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Abstract: In this survey we discuss the recent results on the existence in the sense of sequences of
solutions for certain elliptic problems containing the non-Fredholm operators. First of all, we deal
with the solvability in the sense of sequences for some fourth order non-Fredholm operators, such
that the methods of the spectral and scattering theory for Schrödinger type operators are used for the
analysis. Moreover, we present the easily verifiable necessary condition of the preservation of the
nonnegativity of the solutions of a system of parabolic equations in the case of the anomalous diffusion
with the negative Laplacian in a fractional power in one dimension, which imposes the necessary form
of such system of equations that must be studied mathematically. This class of systems of PDEs has
a wide range of applications. We conclude the survey with several new results nowhere published
concerning the solvability in the sense of sequences for the generalized Poisson type equation with a
scalar potential.

Keywords: solvability conditions; non-Fredholm operators; anomalous diffusion; nonnegativity of
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1. Introduction

Let us recall that a linear operator L acting from a Banach space E into another Banach space F
satisfies the Fredholm property if its image is closed, the dimension of its kernel and the codimension
of its image are finite. Consequently, the equation Lu = f is solvable if and only if ϕi( f ) = 0 for a finite
number of functionals ϕi from the dual space F∗. Such properties of Fredholm operators are actively
used in many methods of linear and nonlinear analysis.

Elliptic equations in the bounded domains with a sufficiently smooth boundary satisfy the Fredholm
property if the ellipticity condition, proper ellipticity and Shapiro-Lopatinskii conditions are fulfilled
(see e.g., [1–4]). This is the main result of the theory of linear elliptic problems. In the case of
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unbounded domains, these conditions may not be sufficient and the Fredholm property may not be
satisfied. For instance, the Laplace operator, Lu = ∆u, in Rd fails to satisfy the Fredholm property when
considered in Hölder spaces, L : C2+α(Rd)→ Cα(Rd), or in Sobolev spaces, L : H2(Rd)→ L2(Rd).

Linear elliptic equations in unbounded domains satisfy the Fredholm property if and only if, in
addition to the conditions stated above, the limiting operators are invertible (see [5]). In certain simple
cases, the limiting operators can be explicitly constructed. For example, if

Lu = a(x)u′′ + b(x)u′ + c(x)u, x ∈ R,

where the coefficients of the operator have limits at infinity,

a± = lim
x→±∞

a(x), b± = lim
x→±∞

b(x), c± = lim
x→±∞

c(x),

the limiting operators are:

L±u = a±u′′ + b±u′ + c±u.

Since the coefficients are constants, the essential spectrum of the operator, that is the set of the complex
numbers λ for which the operator L− λ does not satisfy the Fredholm property, can be explicitly found
by means of the Fourier transform:

λ±(ξ) = −a±ξ2 + b±iξ + c±, ξ ∈ R.

Invertibility of limiting operators is equivalent to the condition that the essential spectrum does not
contain the origin, which is equivalent to that λ±(ξ) must be nonzero for any ξ ∈ R.

In the case of general elliptic equations, the same assertions hold true. The Fredholm property is
satisfied if the essential spectrum does not contain the origin or if the limiting operators are invertible.
However, such conditions may not be explicitly written.

The works [6] and [7] are important for the understanding of the Fredholm and properness prop-
erties of the quasilinear elliptic systems of second order and of operators of this kind on RN . The
exponential decay and Fredholm properties in second-order quasilinear elliptic systems were consid-
ered in [8]. Book [9] deals with a systematic study of a dynamical systems approach to investigating
the symmetrization and stabilization properties of nonnegative solutions of nonlinear elliptic problems
in asymptotically symmetric unbounded domains (see also [10,11]). Book [12] is devoted to the finite
and infinite dimensional attractors for evolution equations of mathematical physics. The attractor for a
nonlinear reaction-diffusion system in an unbounded domain in R3 was studied in [13].

In the case of non-Fredholm operators the usual solvability conditions may not be applicable and
solvability relations are, in general, not known. There are certain classes of operators for which solv-
ability conditions are derived. We illustrate them with the following example. Consider the equation

Lu ≡ ∆u + au = f (1.1)

in Rd, where a is a positive constant. The operator L coincides with its limiting operators. The homoge-
neous problem has a nonzero bounded solution. Thus the Fredholm property is not satisfied. However,
since the operator has constant coefficients, we can apply the Fourier transform and find the solution
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explicitly. Solvability conditions can be formulated as follows. If f ∈ L2(Rd) and x f ∈ L1(Rd), then
there exists a solution of this equation in H2(Rd) if and only if(

f (x),
eipx

(2π)
d
2

)
L2(Rd)

= 0, p ∈ S d
√

a a.e.

(see [14]). Here and throughout the article S d
r denotes the sphere in Rd of radius r centered at the

origin. Thus, though the operator fails to satisfy the Fredholm property, the solvability conditions are
formulated analogously. However, such similarity is only formal since the range of the operator is not
closed.

In the case of the operator with a potential,

Lu ≡ −∆u + V(x)u − au = f , (1.2)

where u ∈ E = H2(Rd) and f ∈ F = L2(Rd), d ∈ N, a ≥ 0 is a constant and the scalar potential
function V(x) tends to 0 at infinity, the Fourier transform is not directly applicable. Nevertheless, the
solvability conditions in R3 in such non-Fredholm situation can be obtained by a rather sophisticated
application of the theory of self-adjoint operators (see [15]). As before, the solvability relations are
formulated in terms of the orthogonality to the solutions of the homogeneous adjoint problem. There
are several other examples of linear elliptic non Fredholm operators for which solvability conditions
can be derived (see [5, 14–18]).

Solvability conditions play a significant role in the analysis of the nonlinear elliptic equations.
In the case of non-Fredholm operators, in spite of some progress in the understanding of the linear
problems, there exist only few examples where the nonlinear non-Fredholm operators are analyzed
(see [14, 19–22]). The article [21] is devoted to the solvability in the appropriate H2 spaces of the
nonlinear, nonlocal equation

∆u +
∫
Ω

G(x − y)F(u(y), y)dy + au = 0, a ≥ 0. (1.3)

Clearly, when (1.3) is considered in the whole space or in the product of the [0, 2π] and Rd, d = 1, 2
with the periodic boundary conditions on the sides, it contains the non-Fredholm operator. In [20]
the authors study the solvability in H2 of the equation similar to (1.3), which includes the drift term,
namely

d2u
dx2 + b

du
dx
+ au +

∫ ∞

−∞

G(x − y)F(u(y), y)dy = 0, a ≥ 0, b ∈ R, b , 0, x ∈ R. (1.4)

The article [23] deals with the solvability in H2(R2) of the integro-differential equation involving the
normal diffusion in one direction and the anomalous diffusion in the other direction.

One of the important questions about problems with non-Fredholm operators concerns their solv-
ability. We address it in the following setting. Let A : E → F be the operator corresponding to the
left side of Eq (1.2). For a ≥ 0, its essential spectrum contains the origin, so that this operator fails to
satisfy the Fredholm property. Let fn be a sequence of functions in the image of the operator A, such
that fn → f in L2(Rd) as n→ ∞. Denote by un a sequence of functions from H2(Rd) such that

Aun = fn, n ∈ N.
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Since the operator A does not satisfy the Fredholm property, the sequence un may not be convergent.
Let us call a sequence un the solution in the sense of sequences of the equation Au = f if Aun → f
(see [5]). If such sequence converges to a function u0 in the norm of the space E, then u0 is a solution
of this equation. Solution in the sense of sequences is equivalent in this case to the usual solution.
However, in the case of the non-Fredholm operators, this convergence may not hold or it can occur in
some weaker sense. In such case, the solution in the sense of sequences may not imply the existence
of the usual solution. In the our work (see [16]) we find the sufficient conditions of equivalence of
solutions in the sense of sequences and the usual solutions. In the other words, the conditions on
sequences fn under which the corresponding sequences un are strongly convergent.

In the Mathematical Biology (in particular, in the modelling of the Population Dynamics) the
integro-differential equations describe the models with the intra-specific competition and nonlocal con-
sumption of resources (see e.g., [24, 25]). In our works we use the explicit form of the solvability
relations and establish the existence of solutions of our nonlinear equations. In the case of the stan-
dard Laplacian in the diffusion term, the integro- differential equations were considered in [20–22].
The solvability of the nonlocal reaction-diffusion problems involving the negative Laplacian raised to
a fractional power was actively studied in recent years in the context of the anomalous diffusion (see
e.g., [26–28]). The probabilistic realization of the anomalous diffusion was discussed in [29]. In
[30] the authors establish the imbedding theorems and study the spectrum of certain pseudodifferential
operators. Let us describe the results derived in [16].

2. Solvability in the sense of sequences for some fourth order non-Fredholm operators

The large time behavior of the solutions of a class of fourth-order parabolic problems defined on
unbounded domains using the Kolmogorov ε-entropy as a measure was investigated in [31]. The
equations of this type appear in the studies of the bistable systems, the pattern formation, the phase
transitions in the multicomponent systems, in the Statistical Mechanics. To understand their dynamics
and robustness, it is useful sometimes to consider the quasi-stationary models that lead to the fourth
order elliptic equations.

Solvability in the sense of sequences for the sums of non-Fredholm Schrödinger type operators was
considered in [32]. In the first part of this section we discuss such operators squared, namely

{−∆x + V(x) − ∆y + U(y)}2u − a2u = f (x, y), x, y ∈ R3, (2.1)

where a > 0 is a constant. The operator

HU, V := {−∆x + V(x) − ∆y + U(y)}2 : H4(R6)→ L2(R6) (2.2)

under the technical assumptions on the scalar potential functions V(x) and U(y) given below. The
Laplacians ∆x and ∆y are with respect to the x and y variables respectively. Similarly for the gradients,
∇x and ∇y are with respect to the x and y respectively. In the physical applications the sum of the two
Schrödinger type operators has the meaning of the cumulative hamiltonian of the two non-interacting
quantum particles.

The scalar potentials involved in operator (2.2) are assumed to be shallow and short-range, satisfying
the assumptions similar to the ones of [15]. We also add a few extra regularity conditions.
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Assumption 2.1. The potential functions V(x),U(y) : R3 → R satisfy the estimates

|V(x)| ≤
C

1 + |x|3.5+ε
, |U(y)| ≤

C
1 + |y|3.5+ε

(2.3)

with some ε > 0 and x, y ∈ R3 a.e. so that

4
1
9
9
8

(4π)−
2
3 ∥V∥

1
9

L∞(R3)∥V∥
8
9

L
4
3 (R3)
< 1, (2.4)

4
1
9
9
8

(4π)−
2
3 ∥U∥

1
9

L∞(R3)∥U∥
8
9

L
4
3 (R3)
< 1 (2.5)

and

√
cHLS ∥V∥L 3

2 (R3)
< 4π,

√
cHLS ∥U∥L 3

2 (R3)
< 4π. (2.6)

Furthermore, |∇xV(x)|, ∆xV(x), |∇yU(y)|, ∆yU(y) ∈ L∞(R3).

Here and below C stands for a finite positive constant and cHLS given on p.98 of [33] is the constant
in the Hardy-Littlewood-Sobolev inequality∣∣∣∣∣∣

∫
R3

∫
R3

f1(x) f1(y)
|x − y|2

dxdy

∣∣∣∣∣∣ ≤ cHLS ∥ f1∥
2

L
3
2 (R3)
, f1 ∈ L

3
2 (R3).

The norm of a function f1 ∈ Lp(Rd), 1 ≤ p ≤ ∞, d ∈ N is denoted as ∥ f1∥Lp(Rd).

Remark 2.2. The function V(x) =
C

1 + |x|4
, where C is small enough satisfies Assumption 2.1.

We denote the inner product of two functions as

( f (x), g(x))L2(Rd) :=
∫
Rd

f (x)ḡ(x)dx, (2.7)

with a slight abuse of notations when these functions are not square integrable. Indeed, if f (x) ∈
L1(Rd) and g(x) ∈ L∞(Rd), like for instance the functions of the continuos spectrum of the Schrödinger
operators discussed below (see Corollary 2.2 of [15]), then the integral in the right side of (2.7) is well
defined. Let us use the function space H4(Rd) equipped with the norm

∥u∥2H4(Rd) := ∥u∥2L2(Rd) + ∥∆
2u∥2L2(Rd) (2.8)

respectively. We designate the sphere of radius r > 0 in Rd centered at the origin by S d
r . By means of

Lemma 2.3 of [15], under Assumption 2.1 above on the scalar potentials, operator (2.2) considered as
acting in L2(R6) with domain H4(R6) is self-adjoint and is unitarily equivalent to {−∆x−∆y}

2 on L2(R6)
via the product of the wave operators (see [34, 35])

Ω±V := s − limt→∓∞eit(−∆x+V(x))eit∆x , Ω±U := s − limt→∓∞eit(−∆y+U(y))eit∆y ,
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with the limits here understood in the strong L2 sense (see e.g., [36] p.34, [37] p.90). Thus, operator
(2.2) does not have any nontrivial L2(R6) eigenfunctions. Its essential spectrum fills the nonnegative
semi-axis [0,+∞). Hence, operator (2.2) fails to satisfy the Fredholm property. The functions of the
continuos spectrum of the first operator involved in (2.2) are the solutions of the Schrödinger equation

[−∆x + V(x)]φk(x) = k2φk(x), k ∈ R3.

They satisfy in the integral form the Lippmann-Schwinger equation (see e.g., [36] p.98)

φk(x) =
eikx

(2π)
3
2

−
1

4π

∫
R3

ei|k||x−y|

|x − y|
(Vφk)(y)dy (2.9)

for the perturbed plane waves and the orthogonality conditions

(φk(x), φk1(x))L2(R3) = δ(k − k1), k, k1 ∈ R
3.

Analogously, for the second operator involved in (2.2) the functions of its continuous spectrum solve

[−∆y + U(y)]ηq(y) = q2ηq(y), q ∈ R3,

in the integral formulation

ηq(y) =
eiqy

(2π)
3
2

−
1

4π

∫
R3

ei|q||y−z|

|y − z|
(Uηq)(z)dz, (2.10)

such that the orthogonality conditions (ηq(y), ηq1(y))L2(R3) = δ(q − q1), q, q1 ∈ R
3 are valid. η0(y)

corresponds to the case of q = 0. We denote by the double tilde sign the generalized Fourier transform
with the product of these functions of the continuous spectrum

˜̃f (k, q) := ( f (x, y), φk(x)ηq(y))L2(R6), k, q ∈ R3. (2.11)

(2.11) is a unitary transform on L2(R6). Our first main result is as follows.

Theorem 2.3. Let Assumption 2.1 hold, a > 0 and f (x, y) ∈ L2(R6). Assume also that
|x| f (x, y), |y| f (x, y) ∈ L1(R6). Then Eq (2.1) admits a unique solution u(x, y) ∈ H4(R6) if and only
if

( f (x, y), φk(x)ηq(y))L2(R6) = 0, (k, q) ∈ S 6
√

a a.e. (2.12)

In the very special situation when the scalar potential functions V(x) ≡ 0 and U(y) ≡ 0 in R3, condi-
tion (2.12) gives us the orthogonality to the products of the corresponding standard Fourier harmonics.
Let us turn our attention to the issue of the solvability in the sense of sequences for our problem. The
corresponding sequence of approximate equations with n ∈ N is given by

{−∆x + V(x) − ∆y + U(y)}2un − a2un = fn(x, y), x, y ∈ R3, (2.13)

with the constant a > 0 and the right sides tend to the right side of (2.1) in L2(R6) as n→ ∞.
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Theorem 2.4. Let Assumption 2.1 hold, a > 0, n ∈ N and fn(x, y) ∈ L2(R6), so that fn(x, y) → f (x, y)
in L2(R6) as n → ∞. Let in addition |x| fn(x, y), |y| fn(x, y) ∈ L1(R6), n ∈ N, so that |x| fn(x, y) →
|x| f (x, y), |y| fn(x, y)→ |y| f (x, y) in L1(R6) as n→ ∞ and the orthogonality conditions

( fn(x, y), φk(x)ηq(y))L2(R6) = 0, (k, q) ∈ S 6
√

a a.e. (2.14)

hold for all n ∈ N. Then equations (2.1) and (2.13) possess unique solutions u(x, y) ∈ H4(R6) and
un(x, y) ∈ H4(R6) respectively, so that un(x, y)→ u(x, y) in H4(R6) as n→ ∞.

The second part of the section is devoted to the discussion of the equation

{−∆x − ∆y + U(y)}2u − a2u = ϕ(x, y), x ∈ Rd, y ∈ R3, (2.15)

where d ∈ N, the constant a > 0 and the scalar potential function involved in (2.15) is shallow and
short-range under Assumption 2.1 above. The more singular case of a = 0 will be discussed later on
in higher dimensions. The operator

LU := {−∆x − ∆y + U(y)}2 : H4(Rd+3)→ L2(Rd+3). (2.16)

Analogously to (2.2), under the stated conditions operator (2.16) considered as acting in L2(Rd+3) with
domain H4(Rd+3) is self-adjoint and is unitarily equivalent to {−∆x − ∆y}

2. Hence, operator (2.16)
does not have nontrivial L2(Rd+3) eigenfunctions. Its essential spectrum fills the nonnegative semi-axis
[0,+∞). Thus, operator (2.16) is non-Fredholm. We consider another generalized Fourier transform
with the standard Fourier harmonics and the perturbed plane waves

˜̂ϕ(k, q) :=
(
ϕ(x, y),

eikx

(2π)
d
2

ηq(y)
)

L2(Rd+3)

, k ∈ Rd, q ∈ R3. (2.17)

(2.17) is a unitary transform on L2(Rd+3). We have the following result.

Theorem 2.5. Let the potential function U(y) satisfy Assumption 2.1, a > 0 and in addition ϕ(x, y) ∈
L2(Rd+3), |x|ϕ(x, y), |y|ϕ(x, y) ∈ L1(Rd+3), d ∈ N. Then Eq (2.15) admits a unique solution u(x, y) ∈
H4(Rd+3) if and only if (

ϕ(x, y),
eikx

(2π)
d
2

ηq(y)
)

L2(Rd+3)

= 0, (k, q) ∈ S d+3
√

a a.e. (2.18)

The final main result of the section deals with the issue of the solvability in the sense of sequences
for our problem. The corresponding sequence of approximate equations with n ∈ N is given by

{−∆x − ∆y + U(y)}2un − a2un = ϕn(x, y), x ∈ Rd, d ∈ N, y ∈ R3, (2.19)

where the right sides tend to the right side of (2.15) in L2(Rd+3) as n→ ∞.

Theorem 2.6. Let the potential function U(y) satisfy Assumption 2.1, a > 0, n ∈ N and
ϕn(x, y) ∈ L2(Rd+3), d ∈ N, so that ϕn(x, y) → ϕ(x, y) in L2(Rd+3) as n → ∞. Let in addition
|x|ϕn(x, y), |y|ϕn(x, y) ∈ L1(Rd+3), so that

|x|ϕn(x, y)→ |x|ϕ(x, y), |y|ϕn(x, y)→ |y|ϕ(x, y)
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in L1(Rd+3) as n→ ∞ and the orthogonality conditions(
ϕn(x, y),

eikx

(2π)
d
2

ηq(y)
)

L2(Rd+3)

= 0, (k, q) ∈ S d+3
√

a a.e. (2.20)

hold for all n ∈ N. Then equations (2.15) and (2.19) have unique solutions u(x, y) ∈ H4(Rd+3) and
un(x, y) ∈ H4(Rd+3) respectively, so that un(x, y)→ u(x, y) in H4(Rd+3) as n→ ∞.

Note that in the applications the sum of the Laplacian and the Schrödinger type operator has the
physical meaning of the cumulative hamiltonian of the two non-interacting quantum particles. One of
these particles moves freely and another interacts with an external potential.

We conclude the section by considering problem (2.15) with a = 0 in the context of the solvability
in the sense of sequences.

Theorem 2.7. Let the potential function U(y) satisfy Assumption 2.1, a = 0 and ϕ(x, y) ∈ L2(Rd+3), d ∈
N, d ≥ 4.

a) When d = 4, 5, let in addition |x|ϕ(x, y), |y|ϕ(x, y) ∈ L1(Rd+3). Then Eq (2.15) admits a unique
solution u(x, y) ∈ H4(Rd+3) if and only if

(ϕ(x, y), η0(y))L2(Rd+3) = 0. (2.21)

b) When d ≥ 6, let in addition ϕ(x, y) ∈ L1(Rd+3). Then problem (2.15) possesses a unique solution
u(x, y) ∈ H4(Rd+3).

The final statement of the section is as follows.

Theorem 2.8. Let the potential function U(y) satisfy Assumption 2.1, a = 0, n ∈ N and ϕn(x, y) ∈
L2(Rd+3), d ∈ N, d ≥ 4, so that ϕn(x, y)→ ϕ(x, y) in L2(Rd+3) as n→ ∞.

a) If d = 4, 5, let in addition |x|ϕn(x, y), |y|ϕn(x, y) ∈ L1(Rd+3), so that |x|ϕn(x, y) →

|x|ϕ(x, y), |y|ϕn(x, y)→ |y|ϕ(x, y) in L1(Rd+3) as n→ ∞ and the orthogonality relations

(ϕn(x, y), η0(y))L2(Rd+3) = 0 (2.22)

are valid for all n ∈ N. Then problems (2.15) and (2.19) admit unique solutions u(x, y) ∈ H4(Rd+3) and
un(x, y) ∈ H4(Rd+3) respectively, so that un(x, y)→ u(x, y) in H4(Rd+3) as n→ ∞.

b) If d ≥ 6, let in addition ϕn(x, y) ∈ L1(Rd+3), so that ϕn(x, y) → ϕ(x, y) in L1(Rd+3) as n → ∞.
Then equations (2.15) and (2.19) have unique solutions u(x, y) ∈ H4(Rd+3) and un(x, y) ∈ H4(Rd+3)
respectively, so that un(x, y)→ u(x, y) in H4(Rd+3) as n→ ∞.

Let us note that no orthogonality relations are needed to solve problem (2.15) with a = 0 in H4(Rd+3)
in higher dimensions d ≥ 6. In contrast to the Fredholm case, for the proofs of Theorems 2.3-2.8 above
we are using the methods of the spectral and scattering theory for Schrödinger type operatos such as
the Spectral Theorem and the studies of the Lippmann-Schwinger integral equation for the perturbed
plane waves.

In the following section we will discuss preservation of the nonnegativity of the solutions of a
system of parabolic equations in the case of the anomalous diffusion (see [26]).
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3. Verification of biomedical processes with anomalous diffusion, transport and interaction of
species

The solutions of many systems of convection-diffusion-reaction equations, which arise in biology,
physics or engineering describe such quantities as population densities, pressure or concentrations of
nutrients and chemicals. Thus, a natural property to require for the solutions is the nonnegativity.
Models that do not guarantee the nonnegativity are not valid or break down for small values of the
solution. In many situations, proving that a particular model fails to preserve the nonnegativity leads to
the better understanding of the model and its limitations. One of the first steps in analyzing ecological
or biological or bio-medical models mathematically is to check if the solutions which originate from
the nonnegative initial data remain nonnegative (as long as they exist). In other words, the model under
consideration ensures that the nonnegative cone is positively invariant. Let us recall that if the solutions
(of a given evolution PDE) which corresponds to the nonnegative initial data remain nonnegative as
long as they exist, we say that such system satisfies the nonnegativity property.

For the scalar problems the nonnegativity property is a direct consequence of the maximum princi-
ple (see [40] and the references therein). However, for systems of equations the maximum principle is
not valid. In the particular case of monotone systems the situation resembles the case of scalar equa-
tions, sufficient conditions for preserving the nonnegative cone can be found in [40]. The existence
and uniqueness of the positive solutions of certain systems of differential equations was studied in [38]
and [39].

Our goal is to prove a simple and easily verifiable criterion, that is, the necessary condition for the
nonnegativity of solutions of systems of nonlinear convection-anomalous diffusion-reaction equations
which arise in the modelling of the life sciences. We believe that it could provide the modeler with a
tool, which is easy to verify, to approach the question of positive invariance of the model.

The present section is devoted to the preservation of the nonnegativity of solutions of the following
system of reaction-diffusion equations

∂u
∂t
= −A(−∆x)su +

m∑
l=1

Γl ∂u
∂xl
− F(u), (3.1)

where A, Γl, 1 ≤ l ≤ m are N × N matrices with constant coefficients, which is relevant to the cell
population dynamics in Mathematical Biology. Let us call system (3.1) as a (N,m) one. In this section
the space variable x corresponds to the cell genotype, uk(x, t) denotes the cell density distributions for
various groups of cells as functions of their genotype and time,

u(x, t) = (u1(x, t), u2(x, t), ..., uN(x, t))T .

The operator (−∆x)s is defined by means of the spectral calculus. The probabilistic realization of the
anomalous diffusion was discussed in [29]. For the simplicity of presentation we will consider the
case of the one spatial dimension with 0 < s < 1/4. Let us assume here that (3.1) contains the square
matrices with the entries constant in space and time

(A)k, j := ak, j, (Γ)k, j := γk, j, 1 ≤ k, j ≤ N
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and that the matrix A + A∗ > 0 for the sake of the global well posedness of system (3.1). Here A∗

denotes the adjoint of matrix A. Hence, system (3.1) can be rewritten in the form

∂uk

∂t
= −

N∑
j=1

ak, j

(
−
∂2

∂x2

)s

u j +

N∑
j=1

γk, j
∂u j

∂x
− Fk(u), 1 ≤ k ≤ N, (3.2)

where 0 < s <
1
4

. In the present section of the work the interaction of species term

F(u) = (F1(u), F2(u), ..., FN(u))T ,

which can be linear or nonlinear. Let us assume its smoothness in the theorem below for the sake of the
well posedness of our problem (3.1), although, we are not focused on the well posedness issue in the
present section. We choose the space dimension d = 1, which is related to the solvability conditions
stated below for the linear Poisson type problem (3.12) involving the non-Fredholm operator in the
left side. From the perspective of applications, the space dimension is not restricted to d = 1 since
the space variable is correspondent to the cell genotype but not to the usual physical space. As for the
vector functions, their inner product is defined using their components as

(u, v)L2(R,RN ) :=
N∑

k=1

(uk, vk)L2(R). (3.3)

Obviously, (3.3) induces the norm

∥u∥2L2(R,RN ) =

N∑
k=1

∥uk∥
2
L2(R).

Let us use the Sobolev spaces

H2s(R) :=
{

u(x) : R→ R | u(x) ∈ L2(R),
(
−

d2

dx2

)s

u ∈ L2(R)
}
, 0 < s ≤ 1

equipped with the norm

∥u∥2H2s(R) := ∥u∥2L2(R) +

∥∥∥∥∥∥
(
−

d2

dx2

)s

u

∥∥∥∥∥∥2

L2(R)

. (3.4)

By the nonnegativity of a vector function below we mean the nonnegativity of the each of its compo-
nents. The main result of the section is as follows.

Theorem 3.1. Let F : RN → RN , so that F ∈ C1, the initial condition for problem (3.1) is u(x, 0) =
u0(x) ≥ 0 and u0(x) ∈ L2(R,RN). Let us also assume that the off diagonal elements of the matrix A, are
nonnegative, so that

ak,l ≥ 0, 1 ≤ k, l ≤ N, k , l. (3.5)

Then the necessary condition for system (3.1) to admit a solution u(x, t) ≥ 0 for all t ∈ [0,∞) is that
the matrices A and Γ are diagonal and for all 1 ≤ k ≤ N

Fk(s1, ..., sk−1, 0, sk+1, ..., sN) ≤ 0 (3.6)
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is valid, where sl ≥ 0 and 1 ≤ l ≤ N, l , k.

Proof. Evidently, the maximum principle actively used for to study the solutions of single parabolic
equations does not apply to systems of such equations. Let us consider a time independent, square
integrable vector function v(x) and estimate(

∂u
∂t

∣∣∣∣∣∣
t=0

, v
)

L2(R,RN )

=

(
limt→0

u(x, t) − u0(x)
t

, v(x)
)

L2(R,RN )

.

By virtue of the continuity of the inner product, the right side of the equality above is equal to

limt→0
(u(x, t), v(x))L2(R,RN )

t
− limt→0

(u0(x), v(x))L2(R,RN )

t
. (3.7)

We choose the initial condition for our problem u0(x) ≥ 0 and the constant in time vector function
v(x) ≥ 0 to be orthogonal to each other in L2(R,RN). This can be achieved, for example for

u0(x) = (ũ1(x), ..., ũk−1(x), 0, ũk+1(x), ..., ũN(x)), v j(x) = ṽ(x)δ j,k, (3.8)

with 1 ≤ j ≤ N, where δ j,k is the Kronecker symbol and 1 ≤ k ≤ N is fixed. Hence, the second term in
(3.7) vanishes and (3.7) is equal to

limt→0

∑N
k=1

∫ ∞
−∞

uk(x, t)vk(x)dx

t
≥ 0

via the nonnegativity of all the components uk(x, t) and vk(x) involved in the formula above. Therefore,
we obtain

N∑
j=1

∫ ∞

−∞

∂u j

∂t

∣∣∣∣∣∣
t=0

v j(x)dx ≥ 0.

By means of (3.8), only the k th component of the vector function v(x) is nontrivial. This gives us∫ ∞

−∞

∂uk

∂t

∣∣∣∣∣∣
t=0

ṽ(x)dx ≥ 0.

Thus, using (3.2) we derive∫ ∞

−∞

[
−

N∑
j=1, j,k

ak, j

(
−
∂2

∂x2

)s

ũ j(x) +
N∑

j=1, j,k

γk, j
∂ũ j

∂x
−

−Fk(ũ1(x), ..., ũk−1(x), 0, ũk+1(x), ..., ũN(x))
]
ṽ(x)dx ≥ 0.

Because the nonnegative, square integrable function ṽ(x) can be chosen arbitrarily, we arrive at

−

N∑
j=1, j,k

ak, j

(
−
∂2

∂x2

)s

ũ j(x) +
N∑

j=1, j,k

γk, j
∂ũ j

∂x
−
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− Fk(ũ1(x), ..., ũk−1(x), 0, ũk+1(x), ..., ũN(x)) ≥ 0 a.e. (3.9)

For the purpose of the scaling, we replace all the ũ j(x) by ũ j

(
x
ε

)
in the inequality above, where ε > 0

is a small parameter. This implies

−

N∑
j=1, j,k

ak, j

ε2s

(
−
∂2

∂y2

)s

ũ j(y) +
N∑

j=1, j,k

γk, j

ε

∂ũ j(y)
∂y
−

− Fk(ũ1(y), ..., ũk−1(y), 0, ũk+1(y), ..., ũN(y)) ≥ 0 a.e. (3.10)

Obviously, the second term in the left side of (3.10) is the leading one as ε → 0. In the case of
γk, j > 0, let us choose here ũ j(y) = e−y in a neighborhood of the origin, smooth and tending to zero at
the infinities. If γk, j < 0, then we can pick ũ j(y) = ey around the origin and converging to zero at the
infinities. Then the left side of (3.10) can be made as negative as possible which will violate inequality
(3.10). Note that the last term in the left side of (3.10) will remain bounded. Thus, for the matrix Γ
involved in problem (3.1), the off diagonal terms should vanish, so that

γk, j = 0, 1 ≤ k, j ≤ N, k , j.

Hence, from (3.10) we derive

−

N∑
j=1, j,k

ak, j

ε2s

(
−
∂2

∂y2

)s

ũ j(y)−

− Fk(ũ1(y), ..., ũk−1(y), 0, ũk+1(y), ..., ũN(y)) ≥ 0 a.e. (3.11)

We suppose that some of the ak, j contained in the sum in the left side of (3.11) are strictly positive. Let
us choose here all the ũ j(y), 1 ≤ j ≤ N, j , k to be identical. For the equation

−

(
−
∂2

∂x2

)s

ũ j(x) = ṽ j(x), 0 < s <
1
4
, (3.12)

let us assume that its right side belongs to C∞c (R). Obviously, ṽ j(x) ∈ L1(R) ∩ L2(R) as well. Then by
virtue of the part 1) of Lemma 1.6 of [42], problem (3.12) has a unique solution ũ j(x) ∈ H2s(R). The
orthogonality conditions here for the right side of (3.12) are not needed as distinct from the cases of
1
4
≤ s <

3
4

and
3
4
≤ s < 1 discussed in parts 2) and 3) of Lemma 1.6 of [42]. Suppose the right side

of (3.12) is nonnegative on the whole real line. By means of Section 5.9 of [33] we have the explicit
formula

ũ j(x) = −cs

∫ ∞

−∞

|x − y|2s−1ṽ j(y)dy,

where cs > 0 is a constant. Then ũ j(x) is negative on R, which is a contradiction to our original
assumption. Thus, ṽ j(x) has the points of negativity on the real line. By making the parameter ε
sufficiently small, we can violate the inequality in (3.11). Since the negativity of the off diagonal
elements of the matrix A is ruled out due to assumption (3.5), we obtain

ak, j = 0, 1 ≤ k, j ≤ N, k , j.
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Hence, by virtue of (3.9) we arrive at

Fk(ũ1(x), ..., ũk−1(x), 0, ũk+1(x), ..., ũN(x)) ≤ 0 a.e.,

where ũ j(x) ≥ 0 and ũ j(x) ∈ L2(R) with 1 ≤ j ≤ N, j , k.

The final section of the article deals with the solvability in the sense of sequences of the equation
related to the double scale anomalous diffusion. Note that the solvability of the linear Poisson type
equations is crucial for establishing the solvability of the nonlinear integro-differential equations (see
e.g., [27, 42]).

4. Generalized Poisson type equation with a potential

In this section we will present the two new theorems (see Theorems 4.1 and 4.2 below) dealing with
the generalized Poisson type equation with the scalar potential. Indeed, consider the equation{

[−∆ + V(x)]s1 + [−∆ + V(x)]s2
}
u = f (x), x ∈ R3 (4.1)

with a square integrable right side and the powers 0 < s1 < s2 < 1. The assumptions on our shallow,
short-range scalar potential function V(x) were stated in Section 2. The problems with the sum of
the negative Laplacians without a potential raised to different fractional powers arise in the studies of
the double scale anomalous diffusion (see e.g., [41]). The probabilistic realization of the anomalous
diffusion was discussed in [29]. The non-Fredholm operator in the left side of (4.1)

L := [−∆ + V(x)]s1 + [−∆ + V(x)]s2 (4.2)

on L2(R3) is defined via the spectral calculus. It has only the essential spectrum

σess(L) = [0, +∞)

and no nontrivial L2(R3) eigenfunctions. By virtue of the spectral theorem, we have

Lφk(x) = (|k|2s1 + |k|2s2)φk(x)

with the functions of the continuous spectrum of our Schrödinger operator φk(x) discussed in Section 2
above. The function φ0(x) in the theorem below will correspond to the case of k = 0. In the argument
below we will use

f̃ (k) = ( f (x), φk(x))L2(R3), k ∈ R3. (4.3)

(4.3) is a unitary transform on L2(R3). Corollary 2.2 of [15] under the conditions stated below gives
us the estimate

| f̃ (k)| ≤
1

(2π)
3
2

1
1 − I(V)

∥ f (x)∥L1(R3), (4.4)

where I(V) < 1 is the left side of inequality (2.4). The first result of the section is as follows.

Theorem 4.1. Let V(x) satisfy (2.3), (2.4) and (2.6) of Assumption 2.1 above, the powers 0 < s1 <

s2 < 1 and f (x) ∈ L2(R3).
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1) If 0 < s1 <
3
4

, let in addition f (x) ∈ L1(R3). Then Eq (4.1) admits a unique solution u(x) ∈ L2(R3).

2) If
3
4
≤ s1 < 1, let in addition x f (x) ∈ L1(R3). Then problem (4.1) possesses a unique solution

u(x) ∈ L2(R3) if and only if the orthogonality condition

( f (x), φ0(x))L2(R3) = 0 (4.5)

is valid.

Proof. Let us suppose that Eq (4.1) admits two solutions u1(x), u2(x) ∈ L2(R3). Then their difference
w(x) := u1(x) − u2(x) ∈ L2(R3) is a solution of the homogeneous problem

Lw = 0.

Since the operator L on L2(R3) does not have any nontrivial zero modes, w(x) vanishes in R3.
We apply the generalized Fourier transform (4.3) to both sides of our equation (4.1) and arrive at

ũ(k) =
f̃ (k)

|k|2s1 + |k|2s2
χ{|k|≤1} +

f̃ (k)
|k|2s1 + |k|2s2

χ{|k|>1}. (4.6)

Here and below χA will stand for the characteristic function of a set A ⊆ R3. Clearly, the second term
in the right side of (4.6) can be estimated from above in the absolutely value as∣∣∣∣∣∣ f̃ (k)

|k|2s1 + |k|2s2
χ{|k|>1}

∣∣∣∣∣∣ ≤ | f̃ (k)|
2
∈ L2(R3)

via the one of our assumptions. Let us first consider the situation when 0 < s1 <
3
4

. Then the first term
in the right side of (4.6) can be bounded from above in the absolutely value using inequality (4.4) as∣∣∣∣∣∣ f̃ (k)

|k|2s1 + |k|2s2
χ{|k|≤1}

∣∣∣∣∣∣ ≤ 1

(2π)
3
2

1
1 − I(V)

∥ f (x)∥L1(R3)
χ{|k|≤1}

|k|2s1
∈ L2(R3),

which completes the proof of part 1) of our theorem. Let us conclude the argument by treating the

situation when the power
3
4
≤ s1 < 1. We will use the representation formula

f̃ (k) = f̃ (0) +
∫ |k|

0

∂ f̃ (q, σ)
∂q

dq.

Here and below σ denotes the angle variables on the sphere and

f̃ (0) = ( f (x), φ0(x))L2(R3).

This enables us to express the first term in the right side of (4.6) as

f̃ (0)
|k|2s1 + |k|2s2

χ{|k|≤1} +

∫ |k|
0
∂ f̃ (q,σ)
∂q dq

|k|2s1 + |k|2s2
χ{|k|≤1}.
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Evidently, the second term in the sum above can be estimated from above in the absolute value as∣∣∣∣∣∣
∫ |k|

0
∂ f̃ (q,σ)
∂q dq

|k|2s1 + |k|2s2
χ{|k|≤1}

∣∣∣∣∣∣ ≤ ∥∇q f̃ (q)∥L∞(R3)|k|1−2s1χ{|k|≤1} ∈ L2(R3).

Note that under the given conditions ∇q f̃ (q) ∈ L∞(R3) by means of Lemma 2.4 of [15]. Therefore, it
remains to analyze the term

f̃ (0)
|k|2s1 + |k|2s2

χ{|k|≤1}. (4.7)

It can be easily verified that (4.7) belongs to L2(R3) if and only if orthogonality condition(4.5) holds.

Note that in the first case of our theorem we do not need an orthogonality condition to solve Eq
(4.1) in L2(R3). Let us introduce the approximate equations{

[−∆ + V(x)]s1 + [−∆ + V(x)]s2
}
un = fn(x), x ∈ R3 (4.8)

with n ∈ N and 0 < s1 < s2 < 1 and establish the solvability in the sense of sequences for our problem
(4.1). The final result of the article is as follows.

Theorem 4.2. Let V(x) satisfy (2.3), (2.4) and (2.6) of Assumption 2.1 above, n ∈ N, the powers
0 < s1 < s2 < 1 and fn(x) ∈ L2(R3), so that fn(x)→ f (x) in L2(R3) as n→ ∞.

1) If 0 < s1 <
3
4

, let in addition fn(x) ∈ L1(R3), n ∈ N, so that fn(x)→ f (x) in L1(R3) as n→ ∞. Then

equations (4.1) and (4.8) possess unique solutions u(x) ∈ L2(R3) and un(x) ∈ L2(R3) respectively, so
that un(x)→ u(x) in L2(R3) as n→ ∞.

2) If
3
4
≤ s1 < 1, let in addition x fn(x) ∈ L1(R3), n ∈ N, so that x fn(x) → x f (x) in L1(R3) as n → ∞

and
( fn(x), φ0(x))L2(R3) = 0 (4.9)

is valid for all n ∈ N. Then problems (4.1) and (4.8) admit unique solutions u(x) ∈ L2(R3) and
un(x) ∈ L2(R3) respectively, so that un(x)→ u(x) in L2(R3) as n→ ∞.

Proof. Clearly, each equation (4.8) has a unique solution un(x) in L2(R3), n ∈ N due to the result of
Theorem 4.1 above. It can be easily verified that in the case 2) of our theorem the limiting orthogonality
relation

( f (x), φ0(x))L2(R3) = 0 (4.10)

will hold. Indeed, by means of (4.9) along with estimate (4.4)

|( f (x), φ0(x))L2(R3)| = |( f (x) − fn(x), φ0(x))L2(R3)| ≤

≤
1

(2π)
3
2

1
1 − I(V)

∥ fn(x) − f (x)∥L1(R3) → 0, n→ ∞.

Note that via the assumptions of the second part of the theorem we have fn(x) → f (x) in L1(R3) as
n → ∞ by virtue of Lemma 3.3 of [18]. Therefore, in both cases of the theorem, limiting equation
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(4.1) admits a unique solution u(x) ∈ L2(R3) according to Theorem 4.1. Let us apply the generalized
Fourier transform (4.3) to both sides of Eq (4.8). This yields

ũn(k) =
f̃n(k)

|k|2s1 + |k|2s2
. (4.11)

Formulas (4.11) and (4.6) give us

ũn(k) − ũ(k) =
f̃n(k) − f̃ (k)
|k|2s1 + |k|2s2

χ{|k|≤1} +
f̃n(k) − f̃ (k)
|k|2s1 + |k|2s2

χ{|k|>1}. (4.12)

Evidently, the second term in the right side of (4.12) can be estimated from above in the absolute value
as ∣∣∣∣∣∣ f̃n(k) − f̃ (k)

|k|2s1 + |k|2s2

∣∣∣∣∣∣χ{|k|>1} ≤
| f̃n(k) − f̃ (k)|

2
.

Hence, ∥∥∥∥∥∥ f̃n(k) − f̃ (k)
|k|2s1 + |k|2s2

χ{|k|>1}

∥∥∥∥∥∥
L2(R3)

≤
1
2
∥ fn(x) − f (x)∥L2(R3) → 0, n→ ∞

as assumed. Let us first discuss the case when 0 < s1 <
3
4

. By means of (4.4), we have

| f̃n(k) − f̃ (k)| ≤
1

(2π)
3
2

1
1 − I(V)

∥ fn(x) − f (x)∥L1(R3).

Then the first term in the right side of (4.12) can be bounded from above in the absolute value as∣∣∣∣∣∣ f̃n(k) − f̃ (k)
|k|2s1 + |k|2s2

χ{|k|≤1}

∣∣∣∣∣∣ ≤ 1

(2π)
3
2

1
1 − I(V)

∥ fn(x) − f (x)∥L1(R3)
1
|k|2s1
χ{|k|≤1},

so that ∥∥∥∥∥∥ f̃n(k) − f̃ (k)
|k|2s1 + |k|2s2

χ{|k|≤1}

∥∥∥∥∥∥
L2(R3)

≤
1
√

2π

1
1 − I(V)

∥ fn(x) − f (x)∥L1(R3)
1

√
3 − 4s1

→ 0

as n→ ∞ as assumed, which completes the proof of the first part of the theorem.

Finally, we proceed to treating the case when
3
4
≤ s1 < 1. Orthogonality relations (4.10) and (4.9)

imply that
f̃ (0) = 0, f̃n(0) = 0, n ∈ N.

Therefore,

f̃ (k) =
∫ |k|

0

∂ f̃ (q, σ)
∂q

dq, f̃n(k) =
∫ |k|

0

∂ f̃n(q, σ)
∂q

dq, n ∈ N.

This enables us to write the first term in the right side of (4.12) as∫ |k|
0

[
∂ f̃n(q,σ)
∂q −

∂ f̃ (q,σ)
∂q

]
dq

|k|2s1 + |k|2s2
χ{|k|≤1},
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which can be easily estimated from above in the absolute value by

∥∇q[ f̃n(q) − f̃ (q)]∥L∞(R3)|k|1−2s1χ{|k|≤1}.

Thus, ∥∥∥∥∥∥ f̃n(k) − f̃ (k)
|k|2s1 + |k|2s2

χ{|k|≤1}

∥∥∥∥∥∥
L2(R3)

≤ ∥∇q[ f̃n(q) − f̃ (q)]∥L∞(R3)
2
√
π

√
5 − 4s1

.

By means of the result of Lemma 3.4 of [18] under the given conditions we have

∥∇q[ f̃n(q) − f̃ (q)]∥L∞(R3) → 0, n→ ∞,

which completes the proof of the theorem.

5. Discussion

In the forthcoming papers we are going to address the following issues:

a) the necessary and sufficient conditions for Theorem 3.1,

b) the nonautonomous version of Theorem 3.1,

c) the density-dependent diffusion matrix in system (3.1),

d) the effect of the delay term in the cases a), b) and c),

e) the extension of our approach to the higher, even order elliptic equations. For instance, in the case
of the sixth order operator {−∆x + V(x) − ∆y + U(y)}3 we can check for the analog of Assumption 2.1
of Theorem 2.4.
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