by reducing host

macrophage and CD4+ and CD8+ T-cell infiltration

[36]. Therefore, these effects might constitute a general

mechanism by which GC/GR and M2 macrophages

regulate or suppress inflammation.

However, the use of GCs is not without cost, as

long-term GC exposure induces glucose intolerance

and insulin resistance, adipocyte hypertrophy, osteo-

porosis, muscle and skin atrophy, glaucoma, impaired

wound healing, steroid resistance, as well as various

psychological side effects such as insomnia and depres-

sion [38–44]. Moreover, in the context of infection,

GCs not only have the potential of delaying the

Box 1. GR structure and function.

The immunomodulatory effects of GCs are mediated by the glucocorticoid receptor (GR, encoded by the NR3C1

gene), a ubiquitous intracellular ligand-gated transcription factor. The GR protein structure comprises three distinct

domains (Figure Box 1): The N-terminal transactivation domain (NTD) containing the activation function (AF)-1

domain, which mediates interaction with co-regulators; the central DNA-binding domain (DBD); and the C-terminal

ligand-binding domain (LBD) containing the AF-2 domain responsible for the ligand-dependent recruitment of co-

regulators [57–59]. Moreover, the NTD of GR is known to be an intrinsically disordered region (IDR), allowing for

formation of and integration in phase condensates [60]. A short intrinsically disordered hinge region also connects

the GR DBD with the LBD. In the absence of ligand, GR is maintained in the cytoplasm as a multi-protein complex

including heat shock proteins 70 and 90 (Hsp70 and Hsp90), FKBO Propyl Isomerase 4 and 5 (FKBP4, FKBP5),

and calreticulin (CALR) [61,62]. In this complex, the nuclear localisation signal within the GR LBD is masked. Upon

GC binding, GR translocates to the nucleus where it regulates the transcription of its target genes. GR homodimers

are known to bind to 15 bp palindromic consensus DNA sequences (AGAACANNNTGTTCT) termed glucocorti-

coid response elements (GREs), which are present in the enhancer and promoter regions of GR target genes.
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clearance of pathogens and impairing lymphocyte pro-

liferation, but have also been associated with reacti-

vated latent human cytomegalovirus, thus increasing

the risk of secondary virus-mediated complications

[45–48].
These opposing favourable and adverse effects of

GC treatment have become central with the emergence

of the COVID-19 pandemic, caused by severe acute

respiratory syndrome-coronavirus 2 (SARS-CoV-2)

viral infection. COVID-19 presents in various sequelae

ranging from mild to severe cases, marked by the mas-

sive release of pro-inflammatory cytokines, the devel-

opment of lung injury and ARDS, and subsequent

multi-organ failure [49–53]. Further, in a recent sys-

tematic profiling of GR expression in COVID-19

patients with severe disease, it was reported that the

expression of GR is downregulated in GR- and IL6-

co-expressing alveolar macrophages as well as in non-

immune cells [52]. Moreover, the expression of GR in

this macrophage population was significantly lower in

patients with severe disease compared to those with

mild disease [52]. In severe cases, this phenotype may

contribute to the steroid resistance observed in some

SARS-CoV-2 infected patients [52,54]. Nevertheless,

the advantages of using GCs for treating COVID-19

have been firmly established [54–56]. In a recent

update from the Randomised Evaluation of COVID-

19 Therapy (RECOVERY) trial, the use of the syn-

thetic corticosteroid dexamethasone significantly low-

ered the mortality among severe COVID-19 patients

receiving either invasive mechanical ventilation or oxy-

gen [55]. The benefits of dexamethasone treatment

were, however, not observed in patients without respi-

ratory failure [55]. Further, the timing of treatment ini-

tiation and duration after symptom onset turned out

to be a critical factor [54]. Early initiation or shorter

treatment duration has found to be less beneficial and

shown to increase the risk of rebound phenomena and

refractory COVID-19 [54]. Accordingly, in patients

hospitalised with severe COVID-19 and with respira-

tory difficulties, treatment with dexamethasone or

other corticosteroids is now part of the gold standard

regimen [54,55].

In this review, we discuss recent insights and emerg-

ing models for context-dependent GR-mediated

inflammatory gene regulation in macrophages. We fur-

ther aim to highlight the genomic and epigenomic con-

trol of transcription by GR, and to discuss emerging

concepts such as three-dimensional (3D) genome

organisation, the crosstalk between GR, other tran-

scription factors and co-regulators, and spatial–tempo-

ral distribution of co-activators and co-repressors, as

well as competition for GR sites.

Mechanisms of transcriptional
regulation by GR

Profiling chromatin dynamics in transcription

regulation

The transcriptional activation via GREs is extensively

studied and includes the recruitment of co-activators

and histone acetyl transferases (HATs) followed by

production of anti-inflammatory factors [63–67]
(Fig. 1A). In general, while the immediate transcrip-

tional repression of inflammatory genes is considered

as GR’s main mechanism of action, GR also changes

the cellular sensitivity for pro-inflammatory stimuli.

For example, GR induces the expression of signalling

factors or transcriptional regulators, which drive anti-

inflammatory states [16,17,19,22,68]. These changes

confer a long-lasting immunomodulatory environment

by polarisation of immune cells towards an anti-

inflammatory state, and by active participation to

resolve inflammation. For the purpose of this review,

though, here we focus on the mechanisms of primary

and immediate repression of inflammatory genes.

Globally, the significance of repression by GR has

been demonstrated both in vitro and in vivo, with more

than half of all LPS-TLR-induced, NF-jB- and IRF-

regulated genes being GC sensitive [69–72]. However,

on a mechanistic level GR mediated repression is less

well-understood [73–75]. Recent findings have chal-

lenged classical models of repression, which featured

GR tethering to DNA-bound AP-1 and NF-jB pro-

inflammatory transcription factors via protein–protein
interactions [17,21,76–82]. Several studies found direct

DNA binding of GR to GREs or to composite ele-

ments embedded in AP-1 or NF-jB motifs near genes

downregulated by GCs [17,83–85].
GR has further been shown to interact with GREs

inside inflammatory loci in the absence of active NF-jB
and AP-1, and in some scenarios to act synergistically

with NF-jB, as exemplified by the activation of Tnfaip3

and Nfkbia, two negative regulators of NF-jB and

TNFa-signalling [16,20,85–87]. In the inflammation-

responsive cell line HeLa B2, it appears that synergistic

activation mainly occurs at sites that are readily accessi-

ble to either GR or NF-jB, and that are weakly acti-

vated by single binding [87]. These genes correlate with

the inactivation of inflammatory signalling pathways

and constitute an additional mode for GR-mediated

suppression of inflammatory responses [88,89].

Squelching, the competition for common cofactors

such as glucocorticoid receptor interacting protein 1

(GRIP1), has been proposed as a potential mechanism

of GR-mediated repression of pro-inflammatory
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Fig. 1. Mechanisms of GR-mediated inflammatory gene regulation. Upon activation by ligands (GCs), GR translocates to the nucleus to con-

trol transcription. (A) GR binds to GREs and assembles a transcriptional complex to activate the expression of anti-inflammatory genes like

DUSP-1 or IRAK-M. this complex is dependent on incorporation of GRIP1 phosphorylation. (B) Since IRF3 controlled loci are also dependent

on GRIP1, squelching of the cofactor GRIP1 abrogates IRF3 dependent transcription. (C) Additionally, GR can bind NF-jB via protein–protein

interactions. This disturbs the pro-inflammatory NF-jB-IRF3 complex and reduces expression of IRF3 and NF-jB target genes. (D) GR bind-

ing to cryptic GREs within the NF-jB (jBREs) and AP-1 motifs (TREs) represents competitive binding. While NF-jB and AP-1 binding leads

to activation, GR binding represses expression due to conformational changes encoded in the DNA as an allosteric modulator directing co-

repressor recruitment. (E) Similarly, nGREs induce DNA binding of the GR but involve a conformation that leads to recruitment of a co-

repressor complex. (F) GR activation may reduce NF-jB binding to jBREs via unknown mechanisms.
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transcription factors (Fig. 1B). For example, competi-

tion with GR for GRIP1 has been shown to antago-

nise IRF3 activity, identifying the GRIP1:IRF3

interaction as a novel target for glucocorticoid

immunosuppression in macrophages [90]. This compe-

tition is thought to be actively regulated by the GR, as

treatment with GCs leads to altered GRIP1 phospho-

rylation at specific loci, dependent on Cyclin-

dependent kinase 9 (CDK9) [73,91,92]. It appears that

this phosphorylation potentiates the coactivator func-

tions of GRIP1, recruiting it specifically to GREs

[73,91,92]. Conceivably, this might diminish the pool

of IRF3-accessible GRIP1 and impair IRF3 function.

Concordantly, GRIP1 overexpression was found to

antagonise the repressive effects of GR on IRF3 target

genes in murine macrophage cells (RAW264.7) [90].

While tethering between GR and NF-jB has been

observed near repressed genes, the protein:protein

interaction between GR and NF-jB has been reported

to disrupt the interaction between NF-jB and IRF3

[70], abrogating NF-jB/IRF3-dependent transcription

in macrophages (Fig. 1C). Notably, this interaction

may affect TLR4- and TLR9-, but not TLR3-

dependent gene activation and required signalling via

MyD88, enabling GR to differentially regulate

pathogen-specific gene programmes [70]. Similarly, per-

oxisome proliferator-activated receptor gamma

(PPARc) and liver X receptor (LXR) were found to

cooperate with GR to synergistically repress distinct

subsets of TLR4-responsive genes [70].

As another means of GR-mediated repression, it has

recently been shown, that the GR can bind to cryptic

GREs within NF-jB and AP-1 motifs termed jB response

elements (jBREs) and O-Tetradecanoylphorbol-13-

acetate response elements (TREs), respectively. Seemingly,

these cryptic binding sites are evolutionary conserved and

competition between GR and AP-1/NF-jB for these sites

leads to transcriptional antagonism of NF-jB and AP-1

action [75,83,84] (Fig. 1D). Moreover, DNA binding at

these sites causes allosteric changes in GRs conformation,

mainly by shifting the position of a highly flexible loop

region within the GRs DBD, referred to as the lever arm

[60,93–95]. Altered conformations of the lever arm can

also affect the positioning of the remote helix H3 in the

LBD, as seen in different GR isoforms [94]. Together with

additional helices located in the LBD (H1, H4, H5 and

H12), the H3 helix present in the GR and other nuclear

receptors recruits co-activators and co-repressors by a

‘charge clamp mechanism’ that binds both nuclear recep-

tor box (NRbox) and corepressor/nuclear receptor box

(CoRNRbox) containing proteins [96–98]. The different

conformations of the H3 helix, upon DNA-induced alter-

ations of the lever arm, might thus allow for locus specific

interactions with co-regulators. While these insights are

derived from experiments in non-myeloid cell lines or

in vitro biochemical studies, it is conceivable that the

DNA sequence itself may function as an allosteric regula-

tor of GR conformation, providing differentially accessi-

ble binding surfaces that specify cofactor recruitment in

macrophages [93–95].
In addition to classical GREs, GR binding to ‘nega-

tive GREs’ (nGREs with the consensus sequence

CTCC(n)0-2GGAGA) has been suggested to contribute

to the transcriptional repression of inflammatory genes

[99] (Fig. 1E). Subsequent structural analysis observed

a shift within the lever arm that might induce confor-

mational changes leading to corepressor recruitment.

However, these sequences do not appear in the prox-

imity of pro-inflammatory promoters nor in genome-

wide GR ChIP-seq studies, and thus remain insuffi-

cient in explaining major transcriptional effects in

macrophages [85,100].

Finally, repression of target genes by GCs has been

linked to diminished DNA binding of NF-jB in a sec-

ondary effect [17]. While a mechanism based on IjB-
mediated nuclear export of NF-jB has been postu-

lated, the nuclear abundance of NF-jB and the

strength of upstream activating signals were not found

to be reduced [17,21]. Conceivably, GR might rather

sequester NF-jB by direct protein:protein interactions,

by indirectly changing the NF-jB interactome, or by

competitive binding at jB response elements (Fig. 1F).

Importantly, all these mechanisms are rapid and inde-

pendent of de novo protein synthesis [16,92,101,102].

All these scenarios described above are affected by

locus-specific differences in the chromatin microenvi-

ronment, ranging from differentially neighbouring

transcriptional regulators to altered chromatin accessi-

bility [103,104]. The long-standing notion of steady

on-and-off states, with transcription factors binding to

DNA in a static manner, assembling the transcrip-

tional machinery and driving gene expression, has been

changed by advanced microscopy. It has become evi-

dent that binding events are highly dynamic, and hap-

pen in the order of seconds at the chromatin level

[102]. This high mobility of transcriptional regulators

allows for a ‘screening’ of DNA sequences to find

high-affinity binding sites, potentially involving recruit-

ment of chromatin remodelers such as the SWI/SNF

complex [105]. By temporarily bringing nucleosomes to

a high-energy state, these ATPase containing com-

plexes enable the GR and other transcription factors

to bind DNA [105]. This transition state only lasts for

a short period of time, and the transcription factors

are removed from the DNA once the nucleosome

returns to the ground state. This model accounts for
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multiple transcription factors facilitating each other’s

binding, a phenomenon termed assisted loading [106].

Here, binding of one transcription factor would turn

the nucleosome into a high-energy state by recruiting

chromatin remodelling complexes, which provides

space for other transcription factors in close proximity.

Indeed, GR has been reported to fulfil the role of a

pioneer factor [106,107]. While these insights have not

yet been studied in macrophages, ChIP-seq experi-

ments have shown that new loci become accessible for

GR in response to LPS, arguing that similar mecha-

nisms may take place in this cellular context [85].

In the nuclei of murine mammary adenocarcinoma

cells (3617 cell line), the GR displays two independent

populations of reduced mobility [108]. One is the frac-

tion of chromatin-bound GR, whereas the other seems

to be a confinement state where GR is localised to a

limited space by means of phase separation [108]. The

observation that the residence time of GR on chro-

matin is in the order of seconds, together with the

recent observation of a predefined confinement state,

could account for the high specificity of GR binding.

The limited space predefined by phase condensates

reduces the availability of binding sites accessible to

GR, allowing highly specific binding events to take

place. This will be discussed in more details later.

One final point concerning the dynamics of GR

action is the mode of stimulation. While most insights

into GR’s action have been acquired in vitro by contin-

uous stimulation using GR-ligands, a more physiologi-

cal context of studying GR activation is by creating a

pulsatile activation state, simulating the fluctuating hor-

mone levels in vivo [109–115]. In murine mammary

tumour cells (3134 cell line), it has been shown that pul-

satile hormone treatment, compared to continuous GR

activation, differently affects the lifetime of accessible

chromatin [116]. This establishes rather short-lived

interactions with regulatory elements and transient

changes in chromatin accessibility [116]. Conversely,

continuous treatment increased GR binding and chro-

matin accessibility and established additional binding

sites [116]. Whether these insights can be exploited

pharmacologically remains to be investigated, as syn-

thetic glucocorticoids display an enhanced affinity for

the GR LBD and cannot be easily depleted upon bind-

ing, resulting in prolonged activation of GR [117].

The chromatin microenvironment as a

determinant of GR activity

As described above, GR protein conformation and its

subsequent interactions with different cofactors can be

affected by sequence differences in the GRE motif and

in flanking nucleotides [93,118]. This might particularly

affect GR dimers, which form phase-separated conden-

sates that potentially concentrate specific co-regulators

to activate or repress target genes [60,118,119]. These

locus-specific domain requirements were reportedly

mirrored by cofactors such as GRIP1 [120]. An addi-

tional parameter could be the shape of the DNA

strand at the GRE itself [121]. Recently, GR is shown

to bind to DNA as a tetramer with increased capacity

for both gene activation and repression in non-myeloid

cells, raising the possibility of additional DNA-

dependent mechanisms of GR function [122,123].

Speculatively, tetrameric GR might itself be involved

in DNA looping, with dimers binding two distal ele-

ments. With the rise of single-cell omics and advanced

imaging methods, future insights into 3D nuclear

dynamics will shed new light on transcriptional mecha-

nisms.

Furthermore, neighbouring transcription factors and

co-factors might alter the local microenvironment in a

cell type- and stimulus-specific manner. In particular,

pioneer factors like AP-1 or PU.1, which govern

macrophage M1 polarisation, might control the acces-

sibility of particular sites for GR [72,103,104,124–126].
These concepts not only support the notion of lineage

specific chromatin accessibility, but also match current

phase separation models proposing distinct transcrip-

tional condensates, which are spatially divided by dif-

ferential solubility.

GR interaction with the core transcription

machinery

Negative GR target genes cannot all be lumped

together, as they display heterogeneity and require at

least a dual classification into initiation-controlled and

elongation-controlled groups [71,127]. For initiation-

controlled genes, treatment with GR ligand diminishes

recruitment of the HAT p300 and RNA Polymerase 2,

and consequently histone acetylation. Conversely,

elongation-controlled genes recruit negative elongation

factors as well as GRIP1, resulting in failure to assem-

ble the Mediator complex [71,127] (Box 2). In addi-

tion, histone deacetylases (HDACs) play an

instrumental part in GR mediated repression. It was

observed, that HDAC1 together with silencing media-

tor for retinoid or thyroid-hormone receptors (SMRT,

alternatively known as nuclear receptor co-repressor

(NCoR) 2) is involved in a GR-bound complex, possi-

bly to repress gene transcription, in natural killer

(NK) cells [128]. Moreover, other reports showed that

HDAC3 seems to be indispensable for gene repression

at nGREs. Notably, HDAC3 also seems to be
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involved in a complex together with SMRT in COS-1

cells [129,130]. HDAC2 was found to be recruited to

the nucleus upon GC treatment in NK cells and is

involved in repression of the negative GR target proo-

piomelanocortin in pituitary tumour cells [128,131].

Further, it seems to control the interaction between

GR and NF-jB by catalysing the deacetylation of

GR, which is required for this interaction in a human

lung cancer cell line (A549) [132]. Nevertheless,

HDAC2 has not been shown to be directly involved in

GR mediated repression. Together, these findings indi-

cate an involvement of HDACs in GR mediated

repression, even though there might be cell type- and

locus-specific differences.

In general, chromatin accessibility is mediated by

nucleosome remodelling complexes like SWI/SNF, that

allow for transient, reversible, and periodic DNA bind-

ing by GR and other transcription factors [105]. Nota-

bly, while GR may open the chromatin for other

transcription factors, these regulators may themselves

create new loci accessible to GR in inflammation,

arguing for a bidirectional mechanism [85,106,107].

GR was found to differentially affect the residence

time of its cofactors in the 3617 cell line. While GRIP1

displayed increased occupancy and prolonged resi-

dence time after treatment with dexamethasone, this

was not the case for the central SWI/SNF component

Brahma related gene-1 (BRG-1) or for AP-1. Con-

versely, GRIP1 knockdown did not affect GR resi-

dence time or fraction of binding [124]. Large-scale

chromatin reorganisation and environmental stimuli

potentially shape the genomic response to GCs

[16,133]. For instance, repression by GR was abolished

by hypoxia, suggesting that GC-mediated anti-

inflammatory responses may be regulated by cellular

metabolism, which is frequently altered at sites of

inflammation [134,135].

GR crosstalk with pro- and anti-inflammatory

transcription factors

In the context of inflammation, GR does not work in

isolation, but talks to other transcription factors, that

is, GR and AP-1 that reciprocally diminish each

other’s genomic actions [101,139,140]. Mutually,

repressive effects have also been observed for GR and

NF-jB, and other transcription factors such as STATs

[70,141–143]. Herein, the underlying mechanisms range

from tethering, binding to composite elements and

competition for cofactors, to competition for DNA

binding and chromatin accessibility.

Interestingly, while STAT5 has been shown to inhi-

bit GR-mediated activation of target genes, GR on the

other hand enhanced STAT5 transcriptional activ-

ity [144–146]. In hepatocytes, neurons, adipocytes and

T-cells, GR and STAT5 have been found to physically

interact during target gene repression [144,147–150]. In
monocytes, the STAT5-mediated transcription of

Cyclooxygenase-2 is inhibited both directly and indi-

rectly by GR [151]. GR macrophage cistromes are

shown to be enriched for co-occurring STAT motifs,

raising the possibility of myeloid GR-STAT5 crosstalk

[100,136,152,153].

STAT3 tethering to chromatin-bound GR was

shown to result in transcriptional synergism, while

tethering of GR to residing STAT3 was associated

with negative regulation in pituitary tumour cells [154].

GR-STAT3 binding to composite or neighbouring ele-

ments has also been linked to reciprocal synergism

[154]. Consistently, cooperative binding between GR

and STAT3 is reported to drive transcription and cells

growth in basal-like triple negative breast cancer [155].

Box 2. Co-repressors

New techniques have identified a plethora of GR

interacting proteins. These include HDACs, N-CoR

(NCoR1) and SMRT (NCoR2), GRIP1, BRG1 and

other components of the SWI/SNF complex, the

COMPASS (complex of proteins associated with Set1)

complex and components of the Nucleosome Remod-

elling Deacetylase (NuRD) complex [69,136]. Some of

these are demonstrated to be relevant for GR medi-

ated repression. For example, in a knockdown screen

in MCF-7 cells, N-CoR, HDAC1/3 and CBP, but not

SMRT, are identified as required for TNFa repression

[84]. Sirtuin 1 and 2 are also found to be essential for

IL6, but not for TNFa, repression, arguing for locus

specific mechanisms [84]. In murine epithelial fibrob-

lasts (MEFs), N-CoR, SMRT and HDAC3 are

required for GR target gene repression, which may

point towards cell type-specificity [130]. Moreover, it

has been proposed that the interaction between GR

and N-CoR or SMRT leads to recruitment of HDACs

and the Sin3 complex [137]. Interestingly, while

HDAC1 and 3 are essential for GR-mediated repres-

sion, HDAC2 has also been shown to mediate repres-

sion of Granulocyte-macrophage colony-stimulating

factor (GM-CSF) expression [84,129,130,132].

Intriguingly, many co-regulators have dual roles

and can mediate both activation and repression. For

example, GRIP1 can function as a co-activator

together with p300/CBP as well as a corepressor

together with HDACs [85,120,138].
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As STAT3 is an important mediator of IL6 and IL10

signalling, a putative crosstalk between GR and

STAT3 in macrophages or monocytes might control

inflammatory responses. In certain situations, GR may

also drive enhanced STAT1 activation in monocytes

indirectly [156]. Elucidating the cis-regulatory logic

between these interactions and deciphering the mecha-

nistic layers of inflammatory signalling will certainly

be active areas of future studies [70,157].

Besides pro-inflammatory transcription factors, GR

acts in concert with other nuclear receptors in co-

binding scenarios and via formation of heterodimers.

For instance, GR and the nuclear receptors PPARc
and LXR display synergistic effects on gene repression

[70]. The synergy between GR and the PPAR family is

of special interest, as PPARa and PPARc have been

shown to potentiate dexamethasone’s anti-

inflammatory properties in non-myeloid cells and

in vivo [70,158,159]. Co-stimulation of GR and PPARa
leads to enhanced repression of NF-jB and attenuated

cytokine production, while simultaneously inhibiting

GR-mediated gene activation. In a murine inflamma-

tory bowel disease model, dexamethasone-induced

repression was attenuated in PPARa knockout mice,

indicating that PPARa may modulate anti-

inflammatory GC effects [160]. In addition, in hepato-

cytes, GR and PPARa have been shown to co-occupy

common binding sites, resulting in cooperative induc-

tion of genes controlling lipid/glucose metabolism

[161]. Finally, GR interactions with the oestrogen

receptor-alpha (ERa) and the androgen receptor (AR)

both result in reciprocal antagonism in MCF7 and

CV-1 cells respectively [162,163]. Of note, GR was

found to repress ERa-activated transcriptional pro-

grammes by interacting with ERa-bound enhancers,

thus suppressing growth in MCF7 cells [162]. Poten-

tially, if similar GR-nuclear receptor interactions occur

in inflammatory settings, one might speculate that the

combination of different NR agonists could be clini-

cally relevant [164].

Chromatin architecture and GR
specificity

Phase separation in transcriptional regulation

As discussed above, locus-specific transcriptional con-

trol requires the coordination of numerous proteins

and the formation of protein complexes on cis-

regulatory elements [136,165–167]. Recent molecular,

genetic and biochemical studies have found these regu-

latory components to be organised in distinct 3D tran-

scription factories [168–171]. Particular protein

domains, involved in the transcriptional process, inter-

act with each other to form biomolecular condensates

inside the nucleus [172–174]. The spatial organisation

and dynamics of key components of the transcription

apparatus within these condensates have several impli-

cations in gene regulatory mechanisms [175]. Advance-

ments in various imaging techniques present powerful

platforms to characterise the behaviour of individual

proteins within dense clusters of transcription factors

and co-regulators within an individual condensate.

Some of these biomolecular condensates form mem-

braneless droplets or nuclear foci via liquid–liquid
phase separation (LLPS) [173,176–178]. While phase

separation represents an essential component of GR

function in different cell types, mechanistic insights

into GR condensates in macrophages are still lacking.

Hence, here we describe a general view of GR sig-

nalling mechanisms by phase separation. The underly-

ing principle of phase separation involves multivalent

interactions between domains or motifs in proteins or

nucleic acids that are referred to as either low-

complexity domains (LCDs) or intrinsically disordered

regions (IDRs) [172,175,179,180]. Recent studies have

elucidated the interplay of chromatin-associated tran-

scription factors, co-factors, chromatin remodelers and

transcription itself in phase separation. The recruit-

ment of IDR-containing transcription factors (e.g. SP1

or GR), co-activators (e.g. Mediator, BRD4, and

NCoA3) and RNA Polymerase 2 appears to be driven

by phase separation [60,172,181–183]. Further involv-

ing specific histone marks, these dynamic IDR:IDR

interactions contribute to the formation of discrete

sub-compartments around chromatin-binding sites and

confer locus-specific chromatin landscapes.

In response to ligand, GR accumulates into a dis-

crete series of nuclear foci with non-homogeneous dis-

tribution in 1471.1 and BHK cells, respectively

[184,185]. These GR foci exhibit the properties of

biomolecular condensates and form a dynamic net-

work of molecular interactions pertaining to phase

separation in U2OS cells [186,187]. Reports have

described the formation of 1000–2000 nuclear foci in

COS-1 cells, each containing approximately 40–50 GR

molecules with different subnuclear localisation pat-

terns controlling receptor availability and interaction

with specific binding sites [188,189]. Moreover, a com-

parative analysis of 13 GR ligands displayed a large

variation in their abilities to induce foci formation,

potentially due to differences in affinity [188]. In addi-

tion, GR scans the genome for GREs and its binding

is reported to generate low-mobility chromatin

domains. Mutation or deletion of the GR-DBD

increases receptor mobility and affects the nuclear
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distribution, leading to aberrant compartmentalisation

of liganded GR [188]. DNase I treatment further dis-

rupted GR foci formation, providing evidence for GR

chromatin occupancy as a seed for biomolecular con-

densate formation in U2OS cells [187]. Moreover, foci

formation has been associated with GR oligomer for-

mation. In line with this, the GR mutant (GRP481R)

that mimics the structural change upon GRE binding,

presents a constitutive tetrameric conformation. This

allows for increased GR interactions with target DNA

and is linked to enhanced transcription activity [123].

GR multivalency is a key determinant of phase sep-

aration in response to ligand [108,190]. The modular

architecture of GR is well suited to recruit a wide

spectrum of co-regulators. [191,192]. Current models

of GR foci describe the genomic DNA as a scaffold to

recruit GR and its associated co-regulators to establish

a network of interactions forming condensates

[119,185]. To unravel the molecular determinants of

liquid condensate formation, NTD and LBD deleted

GRs have been analysed. GR mutants lacking the

NTD retained the capability of foci formation,

whereas LBD deleted GR showed homogeneous distri-

bution across the nucleus of U2OS cells [187]. Presum-

ably, GR’s IDR region may not be essential for the

condensation process, while its LBD appeared to be

required for foci formation at specific genomic regions.

However, a recent study has uncovered two distinct

sub-diffusive states of ligand-bound GR with limited

mobility [108]. The most restricted low mobility state

is associated with specific GR binding to chromatin,

while the IDR interactions between GR and other

interacting proteins represented a novel confinement

state potentially implicated in GR condensate forma-

tion. In the same study, however, analysis of NTD-

deleted GR mutants revealed a complete loss of pro-

tein:protein interactions associated with IDRs, while

retaining the chromatin-binding state [108]. Future

studies are needed to clarify how GR precisely controls

the assembly and function of biomolecular conden-

sates.

GR co-regulator assembly into dynamic transcrip-

tional condensates may provide an elegant molecular

mechanism underlying context-dependent selective

recruitment of co-activators or co-repressors. Accord-

ingly, GRE sequences or composite motifs may pre-

sent a control mechanism for condensate selectivity

during gene activation and repression [190,192].

Recently, activating and repressive GREs with varying

propensities to coordinate multivalent interactions

between GR and its interactors (co-activators and co-

repressors) were observed in vitro. They may induce

differential effects on condensate formation and

potentially be responsible for compositional co-

regulator bias at their respective genomic sites [60].

Taken together, GR binding to specific DNA elements,

the IDR properties of transcription factors, and the

recruited co-regulators may jointly control the selective

partitioning of GR condensates and thus specify

opposing fates of GR responsive genes (Fig. 2A–B).

Three-dimensional (3D) chromatin organisation

in transcriptional regulation

Various GR cistromes (ChIP-seq data) have revealed

unexpected genomic binding patterns: only a small

proportion of GR-binding sites map to the proximal

regulatory regions of target genes; while the vast

majority are distributed non-uniformly, particularly at

distal enhancers [17,136,167]. For example, 50% of

GR-binding sites are located at a distance > 10 kb

from the transcriptional start-site (TSS) and of GR

responsive, upregulated genes [193]. Down-regulated

genes presented a median distance of over 100 kb

between the GR-binding site and the TSS [193]. A sep-

arate study identified corresponding GRE motifs near

up- and down-regulated genes in dexamethasone-

treated inflammatory macrophages to mostly be

located within �20 kb of the TSS [85]. It seems that

GR mostly exerts its actions via distal regulatory

regions, which may interact with their target TSS

based on the spatial organisation of 3D chromatin

folding in the nucleus.

Over the last decade, the advancement in various

technical methods in chromatin biology have broad-

ened our understanding of 3D genome architecture

and organisation [194–196]. Such 3D structures are

partly cell type specific and may constitute epigenetic

control of transcription via chromatin looping between

enhancers and promoters in terminally differentiated

cells [197,198]. Contact matrices obtained by Hi-C

(chromosome conformation capture) methods show

the interaction frequency for all chromosomal loci at

various scales. At multi-megabase scale, chromosomes

are partitioned into discrete territories [199] (Fig. 2C).

At a resolution between 0.1 to 1 Mb, the 3D genome

adopts a hierarchical organisation of chromosomes

into compartments, named A and B, which mainly

correspond to transcriptionally active and inactive

states of chromatin, respectively [200,201]. In A549

cells, dexamethasone treatment accounts for small

dynamic changes in compartment associations, that is,

the enrichment of mostly dexamethasone-repressed

genes in B-like regions with increased interactions with

compartment B [202]. On the other hand, the A-like

compartment is enriched for dexamethasone-induced
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genes [202] (Fig. 2D). At a resolution of ~ 100 kb, lar-

ger chromosome compartments are segmented into

smaller domains of high local interactions called TADs

[203,204] (Fig. 2D). In general, TAD boundaries are

enriched for active histone modifications (e.g.

H3K4me3, H3K36me3) and are characterised by bind-

ing sites for architectural proteins such as CCCTC-

binding Factor (CTCF) or cohesins [194,204–207].
Dexamethasone induced dynamics in chromatin inter-

actions mainly relied on cohesin binding, as CTCF

appeared to be depleted at these sites [202,208]. Fur-

thermore, additional cell type-specific loops can sub-

stratify the TAD into nested substructures at the

subTAD level. These smaller units represent local

intrachromosomal contacts and may encompass single

gene regulatory units [209,210].

Most of the interactions between enhancers and pro-

moters occur within TADs [211,212]. This level of

organisation by TADs favours the regulatory activity

on the genes lying within the same domain, indepen-

dently of the genomic distances that separate them.

GR binding and gene regulation are connected, and

GR-binding sites that ‘loop’ to the promoters of genes

are more likely to coincide with transcriptional

changes than those sites that do not show such interac-

tions [104,202]. Moreover, transcription factor binding

Fig. 2. Phase separation during GR interactions with chromatin and transcriptional complexes. GR binding to DNA may form phase-

separated condensates and display selective bias in co-regulator recruitment. (A) Proposed models of transcriptionally active condensates

upon GR binding to GREs include the establishment of protein:protein interaction networks by intrinsically disordered region containing co-

activators (such as MED1, NCOA3, etc.). (B) Potentially, GR repressive condensates may form as a result of recruitment of co-repressor

complexes at glucocorticoid response elements (GREs) via multivalent protein:protein interactions mediated by their intrinsically disordered

regions. Chromatin inside cell nuclei is organised at multiple scales. The three-dimensional relationships between GREs and gene promoters

might comprise specific areas of active and repressive transcription factories within phase-separated condensates. (C) Chromosome territo-

ries represent specific domains inside the nucleus that limit inter-chromosomal interactions. (D) At megabase scale, chromosomes are

divided into two compartments classified as ‘A’ and ‘B’. The compartments A and B represent three-dimensional positions of active and

inactive genes, respectively. TADs may facilitate specific interactions between GR-binding sites and target transcription start sites that drive

either up- or down-regulation.
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to specific chromatin sites may occur through a combi-

nation of diffusion, sliding and linear tracking along

the chromatin fibre [213]. The fact that the genome

folds readily in a non-random manner may favour

such ‘hopping’ from regions far away on the linear

genome, and may direct GR to specific sites [104]. The

rewiring of promoter-enhancer contacts upon GC

exposure may provide an additional explanation for

cell type-specific transcriptional responses. This rewir-

ing is accompanied by concomitant changes in chro-

matin structure and local TAD restructuration [208].

For instance, in the case of GILZ GR-binding site in

U2OS cells, cell type-specific genomic organisation

could rewire the enhancer contacts with its proximal

or distal isoform promoter, producing specific tran-

script isoforms with potentially different cell type-

specific functions [208].

In addition, GR may operate on pre-existing chro-

matin interactions between GREs or enhancers and

promoters, which define the potential transcriptional

targets and which allow enhanced activation upon GC

stimulation [104,202]. For instance, by applying the

Chromatin Interaction Analysis by Paired-End Tag

Sequencing (ChIA-PET) approach to p300 in HeLa B2

cells, it has been shown that in response to ligand, GR

is mainly recruited to regulatory elements that are pre-

bound by p300. These elements were engaged in pre-

existing interactions with their target promoters prior

to GC exposure [214]. Another report found that GR

ligand-activated quantitative changes in the frequencies

of pre-established interactions without causing dra-

matic changes in 3D genome organisation [202]. An

increase in chromatin interaction frequency might also

reflect the stabilisation or synchronisation of active

chromatin states in a large proportion of a bulk of

cells, though, to ensure simultaneous regulation of GR

target genes [214]. Furthermore, an overall 7% of

chromatin interaction frequency changed upon dexam-

ethasone treatment in A549 cells, as determined by

in situ HiC. As a result, the quantitative increase in

enhancer-promoter interactions is widely linked to

increased expression of GR target genes [202]. This is

further suggestive of cooperativity among multiple

transcription factor-binding sites that interact to syner-

gistically activate gene expression. Similarly, GR

repressed genes were also associated with increased

chromatin interactions between distal binding sites and

gene promoters. However, compared to induced genes,

GR-binding sites were looped to repressed genes over

a larger genomic distance [202].

Interestingly, GR appeared to facilitate de novo

recruitment of HATs to sites that dynamically interact

with promoters and to pre-existing sites for efficient

transcriptional changes [215,216]. Moreover, growing

evidence also indicates that GR regulated genes often

form clusters as specialised nuclear hubs (or transcrip-

tion factories) [173,217]. Even with shared nuclear

positioning of GR induced and repressed regulatory

regions, transcription factor and co-regulator composi-

tion was predicted to differ significantly between

regions [218]. However, on a linear genomic scale, such

clustering of GC responsive genes inside nuclear hubs

remained invariant upon exposure to ligand, warrant-

ing further studies of these dynamics to determine the

function of higher level structural genome organisation

for GR. Even though the phenomena of 3D genome

architecture are well established in various cellular

models, how the spatial organisation might impact GR

dependent transcriptional regulation in inflammatory

macrophages still needs to be investigated.

Conclusions and perspectives

The mechanisms of glucocorticoid-mediated gene

repression still represent a fascinating molecular mys-

tery. The models herein proposed may provide numer-

ous opportunities for future research in the context of

GR signalling in innate immunity. So far, diverse and

complex scenarios of GR-dependent transcriptional

repression have been outlined, especially with respect

to long-range interactions among target gene promot-

ers (or TSSs) and GR-binding sites of variable affinity.

In addition, the dynamic nature of the chromatin envi-

ronment modulates the DNA sequence availability for

GR occupancy, which in turn shapes the transcrip-

tional complex assembly and crosstalk [69,136]. Inter-

actions between GR, NF-jB and AP-1 require the

precise assembly of transcriptional repressor complexes

at cis-regulatory elements to control inflammatory

gene expression [85,87]. Additionally, GR engagement

with other transcription factors, including PPARs and

STATs, might be poised for target gene regulation

[70,154]. In summary, neither tethering, nor nGRE

binding, nor binding to AP-1 and NF-jB elements,

nor recruitment of co-repressors such as GRIP1, can

in isolation explain the wide-reaching repressive effects

of GCs [17,85]. We therefore propose that these mech-

anisms might partly contribute to transcriptional

repression and sum up to the genomic effects in a

locus-specific way. Moreover, several studies have

identified a number of silencer elements in various

eukaryotic genomes that function in a position- and

orientation- independent manner to mediate transcrip-

tional repression [219–221]. Depending on the cellular

context, silencers often contain bifunctional regulatory

sequences that may also act as activators. Macrophage
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cis-regulatory elements bound by GR and specifying

repression may thus potentially be categorised as non-

classical silencers. Furthermore, the existence of addi-

tional mechanisms driven by other means such as

altered cellular metabolism might be envisioned.

Detailed genome-wide studies will be necessary to

further dissect the interplay between regulatory mecha-

nisms in an inflammatory context. Furthermore,

biomolecular condensate formation could possibly

enable robust and precise regulation of GR target

genes [60]. Continued investigation in this direction

will benefit from diverse experimental techniques and

super-resolution imaging tools. The implication of spa-

tial 3D genome organisation in communication

between distal GR-binding sites and promoters might

provide a new framework for negative target gene reg-

ulation [214]. Experimental approaches including

single-cell analyses or ligation-independent techniques

may provide opportunities for in-depth genomic and

transcriptomic analyses leading to the discovery of

novel molecular mechanisms in macrophages and

other cell types. Finally, integrating multi-omics data-

sets and advancing computational pipelines may dee-

pen our understanding of anti-inflammatory GR

actions and open up avenues for the development of

safer and more specific immunomodulators.
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