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Abstract

Dynamical models in the form of systems of ordinary differential equations have become a

standard tool in systems biology. Many parameters of such models are usually unknown

and have to be inferred from experimental data. Gradient-based optimization has proven to

be effective for parameter estimation. However, computing gradients becomes increasingly

costly for larger models, which are required for capturing the complex interactions of multiple

biochemical pathways. Adjoint sensitivity analysis has been pivotal for working with such

large models, but methods tailored for steady-state data are currently not available. We pro-

pose a new adjoint method for computing gradients, which is applicable if the experimental

data include steady-state measurements. The method is based on a reformulation of the

backward integration problem to a system of linear algebraic equations. The evaluation of

the proposed method using real-world problems shows a speedup of total simulation time

by a factor of up to 4.4. Our results demonstrate that the proposed approach can achieve a

substantial improvement in computation time, in particular for large-scale models, where

computational efficiency is critical.

Author summary

Large-scale dynamical models are nowadays widely used for the analysis of complex pro-

cesses and the integration of large-scale data sets. However, computational cost is often a

bottleneck. Here, we propose a new gradient computation method that facilitates the

parameterization of large-scale models based on steady-state measurements. The method

can be combined with existing gradient computation methods for time-course measure-

ments. Accordingly, it is an essential contribution to the environment of computationally

efficient approaches for the study of large-scale screening and omics data, but not tailored
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to biological applications, and, therefore, also useful beyond the field of computational

biology.

This is a PLOS Computational Biology Methods paper.

Introduction

Ordinary differential equation (ODE) models are widely used to describe the dynamics of

biochemical processes such as signalling [1–3], metabolism [4, 5] or gene regulation [6, 7].

These models can capture the mechanistic details of interactions between biochemical spe-

cies, aggregate current knowledge and integrate heterogeneous data types. However, such

models often possess a large number of parameters. While some parameter values can possi-

bly be extracted from databases such as BRENDA [8] or SABIO-RK [9], others usually need

to be inferred from problem-specific experimental data. The complexity of this inference

problem depends on the model size, the number of unknown parameters and data

availability.

Data availability and, in general, the structure and information content of data sets differs

substantially between projects. On the experimental side, one often distinguishes between

time-course and dose-response data. On the computational side, different experimental setups

correspond to different types of simulation setups (Fig 1a): (i) the initial conditions of the sim-

ulation can either be specified explicitly as numerical values or parameters, or implicitly with a

steady-state constraint; and (ii) either a dynamic phase has to be simulated or only a steady-

state has to be determined. The experimental setup and the corresponding formulation of the

simulation can be encoded using formats, such as the Simulation Experiment Description

Markup Language (SED-ML) [10] or the Parameter Estimation tables (PEtab) [11].

In many studies, there is some data available regarding the system’s steady-state [12–15].

There are two distinct cases: (1) the system is assumed to start in a steady state, then it is per-

turbed and enters a dynamic state; or (2) the system is assumed to start in a dynamic state and

after some time it reaches a steady state (Fig 1a). These two cases will be referred to as pre- and

post-equilibration, respectively. The system can start in a steady state and reach a steady state

again after a perturbation, therefore, the two cases are not mutually exclusive.

Pre- and post-equilibration as part of the simulation complicate parameter estimation and

other subsequent tasks as the numerical computation of steady states of nonlinear systems is

challenging. Therefore, a variety of computational methods have been proposed to derive ana-

lytical expressions for steady states. These methods rely, for example, on graph theory [16, 17],

py-substitution [18] and some can even take positivity constraints into account [19]. Yet, for a

large number of application problems these analytical approaches are not applicable and one

needs to resort to numerical approaches. Fortunately, steady states can be computed without

time-course simulations [20, 21]. Nowadays, variants of Newton’s method are widely used

for equilibration. Tailored implementations of Newton’s method achieve a speedup of up to

100-fold compared to steady-state calculation via numerical simulation [21].

Efficient numerical simulation and steady-state calculation are cornerstones for parameter

estimation [22]. However, several studies found that the availability of the objective function

gradient is also highly beneficial for the parameterization for dynamical modelling (see, e.g.

[23, 24]). Indeed, gradient-based multi-start local and global optimization methods seem to

often outperform gradient-free optimization methods [23].
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Objective function gradients can be computed using automatic differentiation (see, e.g.,

[25]), finite differences, and forward or adjoint sensitivity analysis [26]. While approximations

obtained using finite differences are often numerically unreliable [24], forward and adjoint

methods allow for an accurate assessment [26]. All sensitivity analysis methods are, in princi-

ple, available for pre- and post-equilibration. With forward sensitivity analysis, one can simu-

late state sensitivity ODEs along with the dynamical system until approximate convergence to

Fig 1. Steady-state simulation scenarios, and computation methods for ASA. (a) Different scenarios requiring computation of the model steady

state. Top: The pre-equilibration case, where the system is at steady state at the beginning of the experiment. This means that by t = t0 the system has

reached its steady state (x�) under some condition (ue) (blue line). At t = t0 the system was perturbed and measurements were taken at time points tj>
t0 (orange crosses). The pre-equilibration steady state (x�) is the initial state under the experimental conditions (u), i.e. x0(u) = x�. Bottom: The post-

equilibration case, where at some point after the beginning of the experiment, the system reaches its steady state (x�) and measurements for this time

point (t = t0 0) are available (orange cross at t = t0 0). Measurements of the transient state may also be available (orange crosses in t< t0 0). (b) Alternative

approaches for computing sensitivities. Top: The standard ASA approach that requires numerical integration until convergence to the steady state and

subsequent backward integration of the adjoint state (p) ODE on the same time interval. Bottom: The proposed adjoint method that circumvents

backward numerical integration and requires solving a system of linear algebraic equations instead.

https://doi.org/10.1371/journal.pcbi.1010783.g001
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a steady state. This comes at a high computational cost and scales poorly with the number of

states and parameters, as one has to simulate a system of ODEs with the dimension (nx + 1)nθ.
The existing adjoint method for pre- and post-equilibration simulates the model until approxi-

mate convergence to a steady state, and then solves the corresponding backward equation for

the same time interval [12, 27]. This is computationally costly as well but possesses, in contrast

to the forward method, improved scalability; here, one has to sequentially simulate two sys-

tems of the size nx. However, the forward method can be easily adapted to exploit steady-state

constraints. One can find state sensitivities at steady state without numerical integration, by

solving a system of linear equations per parameter (see, e.g., [20]). The downside is that this

approach is not applicable for systems with singular Jacobians. A corresponding approach for

adjoint methods is currently missing.

In this paper, we introduce a novel adjoint method for the computation of objective func-

tion gradients for problems with steady-state constraints. The proposed method exploits the

steady-state constraint to circumvent numerical backward integration for pre- and post-equili-

bration. Instead, a system of equations is solved to compute parts of the objective function gra-

dient. We provide an implementation of the method in the open-source toolbox AMICI and

investigate its accuracy and efficiency on three real-world problems. Our study demonstrates

that the new method achieves a substantial speedup for gradient computation, which is partic-

ularly valuable for large models.

Methods

In this section, we introduce the considered classes of mathematical models and parameter

estimation problems. Subsequently, we describe the established method for gradient calcula-

tion via adjoint sensitivity analysis (ASA) and propose a new formulation for the steady-state

case. We discuss how the method can be applied to models of biochemical reaction networks.

The method, however, is not restricted to the field of computational biology. It can be used for

any model of the form described in this section with pre- or post-equilibration, or both.

Mathematical modeling and simulation

We consider ODE models of the form

_x ¼ fðxðtÞ; θ; uÞ; xðt0Þ ¼ x0ðθ; uÞ; ð1Þ

in which xðt; θ; uÞ 2 Rnx
þ

is the vector of state variables, θ 2 Rny
þ

is the parameter vector, u 2
Rnu
þ

is the vector of constant inputs and t 2 R is the time. The vector field of the ODE model is

f : Rnx
þ
� Rny

þ
� Rnu

þ
! Rnx

þ
, which is Lipschitz-continuous with respect to x, and the initial

condition at t0 is x0 : Rny
þ
� Rnu

þ
! Rnx

þ
. The ODE model determines the time evolution of the

state variables, given the parameters. In case of biochemical reaction networks, this can be e.g.,

concentrations of biochemical species and reaction rate constants, respectively. The inputs (u)

describe experimental conditions, e.g., regime of administration of a drug or composition of a

cell culture medium. In many models, the state variables approach a steady-state x�(θ, u) for

large values of t:

x�ðθ; uÞ ¼ lim
t!1

xðt; x0ðθ; uÞ; θ; uÞ: ð2Þ

In this paper we assume that for each initial condition (x0(θ, u)) there exists an exponen-

tially stable steady state. Both pre- and post-equilibration cases assume existence of a steady

state that the dynamical system can reach fast enough to appropriately describe the modeled
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biochemical process. This assumption is often implicitly made when working with steady-state

data.

Additionally, we denote by ue the inputs corresponding to a pre-equilibration condition, if

pre-equilibration is required. In this case, the initial condition is specified as a steady state cor-

responding to pre-equilibration condition (x(t0) = x�(θ, ue)), i.e. as a steady state of

_x ¼ fðxðt; θ; ueÞ; θ; ueÞ; xðt0; θÞ ¼ x0ðθ; u
eÞ:

The solution of the ODE system (1) is usually not available in closed form. Therefore,

numerical simulation algorithms are widely used to determine the time-course of state vari-

ables. Here, we employ an algorithm based on the backward-differentiation formula (BDF) to

study the—often stiff—ODE models of biochemical processes. For the computation of steady

states of ODE models (2) analytical methods, numerical simulation, and numerical equation

solvers (e.g. Newton’s method) can be employed [16–19, 21]. Here, we employ numerical inte-

gration until time derivatives _x become sufficiently small. For example, one can run numerical

integration until the condition

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nx

Xnx

i¼1

ð _xiwiÞ
2

s

< 1; where wi ¼
1

rtol � xi þ atol
ð3Þ

is fulfilled, where “rtol” and “atol” denote relative and absolute tolerances, respectively.

Experimental data

Experiments provide information about observable components of the biochemical processes,

which are in general subsets or functions of the state variables (x). The dependence of the

observables yðt; θ; uÞ 2 Rny on the state variables and parameters is modelled as

yðt; θ; uÞ ¼ hðxðt; θ; uÞ; θ; uÞ; ð4Þ

with output map h : Rnx
þ
� Rny

þ
� Rnu

þ
! Rny . As measurements are corrupted by noise, we

model them as noise-corrupted realizations of the observables. Here, we consider two types of

measurements:

1. Time-course measurements with independent, normally-distributed noise,

�yij ¼ yiðtj; θ; uÞ þ εij with εij � N ð0; s2
ijÞ; ð5Þ

in which i = 1, . . ., ny and j = 1, . . ., nt index observables and time points, and s2
ij 2 Rþ

denotes the noise variance. We assume without loss of generality that tj< tj+1 and denote

the collection of these time-course measurements by Dt.

2. Independent, normally distributed measurements of the steady state,

�yi� ¼ yi�ðθ; uÞ þ εi� with εi� � N ð0; s2
i�Þ; ð6Þ

in which yi�(θ) = h(x�(θ, u), θ, u) denotes the values of the observable yi at the steady state

x�(θ, u), and s2
i� 2 Rþ denotes the noise variance. For the case of multi-stable systems, the

state for the starting point of the post-equilibration needs to be considered. We denote the

collection of these measurements in steady state by D�.

Measurements from multiple experiments may be available, which can be described by a set

of inputs U ¼ fu1; . . . ;ung. Further in this section, without loss of generality, we assume that

measurements from one experiment, described by u are available.
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Remark: For the subsequent sections we assume, without loss of generality, that the noise is

normally distributed and the variance is known. The results also apply to unknown noise vari-

ances and other noise distributions, given that measurements are independent and the mean

of the noise is equal to zero.

Parameter estimation

As the parameters of biochemical processes are often difficult to determine experimentally,

they are typically unknown. Hence, the values of the parameters (θ) have to be estimated from

experimental data. This is usually achieved using frequentist or Bayesian inference.

Frequentist inference focuses on maximum likelihood estimates (MLEs) and the assessment

of their uncertainties. MLEs maximize the likelihood function (L), which is a measure for the

distance between measurement and simulation, and this is equivalent to minimizing the nega-

tive log-likelihood function (J ). For independent, normally-distributed measurements, the

negative log-likelihood function is given by

J ðθÞ ¼ � logLðθÞ ¼
1

2

Xny

i¼1

Xnt

j¼1

log 2ps2

ij

� �
þ

�yij � yiðtj; θ; uÞ
sij

 !2 !

þ
1

2

Xny

i¼1

log 2ps2

i�

� �
þ

�yi� � yi�ðθ; uÞ
si�

� �2
 !

;

ð7Þ

in which the first part accounts for the time-course measurements (Dt) and the second part for

the steady state measurements (D�). The MLE is computed by solving the optimization prob-

lem

θ� ¼ arg min
θ

J ðθÞ:

The parameters are often constrained, e.g. to be non-negative, and might be log-transforms

of the original model parameters in order to improve convergence of the optimizer [24, 28].

Bayesian inference focuses on the assessment of the posterior distribution, which encodes

the information provided by the data as well as prior knowledge. In practice the first step is

usually to compute the maximum a posteriori estimator. This is achieved by minimizing the

(often unnormalized) negative log-posterior, yielding an optimization problem similar to the

one encountered in frequentist inference [29].

Parameter estimation for ODE models often involves objective functions (e.g. negative log-

likelihood or negative log-posterior functions) that are non-convex and possess local minima.

To solve these parameter estimation problems, global optimization methods are used. A glob-

alization strategy that has proven to be efficient is multi-start local optimization with gradient-

based local optimization methods [23, 24]. The computation time of these methods is usually

dominated by the computation time required for the evaluation of the objective function gra-

dient. For the objective function (7), the gradient is given by

@J
@yk

�
�
�
�
�

θ

¼ �
Xny

i¼1

Xnt

j¼1

ð�yij � yiðtj; θ; uÞÞ
s2
ij

@yi
@yk

�
�
�
�
�
tj;θ

�
Xny

i¼1

ð�yi� � yi�ðθ; uÞÞ
s2
i�

@yi�
@yk

�
�
�
�
�

θ

; ð8Þ

in which @yi/@θk denotes the sensitivity of the observable yi with respect to the parameter θk at

a specific time point tj or in steady state.
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Adjoint sensitivity analysis (ASA)

For large-scale ODE models, the objective function gradient for time-course data Dt is usually

calculated using ASA. This approach has a long history and relates to Green’s function method

of sensitivity analysis (see e.g. [30] and references therein) and is used across scientific disci-

plines. [26] adopted it to parameter estimation problems in biological applications for the case

of time-course measurements without pre- or post-equilibration. For a description of ASA,

readers are referred to [26]. This approach circumvents the evaluation of the observable sensi-

tivities @yi/@θk by introducing the adjoint state pðt; θ; uÞ : ½t0; tnt � � R
ny � Rnu ! Rnx , such

that 8j = nt. . ., 1 on interval (tj−1, tj] it satisfies the backward differential equation

_pðt; θ; uÞ ¼ � Jðxðt; θ; uÞ; θ; uÞTpðt; θ; uÞ; ð9Þ

with boundary values

pðtj; θ; uÞ ¼ lim
t!tþj

pðt; θ; uÞ þ
Xny

j¼1

@hi

@x

�
�
�
�

T

ðxðtj;θ;uÞ;θ;uÞ

ð�yij � yiðtj; θ; uÞÞ
s2
ij

; and

lim
t!tþnt

pðt; θ; uÞ ¼ 0;

and Jacobian matrix J,

Jðxðt; θ; uÞ; θ; uÞ ¼

@f1
@x1

� � �
@f1
@xnx

..

. . .
. ..

.

@fnx
@x1

� � �
@fnx
@xnx

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5j

xðt;θ;uÞ;θ;u

: ð10Þ

Given the adjoint state, the objective function gradient can be computed as

@J
@yk

�
�
�
�
�

θ

¼ �
Xny

i¼1

Xnt

j¼1

ð�yij � yiðtj; θ; uÞÞ
s2
ij

@hi

@yk

�
�
�
�
�
xðt;θ;uÞ;θ;u

�

Z tnt

t0

pðt; θ; uÞT
@f
@yk

�
�
�
�
�
xðt;θ;uÞ;θ;u

dt � pðt0; θ; uÞ
T @x0

@yk

�
�
�
�
�

θ;u

;

ð11Þ

in which @x0/@θk denotes the sensitivity of the initial state with respect to parameter θk. If the

initial condition is given as an explicit function, this derivative can be computed easily; how-

ever, its calculation is non-trivial in the case of pre-equilibration.

To use ASA for the pre- and post-equilibration cases, the steady-state calculation is cur-

rently performed via a long simulation (see, e.g. [12, 27]):

1. For the case of a time-course followed by a post-equilibration, the simulation is run until a

time t00 � tnt for which time derivatives _x are negligible. We used (3) as convergence crite-

rion. The values of the observables at time t00, yi(t0 0, θ, u), are considered a good approxima-

tion of the observables at the steady state, yi�(θ, u), and used for the evaluation of the

objective function.

2. For the case of pre-equilibration followed by a time-course, in a first step a simulation is

run for the pre-equilibration condition (ue) until the state derivatives _x are sufficiently

small. The initial time point for this simulation is denoted by −t0. In the second step, the
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condition is switched to u and a simulation is performed for the transient phase using the

final state of the pre-equilibration simulation as the initial state. This can be interpreted as

running the simulation for t 2 [−t0, t0] under the pre-equilibration condition (ue) and then

switching for t 2 ðt0; tnt � to the time course condition (u).

These approximations of the exact setup are good if the convergence criteria are tight. In

practice, one often uses values on the order of 10−8 and 10−16 as the relative and absolute toler-

ance, respectively [31]. One should note, that ASA only provides the objective function gradi-

ent, but not the sensitivity of the steady state with respect to the parameters.

Adjoint sensitivity analysis at steady state (ssASA)

As steady-state constraints are encountered in a large fraction of application problems (see,

e.g., the benchmark collection in [28]), we propose here an adjoint sensitivity analysis method

that is tailored for problems with pre- and post-equilibration.

Post-equilibration case. For experiments with a post-equilibration, steady-state measure-

ments (D�) are available in addition to time-course measurements (Dt). To compute the objec-

tive function gradient (11), one needs to compute the term

Z t00

t0

pðt; θ; uÞT
@f
@yk

�
�
�
�
xðt;θ;uÞ;θ;u

dt: ð12Þ

Note, that the upper limit of the integral is different from the one in (11) as the steady-state

measurements time point t = t00 were added. On the time interval ½t0; tntÞ the integral should be

computed using the standard ASA, while on the interval ½tnt ; t
00� the proposed approach can be

applied.

Let us introduce a time point t0 such that tnt≪ t0≪ t00 and for t� t0 the system (1) is at

steady state. Then for t� t0 the Jacobian (10) is a constant matrix. Due to the exponential sta-

bility of the steady state, the precise choice of t0 is not important, as long as t0 has been chosen

large enough. Then, on the time interval t� t0, the adjoint system of ODEs (9) simplifies to

_pðt; θ; uÞ ¼ � Jðx�ðθ; uÞ; θ; uÞTpðt; θ; uÞ: ð13Þ

This system has the solution

pðt; θ; uÞ ¼ e� Jðx�ðθ;uÞ;θ;uÞ
T ðt� t00Þpðt00; θ; uÞ:

The steady state of the system (1) is exponentially stable if and only if the eigenvalues of the

Jacobian at the steady state (J(x�(θ, u), θ, u)) have negative real parts. This follows that the

steady state p = 0 of the system (13) is asymptotically stable in reverse time. Hence, as the time

interval [t0, t00] can be chosen large enough, it holds that

lim
t!t0þ

pðt; θ; uÞ ¼ 0;

which is illustrated in Fig 2a. As the steady state p = 0 is stable, the system (13) will not diverge

from it on the interval ½tnt ; t
0�.

As a consequence, the integral

Z t00

tnt

pðt; θ; uÞT
@f
@yk

�
�
�
�
�
xðt;θ;uÞ;θ;u

dt: ð14Þ
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reduces to a matrix-vector product:

Z t00

t0
pðt; θ; uÞTdt �

@f
@yk

�
�
�
�
�
x¼x�ðθ;uÞ

dt ¼ pintegral �
@f
@yk

�
�
�
�
�
x¼x�ðθ;uÞ

;

since

Z t0

tnt

pðt; θ; uÞTdt �
@f
@yk

�
�
�
�
�
x¼x�ðθ;uÞ

dt ¼ 0:

To obtain the integral one can solve the linear system of equations

Jðx�ðθ; uÞ; θ; uÞTpintegral ¼ � pðt00; θ; uÞ; ð15Þ

see Section “Adjoint state integral computation at steady state” of the S1 Text for the deriva-

tion. Additionally, the calculations from this section performed for a simple example of a con-

version reaction can be found in Section “Conversion reaction example” of the S1 Text.

Pre-equilibration case. For experiments with a pre-equilibration, in order to do standard

ASA, one requires initial state sensitivities (
@x0

@yk
) (see Eq (11)). They can be computed by per-

forming forward sensitivity analysis during pre-equilibration.

Alternatively, instead of computing
@x0

@yk
, the ASA method can be extended to the pre-equili-

bration time interval [−t0, t0]. On the intervals [tN, tN−1), . . ., [t1, t0) standard ASA can be per-

formed as described in Section “Adjoint sensitivity analysis (ASA)”. As described for the post-

Fig 2. Computation of the adjoint state integral term. The top row illustrates the solution of the system (1) for (a) the post-equilibration case and (b)

the pre-equilibration case for nt = 3. The bottom row illustrates the integral term in (11).

https://doi.org/10.1371/journal.pcbi.1010783.g002
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equilibration case, at t = −t0, the system (13) is at steady state p = 0, hence the scalar product of

the initial state sensitivities of pre-equilibration, with the adjoint state at t = −t0, vanishes.

Therefore, one only needs to compute the quadratures

Z t0

� t0
pðt; θ; ueÞ

T @f
@yk

�
�
�
�
�
u¼ue ;x¼x0

dt: ð16Þ

For this, the adjoint state from the time-course adjoint simulation must be passed on to the

initial adjoint state of backward pre-equilibration (p(t0, θ, u)). Accordingly, for the case of pre-

equilibration, the ODEs solved for pre-equilibration and time-dependent observations are

coupled, and cannot be computed independently.

Similarly to the post-equilibration case, there are two possibilities for computing this inte-

gral. The first possibility is to compute it by simulating the system (1) until it reaches its steady

state and then compute the integral (16) backward on the same time interval. The second pos-

sibility is to use the proposed ssASA method. One can assume, without loss of generality, that

the system (1) is at the steady state that corresponds to the pre-equilibration condition for all t
< t0. On this interval, the same considerations as in the previous section apply and the adjoint

system simplifies to (13), but in this case x�(θ, u) = x�(θ, ue). To find the integral one can solve

the linear system of equations

Jðx�ðθ; ueÞ; θ; ueÞ
Tpintegral ¼ � pðt0; θ; uÞ: ð17Þ

This case is illustrated in Fig 2b.

Applicability of the proposed method. The systems (15) and (17) have a unique solution

only if the (transposed) Jacobian is non-singular. Otherwise, the proposed approach is not

applicable. A common cause for singular Jacobians is, amongst others (cf. [32] for a review),

presence of conserved quantities in the system. Conserved quantities or conserved moieties

are functions of the sates of the dynamical system that remain constant over time. Identifying

each conserved quantity allows to reduce model dimension by excluding one state, expressing

it in terms of other states contained in the conserved quantity. A simple example can be found

in Section “Conversion reaction example” of the S1 Text. There are various deterministic [33,

34] algorithms available to identify conserved quantities, which, however, are not suitable for

large/genome-scale reaction networks due to combinatorial complexity. A fast, scalable, heu-

ristic-based approach presented in [35] is better suited for large-scale reaction networks.

Removing conserved quantities from the system allows to apply the proposed method. If it

is not possible or if the Jacobian remains singular, the adjoint state ODEs have to be integrated

numerically.

Implementation

The new algebraic approach for computing objective function gradient as well as a heuristic-

based conserved moieties identification approach [35] have been made available via the open-

source AMICI package (https://github.com/AMICI-dev/AMICI/) [36], which interfaces the

SUNDIALS solver CVODES [37]. Implementation details can be found in Section “AMICI

Implementation” of the S1 Text.

During the numerical study, described in the next section, the AMICI package was used for

model simulations [38]. Parameter estimation was performed using the open-source Python

Parameter EStimation TOolbox (pyPESTO) [39], which internally used the Interior Trust

Region Reflective algorithm for boundary constrained optimization problems implemented in

the Fides Python package for optimization [40, 41].
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Results

In this section we investigate whether using the proposed ssASA method is beneficial, com-

pared to the standard ASA approach, to computing the objective function gradient. In both

cases we used ASA, but in the first case gradient computation was done via numerical integra-

tion of the ODE system (9), whereas in the second case the new approach was applied, where

the system of Eqs (15) and (17) is solved. In both cases numerical integration was used to find

the steady state of the system (1), i.e. to find the solution x�(θ, u) of _x ¼ fðx�ðθ; uÞ; θ; uÞ ¼ 0.

The two cases will be referred to as “standard ASA for sensitivities” and “ssASA for sensitivi-

ties”. We assess accuracy by comparing the gradient values computed with the two methods,

as well as the difference in computation time.

The comparison is done on three previously published ODE-constrained optimization

problems of varying complexity that required either pre- or post-equilibration (Table 1). The

problems were taken from the PEtab Benchmark Collection, a GitHub repository with param-

eter estimation problems from published studies implemented in the PEtab format [11, 42].

The Blasi et al., 2016 model describes acetylation of the histone H4 [13]. It is linear and has

16 state variables and 9 optimized parameters, which is the dimension of objective function

gradient (8). Only steady-state data is available for this model. The Blasi et al., 2016 model con-

tains conserved quantities, which were automatically removed during model import by

AMICI to ensure non-singularity of the Jacobian. The model by Zheng et al., 2012 is also linear

and describes histone H3 methylation pattern formation. For this model dynamic data is avail-

able and the initial condition is determined by pre-equilibration. The model by Fröhlich et al.,
2018 is a large-scale nonlinear model describing the drug response of cancer cell lines [12].

The measurement data used for optimization was collected when the system was assumed to

be at steady state.

Accuracy with ssASA is preserved

To investigate the accuracy of objective function gradients computed with the proposed ssASA

method, we performed 500 model simulations with different parameter vectors sampled uni-

formly within the parameter bounds specified in the parameters PEtab file [11]. For each

model, the same initial state, specified in the PEtab files, was used for each simulation and no

simulation failed.

For all three models the computed objective function gradients were very similar for both

compared approaches (Fig 3). The maximum and median deviations (as defined in the S1

Text, Section “Accuracy of gradient computation”) are respectively equal to 1.9 � 10−4 and

numerically 0 for the Blasi et al., 2016 model, 2.8 � 10−11 and 1.6 � 10−17 for the Zheng et al.,
2012 model, 3.1 � 10−2 and 3.04 � 10−20 for the Fröhlich et al., 2018 model. Therefore, we con-

clude that the new approach gives accurate results.

Table 1. Overview of the models and optimization problems considered in this study.

Problem nθ nx # data points Equilibration type Reference

Blasi et al., 2016 9 16 288 post-equilibration [13]

Zheng et al., 2012 46 15 60 pre-equilibration [14]

Fröhlich et al., 2018 4088 1396 143 post-equilibration [12]

https://doi.org/10.1371/journal.pcbi.1010783.t001
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Simulation with ssASA is faster

We then compared how simulation time differs for the two approaches. For all three models,

all simulations were significantly faster with the new approach (Fig 4). The precise speedup

depends on the model. The simulations were on average 3.3, 1.2, 3.3 times faster with the new

Fig 3. Accuracy of objective function gradients of the proposed method. In each of the three subplots one point corresponds to an objective function

gradient value computed during one simulation using either standard ASA (x-axis) or ssASA (y-axis) for sensitivities computation. The number of

points in each subplot is equal to the number of optimized parameters multiplied by the number of simulations. Points close to the diagonal indicate a

good agreement.

https://doi.org/10.1371/journal.pcbi.1010783.g003
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approach for the Blasi et al., 2016, Zheng et al., 2012 and Fröhlich et al., 2018 models, respec-

tively (Fig 4d).

Additionally, we investigated how simulation time and computation speedup scale with

respect to the number of optimized parameters. We simulated the Fröhlich et al., 2018 model

with 11 different estimation problem sizes (1, 2, 5, 12, 28, 64, 147, 337, 775, 1780, or 4088 esti-

mated parameters), each 200 times, for a total of 2200 simulations. For each simulation, the

Fig 4. Simulation efficiency of the proposed method. Each point corresponds to a total simulation time with ASA (x-axis) and ssASA (y-axis) for

sensitivities computation. Points on the diagonal correspond to simulations that took equal time with both approaches. (a) Blasi et al., 2016, (b) Zheng

et al., 2012 and (c) Fröhlich et al., 2018 models. (d) Computation speedup of simulations using ssASA for sensitivities computation compared to using

standard ASA. Each bar height corresponds to a mean of computation speedups of all simulations and each error bar corresponds to the sample

standard deviation.

https://doi.org/10.1371/journal.pcbi.1010783.g004
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subset of parameters set to be estimated or fixed was randomly chosen, and all parameter val-

ues were sampled uniformly within the parameter bounds in the PEtab parameters table. Dur-

ing simulation, sensitivities of the objective function were only computed for the estimated

parameters. As expected, simulation time did not change with the number of optimized

parameters for both sensitivities computation methods, (Fig 5a), as the dimension of both the

adjoint state ODE (9) and the system (15) do not change with the number of optimized param-

eters and is equal to nx. Consequently, computation speedup does not change with the number

of optimized parameters, and the proposed method is faster, independent of the number of

free parameters (Fig 5b).

Optimization with ssASA is faster

Furthermore, we investigated how the speedup we observed for individual model simulations

with different parameter vectors translates to parameter estimation tasks. A large number of

model simulations might be required during optimization for parameter estimation, which

also means that if pre- or post-equilibration is needed it will be executed during each

simulation.

We compared the difference in computation time for solving parameter estimation prob-

lems using multi-start local optimization between the two approaches for sensitivities compu-

tation, (Fig 6a–6c). Same as for the simulation comparison, initial parameter vectors were

sampled uniformly within the parameter bounds specified in the parameters PEtab file. The

same initial parameter values were used for optimizations with ASA and ssASA. For the Blasi

et al., 2016 and Zheng et al., 2012 models we ran 500 multi-starts. As the Fröhlich et al., 2018

model is computationally demanding, in this study, we considered only a subset of data used

in [12]. We used only the control conditions, that is 143 out of the total 5281 conditions. For

this model, we ran 50 multi-start optimizations with the number of optimization steps limited

to 50. This would not yield good model fits, but should provide a representative performance

estimate.

For the Blasi et al., 2016 and Zheng et al., 2012 models all multi-starts finished successfully.

For the Fröhlich et al., 2018 model for both methods one out of 50 multi-starts failed at the

Fig 5. Scaling of simulation time and computation speedup of simulations with respect to the number of optimized parameters. Fröhlich et al.,
2018 model, 200 simulations with 1, 2, 5, 12, 28, 64, 147, 337, 775, 1780, 4088 optimized parameters. (a) Each point is the mean simulation time for

corresponding number of free parameters, and the error bars are the standard deviations. (b) Each point represents computation speedup of

simulations performed with ssASA for sensitivities compared to using standard ASA for sensitivities, the error bars show the standard deviation.

https://doi.org/10.1371/journal.pcbi.1010783.g005
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first step and the other 49 finished as the number of optimization steps exceeded 50. Optimiza-

tions were on average 1.5, 1.1, 1.9 times faster with the new approach for Blasi et al., 2016,

Zheng et al., 2012 and Fröhlich et al., 2018 models respectively (Fig 6d).

Fig 6. Optimization efficiency of the proposed method. Each scatter point shows the total computation time required for one multi-start

optimization using standard ASA (x-axis) or ssASA (y-axis) for sensitivities computation (a) Blasi et al., 2016 model, (b) Zheng et al., 2012 model, (c)

Fröhlich et al., 2018 model. Points on the diagonal correspond to multi-starts that took equal time with both approaches. (d) Computation speedup of

optimizations using ssASA for sensitivities computation compared to using standard ASA for sensitivities. Each bar height corresponds to a mean of

multi-start local optimization computation speedups and each error bar corresponds to the sample standard deviation.

https://doi.org/10.1371/journal.pcbi.1010783.g006
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The speedups for optimization were lower than those observed for model simulation,

because the proposed method only affects simulation time, but not the time taken in the opti-

mizer itself, or other overhead. The Blasi et al., 2016 model is rather small and linear and simu-

lations made up only approximately 50% of total optimization time. Therefore, the 3-fold

speedup in simulations resulted in 1.3-fold speedup of optimizations. For the Zheng et al.,
2012 model speedup is about the same as for simulations. For the Fröhlich et al., 2018 model

simulations made up around 25% of the total optimization time. Here, model simulation is

very costly, but also significant time was spent in the optimizer due to the large number of

optimized parameters. Generally, the speedup for optimization will be highly implementation-

dependent.

Discussion and conclusion

It has been shown, that if finding a steady state is required during model simulation, whether

it is pre-equilibration, post-equilibration, or both, it is possible to partially avoid numerical

integration and to solve a system of algebraic equations instead [21]. In this study, we showed

that this idea can also be used to simplify objective function gradient computation. We intro-

duced a new method for efficient adjoint sensitivities computation at steady state. We showed

that an intermediate step of objective function gradient computation with ASA, i.e., backward

numerical integration of the adjoint state ODEs, can be avoided by solving a linear system of

equations for the time interval including steady-state measurement time point. We also

showed that in case pre-equilibration is required, computation of initial state sensitivities (
@x0

@yk
)

with forward sensitivity analyses can be avoided by extending ASA to the pre-equilibration

interval. The proposed method is applicable on this time interval as well, and a linear system of

equations can be solved instead of backward numerical integration.

We described how the new approach can be applied in the case of modelling biochemical

processes, tested it on three published models and demonstrated that it is accurate and allows

for efficient sensitivity computation. The exact speedup over the standard approach depends

on the model and dataset. More specifically, it depends on the computational complexity of

computing the integral (14) (or (16) for the pre-equilibration case) on the time interval

between the last finite time point (tnt ) and the time point where the steady-state condition is

satisfied. It is the difference between solving an nx-dimensional linear non-autonomous ODE

system, and solving a linear system of nx equations. The speedup is expected to be higher for

nonlinear systems. It also depends on the fraction of computational cost spent on computing

the steady-state. For example, if the time spent in the optimizer is large compared to the time

for model simulation, or if mostly time-course data is available, the speedup will be lower. As

expected, the speedup does not significantly depend on the number of optimized parameters,

which we demonstrated with the example of one of the three models. We observed a speedup

of up to 3.3-fold for simulations and up to two-fold for parameter estimation, for the models

and datasets considered in this study.

The new approach is only applicable if for each initial value there exists a unique, exponen-

tially stable steady state. This implies that the (transposed) Jacobian of the right-hand side is

non-singular. One of the main reasons for a singular Jacobian is the presence of conserved

quantities in the dynamical system [32]. In order to facilitate applicability of the proposed

method we have implemented a fast heuristic-based approach for conserved quantities identi-

fication suitable for large-scale reaction networks as presented in [35]. Both the conserved

moieties identification approach and the proposed ssASA approach have been made available

via the open-source AMICI package. If the uniqueness of the steady state cannot be ensured,

e.g. because the system might be multi-stable, the method has to be applied carefully. While
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there also is a unique mapping from initial condition to steady state for multi-stable systems

with Lipschitz-continuous right-hand sides, this mapping might not be obeyed by Newton’s

method. We do not observe this problem in practice, but recommend to check this after opti-

mization and to provide Newton’s method with a refined initial value (e.g. obtained via a short

simulation run, which is already supported by AMICI) if necessary. We have tested this case

on the Blasi et al., 2016 model. Conserved quantities have been removed before applying the

proposed ssASA approach.

Solving parameter estimation problems consist of various steps that depend on the model

and available data. Different methods, for finding steady states, numerical integration, or sen-

sitivity computation, might be applicable or more efficient for a particular model. Further

analysis and benchmarking of different approaches and their combinations would be benefi-

cial. For example, a broader study of the steady-state case that considers different methods for

steady-state computation in combination with different approaches for sensitivity analysis for

both forward and adjoint sensitivity methods, to find especially efficient combinations, would

be of interest.
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