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Abstract
Resting conventional T cells (Tconv) can be distinguished from T regulatory cells 
(Treg) by the canonical markers FOXP3, CD25 and CD127. However, the expression 
of these proteins alters after T-cell activation leading to overlap between Tconv and 
Treg. The objective of this study was to distinguish resting and antigen-responsive 
T effector (Tconv) and Treg using single-cell technologies. CD4+ Treg and Tconv 
cells were stimulated with antigen and responsive and non-responsive populations 
processed for targeted and non-targeted single-cell RNAseq. Machine learning was 
used to generate a limited set of genes that could distinguish responding and non-
responding Treg and Tconv cells and which was used for single-cell multiplex qPCR 
and to design a flow cytometry panel. Targeted scRNAseq clearly distinguished the 
four-cell populations. A minimal set of 27 genes was identified by machine learning 
algorithms to provide discrimination of the four populations at >95% accuracy. In all, 
15 of the genes were validated to be differentially expressed by single-cell multiplex 
qPCR. Discrimination of responding Treg from responding Tconv could be achieved 
by a flow cytometry strategy that included staining for CD25, CD127, FOXP3, IKZF2, 
ITGA4, and the novel marker TRIM which was strongly expressed in Tconv and 
weakly expressed in both responding and non-responding Treg. A minimal set of 
genes was identified that discriminates responding and non-responding CD4+ Treg 
and Tconv cells and, which have identified TRIM as a marker to distinguish Treg by 
flow cytometry.
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INTRODUCTION

T-cell responses to antigen (Ag) are an essential compo-
nent of the adaptive immune response. The type of T-cell 
response is classified by the cell type, transcription factors 
and cytokine production, and is influenced by the state of 
the antigen presenting cells, the nature of the Ag target 
and the environment where Ag presentation takes place. 
A key aspect of the CD4+ T-cell response in this context is 
the balance between effector and regulatory T cells (Treg) 
[1-3]. Under resting conditions, Treg can be distinguished 
from effector T cells by their expression of the transcrip-
tion factor FOXP3 [4], constitutive CD25 expression [5,6] 
and low CD127 expression in Treg [7]. However, upon ac-
tivation, effector cells upregulate FOXP3 and CD25 and 
downregulate CD127, leading to a substantial overlap be-
tween these two cell types [8]. Single-cell RNA (scRNA) 
profiling has the potential to identify distinct profiles of 
both cell types during resting and activating conditions 
[9,10]. Technologies range from targeted qPCR or scRNA 
sequencing panels to untargeted scRNAseq, such as the 
10X Genomics and SMARTseq technologies. The objective 
of this study was to distinguish resting and Ag-responding 
T effector (Tconv) and Treg using single-cell technologies.

MATERIALS AND METHODS

Subjects and PBMC isolation

Human samples from healthy adult blood donors were 
obtained as buffy coats (BC) from the Deutsches Rotes 
Kreuz for the isolation of peripheral blood mononuclear 
cells (PBMC) by density centrifugation. The use of the 
samples was approved by ethics committee with informed 
consent of the donors (EK240062016).

Isolation and stimulation of 
conventional and regulatory T cells

MACS was used to isolate CD4+ T cells with the 
CD4+ T cell Isolation Kit and CD4− T cells with 
CD4  Microbeads (Miltenyi Biotec). CD4+ cells were 
stained (CD4-FITC (RPA-T4, BD); CD25-PE (M-A251, 
BD); CD127-eFluor 450 (eBioRDR5, eBioscience); 7AAD 
(BD)), washed and the CD4+CD25dim/− CD127+ and 
CD4+CD25+CD127lo cells sorted and isolated by FACS 
(ARIAII, BD). CD4+CD25dim/−CD127+ cells (Tconv) were 
stained with proliferation dye eFluor®450 (5  µM) and 
CD4+CD25+CD127lo cells (Treg) with eFluor®670 (10 µM) 
for 10 min at 37°C. After washing with cold RPMI + 10% 

HS, the two populations were pooled in proportions ini-
tially measured in PBMCs and added to the non-CD4+ cell 
population (Table S1A). Tetanus toxoid (Sanofi Pasteur) 
or influenza (Begripal 2014/2015; Novartis Vaccines 
and Diagnostics GmbH) Ags were added at 1 µl/ml and 
cells incubated for 5  days in a 96-well U-bottom plate. 
Cells were stained with CD8-APC-H7 (SK1, BD), CD4-
FITC (RPA-T4, BD), CD25-PE (M-A251, BD), CD45RO-
PE-Cy7 (UCHL1, BD) and 7AAD (BD) for the analysis 
of activation and proliferation of the T-cell subsets and 
sorting of proliferated responding (DyedimCD25hi) and 
non-responding Tconv (eFluor®450) or Treg (eFluor®670) 
cells with very stringent gating, either as single cells (for 
analysis by SMARTseq or Biomark) or as bulk (for analy-
sis by Rhapsody).

For validation experiments, the CD4+ Tconv and Treg 
cells were sorted and isolated by FACS as described above 
and labelled with eFluor®670 (5  µM). After washing, 
50 000 Tconv or Treg were cultured separately with 100 000 
unlabelled CD4+ T-cell-depleted PBMC from the same do-
nors and 10  ng/ml Staphylococcal Enterotoxin B (SEB; 
Sigma-Aldrich) for 5 days in a 96-well U-bottom plate with 
0·05 IU of IL-2 in the Treg culture for survival. For anal-
ysis by Multiplex qPCR by Biomark, cells were stained 
CD3-BUV395 (SK7, BD); CD4-BV786 (OKT4, Biolegend); 
CD25-BV650 (M-A251, BD); CD127-BUV737 (HIL-
7R-M21, BD) and Tconv or Treg responding (DyedimCD25+) 
and Tconv non-responding (DyebrightCD25−) and Treg 
non-responding (DyebrightCD25+) cells were single cell 
sorted. For FACS, cells were stained for additional sur-
face markers with CD7-PE-Cy7 (CD7-6B7, Biolegend), 
CD49d-APC-Cy7 (9F10, Biolegend) and IL1R2-FITC 
(34141, Thermofisher Scientific) together with Fixable 
Viability Dye (eFluor 506, eBioscience) and for intracel-
lular markers with FOXP3-BV421 (206D, Biolegend), 
IKZF2-PE/Dazzle (22F6, Biolegend) and TRIM-PE 
(TRIM-4, Biolegend) after fixation and permeabilization 
using the FoxP3/Transcription Factor Staining Buffer set 
(eBioscience).

Gene expression analysis

Rhapsody

The four-cell populations from one donor were bulk 
sorted into separate tubes pre-coated with PBS contain-
ing 4% BSA and a Sample Tag per population. Cells 
were stained with the Sample Tags as described by the 
manufacturer (BD™ Single-Cell Multiplex Kit, BD-
Biosciences), reassembled into one tube and processed 
using the Human Immune Response Panel and the BD 



      |  123SINGLE-­CELL TECHNOLOGIES FOR TREG GENE EXPRESSION

Rhapsody Single-Cell Analysis System (BD-Biosciences) 
according to the manufacturer's instruction. The libraries 
were sequenced in 75-bp paired end mode on the Illumina 

NextSeq500 platform and the Illumina HiSeq 2500 plat-
form to obtain approximately 40mio fragments for the 
mRNA libraries and approximately 0.5mio fragments 

F I G U R E  1   Mixed PBMC culture assay. A schematic representation of TT-stimulation assay composition: FACS isolated CD4+CD25dim/− 
(Tconv, red cells) and CD4+CD25+CD127lo (Treg, blue cells) were stained with different proliferation dyes and mixed back together with 
non-CD4 cells (grey cells) in a typical PBMC composition. TT-Ag (grey star shaped) was added to the culture. After incubation for 5 days, 
proliferating and non-proliferating Tconv and Treg (proliferation dye dim and high cells, respectively) were single cell sorted by FACS. 
B Gating of CD4+CD25dim/−CD127+ and CD4+CD25+CD127lo from an exemplary staining of PBMCs; shown is the CD25 and CD127 gate 
after selecting for CD4+ cells. C FACS gating strategy for Tconv and Treg. Cell sorting on day 0 was performed using FACS to isolate 
CD4+CD25dim/− CD127+ Tconv and CD4+CD25+CD127lo Treg (middle plot) from a MACS enriched population of CD4+ cells (left plot). 
Post-sort purity is shown in the right plots. D FACS gating strategy for Tconv and Treg on day 5 after stimulation. Tconv and Treg were 
identified by their different proliferation dyes, efluor 670 (Treg, blue) and efluor 450 (Tconv, red). Cells were divided into respondings 
(Resp) and non-respondings (NR) by their CD25 expression and dye intensity. Resp and NR were further characterized by the composition 
of memory cells (CD45RO+, right plots). The number of donors and the number of cells included in the data analysis for each technology is 
shown at the bottom. Gating statistics are shown within the plots for B and C, and in Table 1 for D

(a)

(b)

(d)

(c)
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for the sample tag libraries. The BD Rhapsody targeted 
analysis pipeline (v1.3; https://bitbu​cket.org/CRSwD​ev/
cwl/src) was used to process the raw sequencing data. 
Cell labels and unique molecular indices were identified 
from the R1 reads. The respective R2 reads were mapped 
against the human BD Rhapsody Immune Response 
Panel sequences and against the human BD Rhapsody 
Sample Tag sequences #5-8. Data pre-processing, dimen-
sion reduction, clustering (default) and differential genes 
expression analysis were done using the Seurat pack-
age (Seurat 2.3.).The 21  genes in the panel were used 
for analysis. After normalization and scaling, principal 
component analysis (PCA) was used to perform dimen-
sionality reduction of all the data and then projected with 
Uniform Manifold Approximation and Projection for 
Dimension reduction (UMAP). Differentially expressed 
genes were found using the FindMarker function with a 
logfc threshold of 0·3 and requiring the expression of the 
gene in ≥30% of the cells.

SMARTseq

Single cells from the four-cell populations from three do-
nors were sorted into 96-well plates containing 2 µL of 
nuclease-free water with 0·2% Triton X-100 and 4 U murine 
RNase inhibitor (NEB), centrifuged and frozen at −80°C. 
The workflow was based on the previously described 
SMARTseq2 protocol [11] with some modifications. After 
thawing, 2 µl of the primer mix (5 mM dNTP (Invitrogen), 
0·5 µM oligo-dT primer, 4 U murine RNase inhibitor) were 
added to each well. The reverse transcription reaction was 
performed using RNase inhibitor (9 U) and Superscript II 
(90 U) at 42°C for 90 min, followed by an inactivation step 
at 70°C for 15 min. The number of pre-amplification PCR 
cycles was increased to 22 and the amplified cDNA was 
purified using Sera-Mag SpeedBeads (GE Healthcare) and 
DNA eluted. 0·7 ng of pre-amplified cDNA was used for 
library preparation (Nextera XT library preparation kit, 
Illumina) in a 5 µL volume. Illumina indices were added 

T A B L E  1   Features of targeted, semi-targeted and whole transcriptome single-cell gene expression methods used

Biomark Rhapsody SMARTseq

Company Fluidigm BD, Illumina Takara, Illumina

Approach targeted semi-targeted whole transcriptome

Methodological steps cDNA synthesis (poly(A)), 
multiplex PCR, qPCR

cDNA synthesis (poly(A)), 
multiplex PCR, sequencing

SMARTer first strand cDNA 
synthesis, cDNA amplification, 
sequencing

Number of analysed cells 96 1000–20 000a 96/384

Number of input cells 
required

1 Minimum of 1000 1

Processing Can be postponed, cells can be 
frozen after sort

Directly after FACS sort Can be postponed, cells can be 
frozen after sort

Number of genes Up to 96 259 or 399b >25 000 (3000–6000)

Reads/cell NA 2000–20 000 0·5 million

Developmental requirements customized panel Ready to use Ready to use

Processing time 1 day 3–8 weeks 3–8 weeks

Costs/cell (€) * 16 1·59/0·11c 9·76/4·55d

Note: Costs per cell without personnel and overheads.
The characteristics of the three methods used are shown. Company: commercial companies providing reagents and/or technology; Approach: distinction 
between a targeted (only a restricted number of selected genes (here 48)), a semi-targeted (a commercial panel, including 399 Immune-related or 259 T 
cell- related genes) and a whole transcriptome (single-cell mRNA seq) approach; Number of cells analysed: cells analysed per experimental unit (Biomark: 
PCR plate, Rhapsody: cartridge, SMARTseq: PCR plate); Number of input cells required: the minimal number of cells that can be run per experimental unit; 
Processing: immediate processing required or freezing of cells possible; Number of genes: genes that can be detected with the method (Biomark: one chip 
allows the analysis of 96 samples and 96 genes; Rhapsody: the number of genes depends on the panel used); Reads per cell: sequencing depth usually applied; 
Developments required: customized panel needs to be developed for Biomark including primer design, primer efficiency testing and mutual primer inhibition 
testing; Processing time: time required from the sample to the raw data obtention; Costs/cell: processing costs per cell, not including personnel and overhead 
costs.
aUp to 12 samples with Barcodes can be pooled and analysed.
b259 genes in the T-Cell-Expression- and 399 genes in Immune response panel.
cCosts when 1000/20 000 cells are analysed.
dCosts when a 96-/384-well plate is used.

https://bitbucket.org/CRSwDev/cwl/src
https://bitbucket.org/CRSwDev/cwl/src
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during the PCR (72°C for 3 min, 98°C for 30 s, 12 cycles 
of [98°C for 10 s, 63°C for 20 s and 72°C for 1 min], and 
72°C 5 min) with 1× KAPA Hifi HotStart Ready Mix and 

0·7 µM of dual indexing primers. After PCR, the libraries 
were quantified, pooled in equimolar amounts and puri-
fied twice with Sera-Mag SpeedBeads. The libraries were 

F I G U R E  2   Genes differentially expressed between TT responding, non-responding, Tconv and Treg cells. (a) UMAP visualization of 
cells after integrating the three technologies, Rhapsody, SMARTseq and multiplex qPCR by Biomark. Cells are coloured according to their 
cell type (responding Tconv: dark red, non-responding Tconv: coral, responding Treg: dark blue and non-responding Treg: royal blue). 
(b) UMAP visualization as in (a). Cell coloured according to clusters found. (c) Differential expression of the top five most variable genes 
between the four cell types (Rhapsody and Biomark) and responding and non-responding cells (SMARTseq) are shown in one heatmap for 
the three technologies. Cell Types are colour-coded as in A for Rhaspody and Biomark and according to clusters for SMARTseq

(a)

(b)

(c)
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sequenced on the NextSeq 500 Illumina platform to ob-
tain 75-bp single-end reads aiming at an average sequenc-
ing depth of 0·5 million reads per cell. Alignment of the 
reads to the reference human genome (hg38) was done 
with GSNAP (v2018-05-30) and Ensembl gene annotation 
(version 87) was used to detect splice sites. The aligned 
reads were quantified with featureCounts (v1·6.2) from 
the Subread package and the same Ensembl annotation 
was used to generate a counts-matrix. Cells expressing 
only a few genes were filtered out from the counts-matrix 
using the clean.counts function in SCDE [12] (min.lib.
size  =  1000, min.reads  =  1, min.detected  =  1). Further 
processing of the counts-matrix was performed using 
the following R packages: SingleCellExperiment [13,14] 
and scater [15]. Briefly, the counts-matrix was loaded 
and a single-cell experiment object was constructed. The 
ERCC spike-in counts were added as an alternative ex-
periment attributed to the object. Dimensionality reduc-
tion was performed and the data were visualized using 
UMAP [16] implemented in the R package umap, ver-
sion 0.2.3.1. Differentially expressed genes were identified 
using the findMarkers function from the scran package 
with the default settings while blocking for plate technical 
confounder.

Multiplex qPCR by Biomark

Single cells were sorted into 96-well PCR plates contain-
ing 5 μl EB buffer (Qiagen), immediately snap-frozen on 
dry ice and stored at −80°C. Multiplex qPCR was per-
formed as described [17] with some modifications. cDNA 
was synthesized using Quanta qScript™ cDNA Supermix 

directly on cells. Total cDNA was pre-amplified for 
20 cycles (1 × 95°C for 8 min, 95°C for 45  s, 49°C with 
0·3°C increment/cycle for 1  min, and 72°C for 1·5  min) 
and 1 × 72°C for 7 min with TATAA GrandMaster Mix 
(TATAA Biocenter) in a volume of 35 μL in the presence 
of the primer pairs for 40 genes (25 nM final concentra-
tion for each primer as described [17] but without CCR10, 
CCR3, GATA3, IL17F, EOMES and NFTAC and for valida-
tion using the primers listed in Table S2). Pre-amplified 
cDNA (10 μl) was treated with 1·2 U of exonuclease I and 
expression quantified by RT-PCR on a Biomark™ HD 
System (Fluidigm Corporation) using the 96·96 Dynamic 
Array IFC and the GE 96x96 Fast PCR  +  Melt protocol 
with SsoFast EvaGreen Supermix and Low ROX (BIO 
RAD) and 5 µM of primers for each assay. Raw data were 
analysed using the Fluidigm Real-Time PCR analysis soft-
ware. Pre-processing and data analysis were conducted 
using KNIME 3.7.0, R version 3.5.1 and RStudio version 
1.2.1335 (RStudio). For pre-processing, a linear model 
was used to correct for confounding effects potentially 
introduced through processing batches. In brief, batch 
effects (dummy coding for each plate/batch) were mod-
elled jointly with dose effects by regressing out the effect 
of plates on each individual gene while controlling for 
dose to obtain a corrected gene expression dataset [18]. 
The data from eight subjects were pooled. Dimension re-
duction was performed using UMAP as described above. 
Clustering was performed with hclust and ward.D2. To 
find genes significantly differing between two conditions 
in qPCR data, the Hurdle model was applied for regres-
sion taking count data with over dispersion into account 
[19]. To find cluster marker genes, the FindMarker func-
tion was used, implemented in scanpy.

Clusters
Responder T 
conv (%)

Responder 
T reg (%)

Non-responder 
Treg (%)

Non-responder 
T conv (%)

Rhapsody

1 98·7 12·9 0·2 0·0

2 0·4 72·8 0·3 0·0

3 0·6 14·0 96·1 2·9

4 0·2 0·3 3·4 97·1

SMARTseq

1 100 98·8 0·0 3·7

2 0·0 1·2 100 96·3

Biomark

1 48·3 10·1 0·0 0·0

2 29·0 63·0 19·2 3·3

3 11·4 12·3 30·0 7·5

4 11·4 14·5 50·8 89·2

T A B L E  2   Frequencies from each 
cell type found per UMAP cluster after 
Rhapsody, SMARTseq and Biomark 
analysis
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Machine learning

Support Vector Machine (SVM) and Logistic Regression 
(LR) were used with their implementation in Python's scikit 
library. For feature selection, we used the Recursive Feature 
Elimination with Cross Validation (RFECV) algorithm, 
also implemented in Python's scikit library. Since a larger 

number of data points was obtained from the Rhapsody 
analyses, the Rhapsody data were used for feature selection 
and building models. The following parameters were ob-
tained after modelling: (i) Accuracy—how many cells were 
correctly predicted; (ii) Precision, defined as TruePositive/
(TruePositive + FalsePositive); and (iii) Recall, defined as 
TruePositive/(TruePositive + FalseNegative).

F I G U R E  3   Gene expression differences between Tconv and Treg non-responding cells. (a) UMAP visualization of both cell types. 
Tconv are coloured in red, Treg in blue. (b) Raindot-plots showing the expression of exemplary genes significantly differing between the two 
cell types and shared between both (FOXP3, IL7R, IL2RA and GIMAP5), SMARTseq and Rhapsody. Genes significantly increased in Tregs 
are shown first. Cell Types are colour-coded as in (a). y-axis shows values after processing raw data, differing for each technology. (c) The 
Venn diagram represents the number of DE genes found by the methods and the number of genes shared between them. (d, e) Shown are 
heatmaps with differentially expressed genes. All genes significantly differing between Treg and Tconv in non-responding TT-stimulated 
cells using the Rhapsody (d), or the 20 top upregulated and downregulated genes found using SMARTseq (e). From top to bottom are genes 
with the highest fold change (FC) in Tregs and from bottom to top in Tconv. Tconv are shown in red, Treg in blue

(a)

(b)

(c)

(c) (d)
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RESULTS

In vitro isolation of non-responding and 
responding conventional and regulatory T 
cells

An in vitro model was established to distinguish and iso-
late Tconv and Treg human CD4+ T cells after activation 
(Figure 1). After isolation and separate labelling of Treg 
and Tconv cells with eFluor670 or eFluor450, cells were 
reunited along with the non-CD4+ T cells so as to mimic 
a classical PBMC stimulation assay, and the cell mixture 
was stimulated with Ag for 5 days (Figure 1b and Table 
S1A). The dyedimCD25high for responding Treg (eFluor670) 
and Tconv cells (eFlour450), the dyebrightCD25high as non-
responding Treg cells, and the dyebrightCD25low as non-
responding Tconv cells were sorted and processed (Figure 
1d and Table S1B,C). Responding cells against the model 
Ag tetanus toxoid CD45RO+ and were observed for both 
Treg and Tconv cells (Figure 1d).

mRNA profiles 
distinguish non-responding and 
responding conventional and regulatory 
T cells

Three methods were used to profile mRNA (Table 1). 
RNAseq was performed using the Rhapsody technol-
ogy (Rhapsody) and next-generation sequencing using 
SMARTseq2 (SMARTseq). Multiplex RT-PCR using the 
Biomark Fluidics System (Biomark) with a previously es-
tablished panel was also examined. Each method was able 
to discriminate cell types to a certain degree (Figure 2a).

The greatest discrimination between the four cell types 
was achieved by Rhapsody, with clear separation of the 
Treg and Tconv cells confirming the purity of the popu-
lations (Figure 2a) and four clusters, each containing the 
majority of a distinct cell type (Figure 2b and Table 2). 

The genes that best discriminated Treg from Tconv were 
FOXP3, IKFZ2 and TXK, whereas the top genes discrim-
inating responding and non-responding cells were IL2RA 
and CTLA4 (Table S3). Responding Tconv were the only 
cells that could be separated from the others by a set of 
almost uniquely expressed genes including CSF2, GZMB, 
IFNG, ZBED2 and IL22 (Figure 2c and Table S3).

A clear distinction between responding and non-
responding cells was obtained with SMARTseq, resulting 
in two characteristic clusters (Figure 2). Several genes 
were almost exclusively expressed in the responding 
cells (Figure 2c). These two characteristic clusters were 
maintained when analysing the three donors separately, 
and the majority of the cell types were assignable to the 
corresponding cluster. The largest fraction of incorrectly 
assigned cells was the non-responding Treg, with 27·8%, 
11·1% and 5·6% of the cells from donors 1, 2 and 3, respec-
tively, found in the cluster containing responding cells 
(Table S4).

The Biomark panel genes were less discriminatory 
with overlap between the four cell types observed in the 
four UMAP clusters (Figure 2c and Table S3). Therefore, 
the Rhapsody and SMARTseq data were used for subse-
quent comparisons.

Genes distinguishing non-responding 
regulatory and conventional T cells

The Rhapsody and SMARTseq profiles were examined 
to find differentially expressed genes between non-
responding Treg and Tconv. Although FOXP3 alone 
provided reasonable discrimination with the Rhapsody 
technology, genes known to differ between the two cell 
types at the protein level (e.g. FOXP3, IL7R, IL2RA) 
showed some degree of overlap in their gene expres-
sion level between the non-responding Treg and Tconv 
as measured by the Rhapsody and the SMARTseq tech-
nologies (Figure 3 and Table S5). Therefore, we explored 

F I G U R E  4   Machine learning for discriminatory genes between non-responding Treg and Tconv (a) Plot showing the performance 
of the Recursive Feature Elimination with Cross-Validation (RFECV) approach using the Random Forest Algorithm to identify the most 
discriminatory genes to distinguish non-responding Treg from Tconv cells. The y-axis shows the accuracy (determined by identifying the 
cells that are correctly classified) and the x-axis shows the number of input features (genes). The light blue shaded area represents the 
variability of cross-validation, one standard deviation above and below the mean accuracy score shown in the curve. (b) A bar plot showing 
the relative contribution of the 13 input features that were selected and used for training classifiers using both the algorithms—Support 
Vector Machine (SVM) and Logistic Regression (LR). (c) Receiver Operating Curve (ROC) for the classification of non-responding Treg 
from Tconv using Support Vector Machine (SVM) from the features determined using the RFE-RF algorithm. (d) ROC for the classification 
of non-responding Treg from Tconv using Logistic Regression (LR) from the features determined using the RFE-RF algorithm. Red curves 
correspond to performance of the model that was built using the Tetanus-Ag-stimulated cells (trained with 80% of the input data, tested 
with the remaining 20%) and blue dashed curves correspond cells that responded to stimulation with the influenza Ag. (e and f) Shown are 
heatmaps with the 13 selected signature genes and the gene expression data obtained by SMARTseq after stimulation with the tetanus (f) or 
the influenza Ag (f). Tconv are shown in red, Treg in blue
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two machine learning algorithms. We used the Rhapsody 
data from non-responding cells stimulated with TT and 
identified 13 genes with significant differential expression 

between the cell types found by Rhapsody and either ad-
ditionally by SMARTseq or Biomark (Table S5 and Figure 
S1) to develop a Recursive Feature Elimination with 
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Cross Validation (RFECV) algorithm (Figure 4a,b). These 
13 most discriminatory genes (FOXP3, IL2RA, IL32, IL2RB, 
IL7R, TIGIT, IKZF2, CTLA4, GIMAP5, IL12RB2, LGALS1, 
FAS and TCF7) were used in SVM and LR machine learn-
ing algorithms on the data split into a training set (2845 
of the 3557 available cells—80% of the data) and a test set 
(712 cells—20% of the data). The SVM algorithm correctly 
attributed 95·4% of the 712 cells from the test set to the 
correct cell type (Accuracy: 0·954; Precision: 0·974; Recall: 
0·934; AUC: 0·987, Figure 4c and Table 3) and the LR al-
gorithm 97·2% of the cells (Accuracy: 0·972; Precision: 

0·98; Recall: 0·964; AUC: 0·992, Figure 4d and Table 3). 
The same 13  genes were used on the SMARTseq data 
and the algorithms were able to correctly attribute a high 
percentage of cells to their type (SVM: Accuracy, 0·925; 
Precision, 0·871; Recall, 1·0; AUC, 0·995; LR: Accuracy, 
0·963; Precision, 0·946; Recall, 0·981; AUC, 0·992; Table 
3). These 13 genes were expressed in a characteristic and 
cell-type-specific manner (Figure 4e).

Application of the algorithms to 3647 cells non-
responding to a stimulation with influenza Ag and an-
alysed by Rhapsody attributed 95·2% of the cells to the 

F I G U R E  5   Gene expression differences between responding and non-responding Treg cells. (a) UMAP visualization of both cell types. 
Responding are coloured in dark red, non-responding in yellow. (b) Raindot-plots showing the expression of exemplary genes significantly 
differing between the two cell types and shared between SMARTseq and Rhapsody (ICOS, ZBED2 and IL7R). Genes significantly increased 
in responding cells are shown first. Cell Types are colour-coded as in (a). y-axis shows values after processing raw data, differing for each 
technology. (c) The Venn diagram represents the number of DE genes found by each method and the number of genes shared between 
them. (d and e) Shown are heatmaps with all genes found to be significantly differing between responding and non-responding in TT 
stimulated Treg cells using the Rhapsody (d) or the 20 top upregulated and downregulated genes found using SMARTseq (e). From top to 
bottom are genes with the highest fold change (FC) in responding and from bottom to top in non-responding cells. Respondings are shown 
in dark red, non-respondings in yellow

(a)

(b)

(c)

(d) (e)
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correct cell type with SVM (Accuracy: 0·952; Precision: 
0·977; Recall: 0·928; AUC: 0·990) and 96·7% with LR 
(Accuracy: 0·967; Precision: 0·971; Recall: 0·962; AUC: 
0·993). The same procedure was repeated with SMARTseq 
data, which also demonstrated that the classifier was sen-
sitive and specific in discriminating the two cell types, 
thereby confirming that both the machine learning algo-
rithms can discriminate the two non-responding cell types 
exposed to different Ag (Figure 4f and Table 3).

Ag-responding and non-responding Treg 
cells have distinct scRNAseq profiles

The transcription profiles of responding Treg cells dif-
fered markedly from those of the non-responding cells 
(Figure 5 and Table S6). Upregulation of the Treg marker 
ICOS was observed using both technologies (and also 
using Biomark, see Figure S2). Other upregulated genes 
in either or both technologies included the transcription 

F I G U R E  6   Gene expression differences between Tconv and Treg responding cells. (a) UMAP visualization of both cell types. Tconv are 
coloured in red, Treg in blue. (b) Raindot-plots show the expression of genes significantly differing between the two cell types and shared 
between both SMARTseq and Rhapsody (FOXP3, CSF2, IL1R2 and IL22). Cell Types are colour-coded as in (a). y-axis shows values after 
processing raw data, differing for each technology. (c) The Venn diagram represents the number of DE genes found by each method and 
the number of genes shared between them. (d and e) Shown are all genes found to be significantly differing between Treg and Tconv in 
responding TT-stimulated cells using the Rhapsody (d) or the 20 top upregulated and downregulated genes found using SMARTseq (e). From 
top to bottom are genes with the highest fold change (FC) in Tregs and from bottom to top in Tconv. Tconv are shown in red, Treg in blue

(a)

(b)

(c)

(d) (e)
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factors TBX21 and RORC, activation markers such as HLA 
class II genes, and genes associated with proliferation such 
as HMMR. ZBED2 was rarely detected in non-responding 
Treg, but expressed in around 50% of the responding Treg. 
A number of genes including the Tconv marker IL7RA 
were downregulated in the responding Treg. Of note, each 
technology revealed a list of technology-specific DE genes 
(Figure 5c–e and Table S6).

Using a recursive feature elimination algorithm with 
46  genes found by the Rhapsody technology as well as 
by either the SMARTseq or the Biomark technology, 
12 marker genes (GAPDH, ITGAE, ICOS, IL2RA, TYMS, 
LGALS1, IRF4, ANXA5, AURKB, BAX, CXCR3 and LAP3) 
were sufficient to classify the Treg into responding or non-
responding. Using an 80–20  split of the data into train-
ing (1766 cells) and test (422 cells) sets, both SVM and LR 
machine learning algorithms could discriminate respond-
ing-  from non-responding Tregs (SVM: Accuracy, 0·988; 
Precision, 0·997; Recall, 0·989; AUC, 0·998; LR: Accuracy, 
0·986; Precision, 0·992; Recall, 0·992, AUC, 0·999; Table 
3). Application of the algorithm to Treg cells stimulated 
with an influenza Ag attributed >97% of the 2018 anal-
ysed cells to their correct cell type (SVM: Accuracy, 0·987; 
Precision, 0·997; Recall, 0·989; AUC, 0·995; LR: Accuracy, 
0·972; Precision, 0·995; Recall, 0·974; AUC, 0·995; Table 
3). Application of the method to cells stimulated with ei-
ther of the two Ags but sequenced with the SMARTseq 
technology also led to discrimination of the cell types with 
high sensitivity and specificity (Table 3).

Distinguishing responding regulatory and 
responding conventional T cells

Genes that distinguished responding Treg from respond-
ing Tconv were of particular interest. Both Rhapsody and 
SMARTseq could discriminate the majority of the cells 
from these two cell types (Figure 6a). The level of FOXP3 
expression was the most discriminatory single gene 
found with both technologies, with markedly higher 
expression in responding Tregs than responding Tconv 
(Figure 6b–e and Table S7). Cytokine genes were also 
discriminatory and present mainly in responding Tconv 
cells, with IFNG, CSF2, IL22 and IL32 differentially ex-
pressed in both technologies and IL13 and IL21 differen-
tially expressed in SMARTseq. Similar genes were also 
identified by Biomark (Figure S3 and Table S6). A total of 
46 DE genes were observed in both technologies, an addi-
tional 31 with Rhapsody only and 1042 with SMARTseq 
only (Figure 6c, Table S6). The recursive feature elimina-
tion algorithm using 46 genes with significant expression 
identified a minimum set of seven genes (FOXP3, IKZF2, 
ITGA4, TRAT1, LGALS1, IL1R2 and CD7) that provided 

discrimination between the responding Treg and Tconv 
cells. Using an 80–20 split of the data into training (2119 
cells) and test (530 cells) sets, both SVM and LR algo-
rithms were able to achieve high specificity and sensi-
tivity in identifying the two cell types (SVM: Accuracy, 
0·966; Precision, 0·969; Recall, 0·797; AUC, 0·990; LR: 
Accuracy, 0·974; Precision, 0·945; Recall, 0·873, AUC, 
0·971; Table 3). The algorithms were also able to dis-
criminate influenza Treg and Tconv (SVM: Accuracy, 
0·975; Precision, 0·904; Recall, 0·793; AUC, 0·961; LR: 
Accuracy, 0·976; Precision, 0·910; Recall, 0·793; AUC, 
0·966; Table 3) and were also effective on SMARTseq 
generated data (Table 3).

From the seven genes allowing discrimination of re-
sponding Treg from Tconv, all except IL1R2 were also 
found to discriminate non-responding Treg from respond-
ing Tconv by at least one method (Table S8). This compar-
ison also revealed an unexpected increased expression of 
IL7R in non-responding Treg as compared with Tconv.

Validation of signature genes using the 
biomark technology and FACS

Genes discriminating responding and non-responding 
Treg and Tconv cells by machine learning were tested 
using the Biomark technology and by FACS. Treg 
and Tconv cells were isolated by FACS sorting of 
CD4+CD25+CD127low and CD4+CD25dim/−CD127+ cells, 
respectively, and each cell type was reunited separately 
with non-CD4+ T cells. The cell mixture was stimulated 
with SEB and, after 5 days, the responding and the non-
responding Treg or Tconv populations were isolated by 
FACS sorting single cells (Figure S4a,b). In all, 20 cells 
from each population were processed for gene expression 
profiling by Biomark qPCR (Figure 7). Of the 27  signa-
ture genes, 24 were successfully transferred to qPCR on 
Biomark. Six (FOXP3, IL2RA, IL7R, IKZF2, GIMAP5 and 
TCF7) of 13  signature genes tested to distinguish non-
responding Treg from non-responding Tconv differed by 
Biomark qPCR; 4 (FOXP3, IKZF2, TRAT1 and IL1R2) of 
the 6 signature genes tested to distinguish responding Treg 
and responding Tconv differed by Biomark qPCR; and 8 
(GAPDH, ICOS, IL2RA, LGALS1, IRF4, AURKB, BAX and 
CXCR3) of the 12 genes signature genes tested to distin-
guish responding from non-responding Treg differed by 
Biomark qPCR (Figure 7a). Projection with UMAP of this 
minimal set of significant genes allowed separation of the 
four cell types (Figure 7b).

We used markers selected by machine learning that 
were available for flow cytometry of responding Treg 
or Tconv after the same SEB-stimulation strategy as de-
scribed for the Biomark analysis above. The staining 
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of the Treg markers FOXP3 (p  <  0·0001) and IKZF2 
(p < 0·0001) and the Tconv markers ITGA4 (p < 0·0001) 
and TRIM (TRAT1) (p < 0·0001) differed between the re-
sponding Treg and responding Tconv cells, although there 
was overlap between cell populations for each marker 
(Figure S4c). CD7 and IL1R2 were not consistently dif-
ferent in the two cell populations. A gating strategy with 
CD127 (IL7RA) and CD25 (IL2RA) and the four signifi-
cant markers FOXP3, IKZF2, ITGA4 and TRIM (TRAT1) 
was used to identify the majority of the responding Treg 
and then applied to responding Tconv population (Figure 
7c). The Treg-defined gate was able to identify 72% of the 
responding Treg as compared to 0·09% responding Tconv. 
These markers were also discriminatory when used in a 
UMAP projection (Figure 7d).

DISCUSSION

Ag-responding and non-responding Treg and Tconv cells 
were distinguished by the single-cell gene expression 
techniques. Algorithms based on the expression of less 
than 20 genes could accurately identify responding Tregs 
from non-responding Treg and responding Tconv cells.

We developed a mixed PBMC Ag-stimulation culture 
assay that allowed us to track differentially dye-labelled 
Treg and Tconv. Responding and non-responding Treg and 
Tconv could be identified and sorted via their label and 
dye dilution allowing single-cell transcriptomic analysis 
of the four populations. We used this approach to mimic 
in vitro antigen stimulation assays that use proliferation 
as their readout. We chose methods for semi-targeted 
(RNAseq on a relatively large panel of genes) and a non-
targeted RNAseq approach for the gene expression analy-
ses so that we could assess the merits of these methods in 
distinguishing a limited number of related cell types and 
provide validation of findings in multiple methods.

The semi-targeted Rhapsody method yielded four clus-
ters, each highly enriched for one of the cell types. The 
non-targeted SMARTseq method yielded two very distinct 
clusters separating responding and non-responding cells. 
Examining the genes that distinguished the responding 
and non-responding clusters in the SMARTseq data sug-
gests that the responding and non-responding discrimina-
tion was determined by a number of genes that were not 
present in the targeted methods. However, the targeted 
Rhapsody single-cell method appeared to have advantages 
in distinguishing the four related cell types. The advan-
tages and disadvantages of the targeted Rhapsody and 
non-targeted 10x Genomics methods for high-resolution 
analysis of primary CD4+ T cells have been discussed [20].

An important feature of this study was the ability to 
distinguish the responding and non-responding Treg 
and Tconv with algorithms that used data from a small 
set of genes. We focussed on the ability to discriminate 
the responding Tregs since these are relevant to toler-
ance inducing therapies. In total, 27  genes could dis-
tinguish the four CD4+ T-cell populations. Responding 
Tregs were distinguished from non-responding Tregs 
using an algorithm based on 12 genes (GAPDH, ITGAE, 
ICOS, IL2RA, TYMS, LGALS1, IRF4, ANXA5, AURKB, 
BAX, CXCR3 and LAP3) in both the Rhapsody and the 
SMARTseq methods. Responding Tregs were distin-
guished from responding Tconv using an algorithm 
based on seven genes (FOXP3, IKZF2, ITGA4, TRAT1, 
LGALS1, IL1R2 and CD7). Therefore, by measuring ex-
pression of 18 genes, it was possible to provide an esti-
mate of the frequency of Ag-responding Tregs within a 
mixed CD4+ T-cell culture. In all, 24 of the genes were 
tested in the targeted Biomark qPCR and 15 were con-
firmed to distinguish the populations. Moreover, several 
of the genes also differed at the protein level as demon-
strated by flow cytometry. It should, therefore, be possi-
ble to design efficient and cost-effective methods with 

F I G U R E  7   Verification of signature genes to distinguish cell types by Multiplex qPCR (Biomark) and FACS. (a) Heatmap showing the 
expression of signature genes in the four cell types (Tconv, non-responding (coral), Treg, non-responding (royal blue), Tconv, responding 
(dark red) and Treg, responding (dark blue)) measured by Biomark. The signature genes are ordered from top to bottom according to the cell 
type they denote: non-responding Treg versus Tconv, responding Treg versus Tconv and Treg, non-responding versus responding (as shown 
at the right of the heatmap). (b) UMAP visualization of the cell types after Biomark analysis using genes that were significantly different 
between cell types in the Biomark analysis (FOXP3, IL2RA, IL7R, IKZF2, GIMAP5, TCF7, TRAT1, IL1R2, GAPDH, ICOS, LGALS1, IRF4, 
AURKB, BAX and CXCR3); cells are coloured as in (a). (c) Exemplary FACS gating strategy allowing the distinction of responding Treg from 
responding Tconv after a 5-day stimulation with SEB using the markers IL2RA, CD127 (IL7R), TRAT1, ITGA4, FOXP3 and IKZF2. The top 
panels show the gates set to select Treg (blue gates) and the bottom panels shows the same gates applied to Tconv. The most left top and 
bottom panels show gating of responding cells (blue on top for Tregs and red on bottom for Tconv). Frequencies in the right panels refer to 
the frequency of CD4+CD25++CD127lowTRIMlowFOXP3+++IKZF2+++ cells out of all CD4+CD25++CD127low cells for the responding Treg 
(72%) and responding Tconv (0·09%). (d) UMAP visualization of responding Treg and Tconv cells from 1 donor analysed by FACS using 
compensated fluorescent intensities. In the top left panel, the cell types are shown (Tconv in red, Treg in blue). All the other panels show the 
expression of the markers used for the analysis. The colours represent a relative scale of fluorescent intensities, from dark blue (low) over 
light blue and red to yellow (high)



136  |      REINHARDT et al.

minimal manipulation and without the requirement 
for FACS isolation of cells from whole blood to obtain 
a measure of Ag-responding Tregs. A limitation of the 
study is that we only used proliferation and 5-day cul-
ture assays as our measure of response and it is unclear 
whether discriminatory algorithms could be developed 
for shorter stimulation assays, other assay types or in 
vivo responding cells.

The algorithms that separated Treg and Tconv included 
canonical Treg and Tconv markers such as FOXP3, IKFZ, 
CTLA4, IL2RA and IL7R plus a number of other genes so 
far not described as Treg or Tconv markers. The typical 
activation-induced genes IL2RA and ICOS were found in 
the signature allowing to distinguish the activation state 
of Treg, again together with a number of novel marker 
genes. Our forward approach, defining the transcrip-
tome signatures from defined FACS sorted populations, 
is unique so far. Transcriptomic signatures for Tregs have 
been described for bulk cells, using defined populations 
of Treg and Tconv, memory or naïve, with or without 
stimulation and using Affimetrix and Nanostring. They 
contained 31  genes that included FOXP3 and IL7R plus 
a number of other genes [21]. Others have applied single-
cell approaches to whole human CD4+ T cells [22] or to 
FACS-sorted Tconv and Treg from mouse and humans 
[23]. These studies also show the importance of canon-
ical markers to distinguish Treg from Tconv. Zemmour 
et al further demonstrated a sizeable presence of furtive 
Treg, which shared features with Tconv. Although the 
fresh isolation by Zemmour et al and our in vitro culture 
and cell sorting approach differed substantially, it is pos-
sible that the Treg observed within the Tconv clusters rep-
resent furtive Treg. We expect that the markers described 
in our study will facilitate the definition of Treg and Tconv 
in response to an Ag stimulus or in resting conditions in 
similar studies in the future.

Novel genes found in Tregs were identified in our 
study. ZBED2 was observed in around half of the re-
sponding Tregs but not in the non-responding Tregs. 
It had even higher expression in responding Tconv as 
compared to Treg. ZBED2 is a sequence-specific tran-
scriptional repressor of IFN-stimulated genes, which 
occurs through antagonism of IFN regulatory factor 
1 (IRF1)-mediated transcriptional activation [24]. To 
our knowledge, ZBED2  has not previously been re-
ported in Tregs. Also, of interest are the LGALS1 gene, 
that encodes the lectin Galectin-1, and the CD7  gene, 
which encodes the Galectin-1 receptor. LGALS1 was 
upregulated in responding Treg as compared to non-
responding Treg and downregulated as compared to 
responding Tconv, as described, [25] whereas CD7 was 
upregulated in responding and non-responding Treg 
compared to Tconv. Galectin-1 is reported to attenuate 

NF-kB activation through a feedback loop mechanism 
and is expressed on T cells [26]. Another so far uniden-
tified Treg-specific gene found preferentially expressed 
in Treg is TXK. The resting lymphocyte kinase Txk is a 
member of non-receptor tyrosine kinases that facilitated 
downstream signalling after TCR or other receptor acti-
vation and it so far only described to be expressed in T 
or NK cells [27]. FYB is another gene whose product reg-
ulates signalling downstream of the TCR and that has 
not yet been described to be preferentially expressed in 
Treg. The molecular adapter Fyb/Slap regulates integrin 
clustering and adhesion, coupling TCR stimulation and 
avidity modulation [28]. Here we find higher FYB ex-
pression in responding Treg than in responding Tconv. 
The TRAT1 gene that encodes TRIM was particularly ef-
fective as both a transcriptional and FACS marker. It has 
not been previously described as a marker to distinguish 
Treg and Tconv. TRIM was only weakly expressed in 
both non-responding and responding Treg, but strongly 
expressed in non-responding and responding Tconv. Its 
addition to the FACS panel along with CD25, CD127, 
FOXP3 and IKFZ provided a very effective selection of 
responding Treg from responding Tconv. Although a 
membrane protein, its surface portion is very short and, 
therefore, the use of TRIM as a marker for sorting Treg 
may not be feasible.

The gene sets we described here provide an important 
basis to classify cell types from future whole CD4+ T-cell 
single-cell transcriptome data and therefore are a useful 
resource to characterise T-cell responses in health and dis-
ease and after immune intervention.
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