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Abstract

Motivation: A key process in anti-viral adaptive immunity is that the human leukocyte antigen (HLA) system
presents epitopes as major histocompatibility complex I (MHC I) protein–peptide complexes on cell surfaces and in
this way alerts CD8þ cytotoxic T-lymphocytes (CTLs). This pathway exerts strong selection pressure on viruses,
favoring viral mutants that escape recognition by the HLA/CTL system. Naturally, such immune escape mutations
often emerge in highly variable viruses, e.g. HIV or HBV, as HLA-associated mutations (HAMs), specific to the hosts
MHC I proteins. The reliable identification of HAMs is not only important for understanding viral genomes and their
evolution, but it also impacts the development of broadly effective anti-viral treatments and vaccines against vari-
able viruses. By their very nature, HAMs are amenable to detection by statistical methods in paired sequence/HLA
data. However, HLA alleles are very polymorphic in the human host population which makes the available data rela-
tively sparse and noisy. Under these circumstances, one way to optimize HAM detection is to integrate all relevant
information in a coherent model. Bayesian inference offers a principled approach to achieve this.

Results: We present a new Bayesian regression model for the detection of HAMs that integrates a sparsity-inducing
prior, epitope predictions and phylogenetic bias assessment, and that yields easily interpretable quantitative infor-
mation on HAM candidates. The model predicts experimentally confirmed HAMs as having high posterior probabil-
ities, and it performs well in comparison to state-of-the-art models for several datasets from individuals infected
with HBV, HDV and HIV.

Availability and implementation: The source code of this software is available at https://github.com/HAMdetector/
Escape.jl under a permissive MIT license. The data underlying this article were provided by permission. Data will be
shared on request to the corresponding author with permission of the respective co-authors.

Contact: daniel.habermann@uni-due.de or daniel.hoffmann@uni-due.de
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1 Introduction

1.1 The human leukocyte antigen system
The human immune system recognizes viral infections through two

pathways: The innate and adaptive immune response. T-cell, or ‘cel-
lular’, immunity, which represents one major arm of the adaptive
immune system, is modulated by human leukocyte antigen (HLA)

molecules (Germain, 1994): Briefly, proteins that are synthesized
within the cell—which will include viral proteins if the cell is
infected—are degraded in proteasomes to peptides (Goldberg et al.,
2002). Some of these peptides are presented as epitopes on the cell
surface by HLA class I molecules. These viral peptide-HLA com-

plexes can then be recognized by circulating CD8þ cytotoxic T-lym-
phocytes (CTLS) through their T-cell receptor (Murata et al., 2007).
Following this recognition, the CTL can eliminate the infected cell

(Harty et al., 2000).
HLA class I molecules are encoded at three loci, HLA-A, -B and

-C and these genes are very polymorphic with more than 20 000
known alleles in humans (Robinson et al., 2015). HLA molecules

vary drastically in their affinities to given epitopes so that cells from
different individuals, in general, present different peptides on the
cell surface. In other words, the HLA class I alleles expressed by a

given individual will determine their CTL response to a given viral
pathogen.

1.2 Immune escape is reproducible based on host HLA

allele expressed
Virus variants arise continuously through mutation. Because the

HLA system modulates CTL responses through viral epitope presen-
tation, it exerts strong selection pressure toward virus variants that

escape CTL recognition (Borrow et al., 1997). Such variants could,
for example, carry mutations that reduce binding of viral epitopes to
HLA, or that reduce recognition of the epitope/HLA complex by the

CTL’s T-cell receptor, or that alter peptide processing so that epito-
pes are no longer presented on the infected cell surface (Yewdell et
al., 2002). The latter type of mutation can occur within (Yokomaku

et al., 2004) or outside (Draenert et al., 2004) CTL epitopes.
Immune escape is a major driver of viral evolution, particularly

for highly variable viruses such as HIV or HBV (Alizon et al., 2011;
Allen et al., 2005; Lumley et al., 2018; Rousseau et al., 2008).

Whether and how quickly a given escape mutation is selected in a
host depends on a number of factors including the viral genomic
background, the magnitude of the reduction in viral replication

caused by changes in the viral proteins, the selection of compensa-
tory mutations that recover fitness, and the strength of immune re-

sponse targeting the presented epitope (Kløverpris et al., 2015).
Despite the complexity of these factors, the mutational pathways of
immune escape in certain viruses such as HIV are nevertheless

broadly reproducible, and thus predictable, based on the HLA
alleles expressed by the host. For example, about 75% of people liv-

ing with HIV who carry the HLA-B*57 allele, will select a T242N
substitution in the HIV structural protein Gag in the first weeks to
months of infection (Brumme et al., 2008b; Leslie et al., 2004).

In addition to driving viral evolution at the individual level,
HLA pressures also drive viral evolution in human populations, as

circulating viruses adapt to HLA alleles commonly expressed in that
population (Kawashima et al., 2009). Upon transmission to a new
host with different HLA alleles, HLA escape mutations may revert,

particularly if they are associated with a reduction in viral replica-
tion capacity (Matthews et al., 2008), but they can also persist, lead-

ing to their population-level accumulation (Kawashima et al.,
2009).

Methods to accurately and comprehensively identify HLA-
associated immune escape mutations in HIV and other viruses are
therefore critical for the study of viral evolution and immune escape.

An improved understanding of immune escape can aid in the devel-
opment of treatments and vaccines that rely on effective immune

responses.

1.3 Identifying HLA escape mutations
There are several experimental methods available to study HLA es-
cape (Altman et al., 1996; Brunner et al., 1968; Czerkinsky et al.,
1983; Lamoreaux et al., 2006). However, these methods are rela-
tively slow and costly, especially for screening purposes.
Theoretically, an option to identify escape mutation could be the use
of epitope prediction tools (Mei et al., 2020). At their core, these
tools identify epitopes as peptides with high predicted affinities to
HLA molecules. One could envisage applying such tools to com-
binatorially mutated epitopes to identify substitutions that reduce
predicted affinities significantly and therefore would be good candi-
dates for escape mutations. However, these tools can be rather in-
sensitive to escape mutations (Acevedo-Sáenz et al., 2015), which is
not unexpected because they have been developed to recognize epit-
opes as a whole. A more promising approach that makes efficient
use of frequently available data is to combine viral genome sequenc-
ing, host HLA determination, computational identification by statis-
tical association analysis and targeted experimental validation
(Carlson et al., 2012).

As the selection pressure exerted by cytotoxic T cells depends on
successful recognition of viral peptides bound to HLA molecules on
the infected cell surface, escape mutations are HLA allele specific
and can therefore be detected as HLA allele dependent amino acid
substitutions, or ‘footprints,’ in sequence alignments of viral pro-
teins (Moore, 2002). Amino acid substitutions enriched in viral
sequences from hosts with a specific HLA allele are termed HLA-
associated mutations (HAM).

One way of quantifying this enrichment is Fisher’s exact test
(Fisher, 1922): For a given substitution Si at alignment position i
and HLA allele H, a 2-by-2 contingency table is constructed con-
taining the absolute counts of the number of sequences in the four
possible categories (Si, H), (Si, :H), (:Si, H) and (:Si; :H), where
:Si denotes any substitution except Si, and :H denotes any HLA al-
lele except H.

Fisher’s exact test is a conventional null hypothesis significance
test (NHST) that generates P-values. In this case, the null hypothesis
is that HLA allele H and substitution Si are independent, and the P-
value is the probability of observing a deviation from independence
that is at least as extreme as in the data at hand under the assump-
tion that the null hypothesis is true.

Fisher’s exact test has the advantage of being fast and easy to
apply (Budeus et al., 2016), but it also has several disadvantages
(Carlson et al., 2008). The most striking one is that viral sequences
share a common phylogenetic history, and, therefore, treating
sequences as independent and identically distributed samples may
under- or overestimate effect sizes. In the context of hypothesis test-
ing, this leads to increased false-positive and false-negative rates
(Osborne et al., 2002; Scariano et al., 1987).

Another issue with Fisher’s exact test is the genomic proximity
of human HLA class I loci (Francke et al., 1977) leading to linkage
disequilibrium—inheritance of HLA alleles can be correlated.
Therefore, spurious HAMs can occur if associations of substitutions
with individual HLA alleles are tested: if HLA allele H1 is associated
with an amino acid substitution R because of immune escape, but
H1 is in linkage disequilibrium with allele H2, then this leads to an
association of R and H2, even without being an escape mutation
from H2.

Carlson et al. (2008) developed the Phylogenetic Dependency
Network, a method that accounts for several of the aforementioned
problems, in particular phylogenetic bias and HLA linkage disequi-
librium. However, it is based on null hypothesis significance testing.

1.4 Issues with P-values for screening
There are fundamental statistical issues with P-values as a screening
tool (Amrhein et al., 2018): with small effect sizes and high variance
between measurements, as is often the case with biological data,
statistically significant results can be misleading, can have the wrong
direction (type S error), or can greatly overestimate an effect (type
M error) (Gelman et al., 2014). Such problems are more and more
appreciated in the context of the current ‘replication crisis’—in the
life sciences scientific claims with seemingly strong statistical
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support often fail to replicate (Baker, 2016; Begley et al., 2012;
Ioannidis, 2005).

These problems are exacerbated if P-values are used for screen-
ing purposes (multiple testing problem). The probability of obtain-
ing a statistically significant result increases with each additional
test, even in absence of any real effect. When using P-values as a fil-
ter, it is therefore likely to obtain significant effects that are in fact
not real. A common strategy to mitigate this problem is to control
the false discovery rate (Benjamini et al., 1995). The downside of
such adjustment procedures is that only the very largest effects re-
main if large datasets are screened.

Instead of performing many hypothesis tests and trying to adjust
for them, we prefer to fit a single, multilevel model that contains all
comparisons of interest. Multilevel models can make the problem of
multiple comparisons disappear entirely and yield more valid esti-
mates (Gelman et al., 2012).

2 Materials and methods

Our general approach for HAMdetector is to fit a Bayesian regres-
sion model that captures relationships between host HLA alleles and
substitutions in viral proteomes.

This Bayesian approach is advantageous because it allows use of:
(i) prior information (e.g. knowledge of effect magnitudes), (ii) rele-
vant additional information (phylogeny, epitope information), (iii) a
problem-specific structure and (iv) partial pooling (Gelman, 2010).

2.1 Model backbone
We chose a logistic regression model as backbone because it is easily
extensible, and because coefficients can be interpreted in the familiar
way as summands on the log-odds scale. This is the core of
HAMdetector, which models the strength of association between
substitutions in viral sequences and host HLA alleles.

yik � BernoulliðhikÞ (1)

hik ¼ logisticðb0k
þ
XD
j¼1

XijbjkÞ; (2)

where yik is the binary encoded observation of substitution k in viral
sequence i (each observed amino acid state k contributes a separate
column to yik); hik is the estimated probability that we observe sub-
stitution k in sequence i; b0k is an intercept for substitution k, corre-
sponding to the overall log-odds for substitution k; Xij is 1 if
sequence i comes from host individual with HLA allele j and 0 other-
wise; bjk is the HLA regression coefficient of HLA allele j for substi-
tution k; D is the number of HLA alleles in the dataset; the logistic
inverse link function transforms the linear model in parentheses to
the probability scale of hik.

The main parameters of interest for HAMdetector are the regres-
sion coefficients bjk, as they quantify the strength of association be-
tween the occurrence of substitution k and each of the observed
HLA alleles. The bjk are on the log-odds scale, i.e. if we go from
viral sequences from hosts without HLA allele j to those from hosts
with j, the log-odds logðpk=ð1� pkÞÞ of observing substitution k in-
crease by addition of bjk.

Reasoning about coefficients on the log-odds scale can some-
times be unintuitive. A useful approximation to interpret logistic re-
gression coefficients on the probability scale is the so-called divide-
by-4 rule, which means that a regression coefficient of 2 corresponds
to an expected increase on the probability scale of up to 2/4¼50%.

2.2 Inclusion of additional information
On top of the paired data of viral sequences and host HLA alleles
modeled by the backbone (Eq. 1), we extend the model to include
further information of relevance to improve HAM detection, namely
phylogenetic information and predictions of epitope peptide proc-
essing and major histocompatibility complex I (MHC I) affinity, as
described in the following.

2.2.1 Phylogeny

Viral strains have a common phylogenetic history. Thus substitu-
tions are not independently and identically distributed, and there-
fore violate a common assumption of standard statistical methods.
In fact, Bhattacharya et al. (2007) demonstrated the importance of
correcting for the phylogenetic structure in identifying HLA
associations.

A popular approach in phylogeny-aware regression of binary
variables is to estimate an additional multivariate normally distrib-
uted intercept, where the covariance matrix is based on the branch
lengths of a given phylogenetic tree (Ives et al., 2010, 2014). This
approach turned out to be too computationally expensive in our
model, hence we chose a strategy similar to the one in Carlson et al.
(2008):

Consider a phylogenetic tree W obtained from standard max-
imum likelihood methods for a given multiple sequence alignment.
We are interested in estimating Pðyik ¼ 1jWÞ, that is, the probability
of observing the substitution k in sequence i based on the underlying
phylogenetic model. A quantity that can be readily computed using
phylogenetic software like RAxML-NG (Kozlov et al., 2019) is
PðWjyik ¼ 1Þ. For this, we keep the tree topology fixed, annotate the
tree with the binary observations yik at its leaves and optimize the
branch lengths. PðWjyik ¼ 1Þ is then the likelihood of the annotated
phylogenetic tree. Similarly, we can also compute PðWjyik ¼ 0Þ by
flipping the annotation of sequence i from 1 to 0 (keeping all other
observations). With PðWjyik ¼ 1Þ and PðWjyik ¼ 0Þ known and the
relative frequencies of 0 and 1 as priors, we can estimate Pðyik ¼
1jWÞ by applying Bayes’ theorem. The estimated probabilities based
on phylogeny are then included in the model as additional intercepts
(second term of logistic argument):

yik � BernoulliðhikÞ
hik ¼ logisticðb0k

þ clogit
�

Pðyik ¼ 1jWÞ
�

þ
XD

k¼1

XikbjkÞ
(3)

The logit transform is used because it cancels out with the logis-
tic inverse link function. The phylogeny term acts as a baseline in ab-
sence of any HLA effects. As this baseline itself is not certain but
subject to errors of the phylogenetic probabilities Pðyik ¼ 1jWÞ, we
introduce an additional parameter c.

2.2.2 Inclusion of CTL epitope predictions

As outlined earlier, escape mutations often appear as HAMs. Given
the underlying mechanism, it is not surprising that escape mutations
are enriched in CTL epitopes, i.e. in those viral peptides presented
by MHC I to TCRs (Bronke et al., 2013). This suggests that know-
ledge of epitope regions can be used to boost HAM detection.
Fortunately, availability of large experimental datasets (Vita et al.,
2019) has enabled the development of computational tools that pre-
dict with good accuracy the binding of peptides to MHC I molecules
encoded by various HLA alleles (Mei et al., 2020).

Not only mutations in CTL epitopes can lead to failure to pre-
sent epitopes to T cell receptors, but also mutations at epitope-
flanking positions that interfere with pre-processing of peptides, not-
ably proteasomal cleavage of viral proteins (Le Gall et al., 2007;
Milicic et al., 2005).

In HAMdetector, we use MHCflurry 2.0 (O’Donnell et al.,
2020) to predict epitopes that are properly processed and presented
by MHC I. For this, we create an input matrix of dimensions R�D,
where R is the number of evaluated substitutions and D is the num-
ber of observed HLA alleles in the dataset. The elements of this ma-
trix are binary encoded and contain a 1 if that position is predicted
to be in an epitope, and 0 otherwise. Given an amino acid sequence,
MHCflurry provides a list of possible epitopes (9–13 mers) and
HLA allele pairs and calculates a rank based on comparisons with
random pairs of epitopes and HLA alleles. For the binarization, we
use the rank threshold of 2% suggested by MHCflurry.

We use epitope prediction as information about the expected de-
gree of sparsity, i.e. if we know that there is an epitope restricted by
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a given HLA allele at that location, we expect that this HLA allele is
more likely to be associated with substitutions at that position than
the other HLA alleles. This idea is implemented by increasing the
scale of the local shrinkage parameters kjk depending on epitope
information:

kjk � Cauchyþð0; rj expðZjkbepiÞÞ
bepi � Normalþð1; 2Þ; (4)

where Zjk is 1 if HLA allele j is predicted to restrict the alignment
position corresponding to substitution k, and 0 otherwise. The par-
ameter bepi governs the increase in scale of the corresponding local
shrinkage parameters. The larger the estimated values of bepi are, the
more likely it is to see non-zero regression coefficients for these
HLA alleles.

2.2.3 Sparsity-inducing priors

Sparsity-promoting priors (Piironen et al., 2017b) can drastically im-
prove predictive performance, because the model is better able to
differentiate between signal and noise. These priors convey the a pri-
ori expectation that most coefficients in a regression model are close
to 0, i.e. that non-zero coefficients are sparse. This assumption is
likely correct for HAMs: the dominating mechanism that leads to
HLA association of mutations is probably selection of mutations
that mediate escape from MHC I presentation of epitopes; however,
we know that these epitopes are sparse, i.e. the number of actual
epitopes that are restricted by a given HLA allele is typically small
compared to the number of all conceivable epitopes. Thus, for most
pairs of HLA allele and substitution, the association is likely truly
zero. Note that this reasoning does not preclude associations outside
of epitopes as sometimes observed for compensatory mutations
(Ruhl et al., 2012) but just implies that these are more rare.

There is a range of sparsity-promoting priors with slightly differ-
ent properties. They share the common structure of placing most
probability mass very close to 0, with heavy tails to accommodate
the non-zero coefficients. For our model, we use the so-called regu-
larized horseshoe prior (Piironen et al., 2017b), which is an im-
provement of the original horseshoe prior presented by Carvalho
et al. (2010), in that it additionally allows some shrinkage for the
non-zero coefficients. The original horseshoe prior is given by:

bjk � Normalð0; s2k2
jkÞ

kjk � Cauchyþð0;1Þ
s � Cauchyþð0; s0Þ;

(5)

where bjk are the regression coefficients; s and kjk are the so-called
global and local shrinkage parameters, respectively; Cauchyþ is the
positively constrained Cauchy distribution; s0 is the overall degree
of sparsity. Shrinkage of the non-zero coefficients in the regularized

horseshoe prior is achieved by replacing k2
jk with ~k

2

jk ¼
c2

k
k2

jk

c2
k
þs2

k
k2

jk

, where

the additional parameter c governs the magnitude of shrinkage for
the non-zero coefficients.

With Eq. 5, the global shrinkage parameter s is typically very
small and shrinks most of the regression coefficients close to 0,
whereas the local shrinkage parameters kjk can occasionally be very
large to allow some coefficients to escape that shrinkage.

The overall degree of sparsity s0 can be chosen based on the
expected number of non-zero coefficients (Piironen et al., 2017a).

The full model specification together with a prior justification is
given in Supplementary Information.

2.3 Model implementation
A Julia (Bezanson et al., 2017) package is available at https://github.
com/HAMdetector/Escape.jl to run the model on custom data. Due
to restrictions of dependencies (MHCflurry and RAxML-ng),
HAMdetector is currently only available on Linux, but can be run
on Windows using the Windows Subsystem for Linux (WSL2). All
models were implemented in Stan 2.23 (Stan Development Team,
2021), a probabilistic programming language and Hamiltonian

Monte Carlo sampler for efficient numerical computation of poster-
ior distributions. The Stan code is available in two versions: One
optimized for readability and one optimized for speed by utilizing
Stan’s multithreading and GPU capabilities.

2.4 Model diagnostics
2.4.1 Convergence diagnostics

We use the split-R̂ convergence diagnostic to identify Markov chain
convergence issues (Gelman et al., 1992, 2013). We require a value
of R̂ below 1.1 for all model parameters. Additionally, we require
that the effective sample size Neff (Stan Development Team, 2021) is
above 200 for all model parameters and that sampling occurs with-
out any divergent transitions (Betancourt, 2018).

2.4.2 Posterior predictive checks

In posterior predictive checks, we simulate new data from the
inferred posterior distribution and the likelihood, and we compare
these simulated data with representative real data (Gabry et al.,
2019). A good model should predict data that are consistent with
real data. This general idea was employed in two ways to test our
models.

For a first posterior predictive check we used calibration plots
(Supplementary Fig. S1): two binned quantities were plotted against
each other, the observed relative frequencies of substitutions
f ðyik ¼ 1Þ, and the predicted probabilities Pðyik ¼ 1jmodelÞ. In such
a plot, a well-calibrated model should yield points following the di-
agonal. Technically, all observations were first sorted by increasing
estimated probability Pðyik ¼ 1jmodelÞ and grouped into n bins. For
each bin, the fraction of observations with yik ¼ 1 (observed event
percentage) was then plotted against the midpoint of each bin. The
cutpoints of the bins are indicated by error bars.

Second, we assessed the abilities of different models and methods
to discover HAMs with HAM enrichment plots. These plots are
based on the observation that CTL escape mutations are enriched in
epitopes (Bronke et al., 2013). Hence, the degree by which methods
for HAM prediction recover this trend is a measure of model per-
formance. To implement this measure, we first ranked all evaluated
substitutions according to their respective credibility of being a
HAM, computed as integral of the marginal posterior Pðbjk > 0Þ.
For comparison with established methods, namely Fisher’s exact test
and Phylogenetic Dependency Network (Carlson et al., 2008),
ranked lists based on P-values were computed. Then we calculated
for each rank r the accumulated number NeðrÞ of predictions of this
rank or better ranks were located inside known epitopes. The higher
the curve NeðrÞ, the higher the enrichment of predicted HAMs in
epitopes, see e.g. Figure 1.

2.4.3 Leave-one-out cross-validation

Another performance measure is the ability to generalize to unseen
data. To examine this ability for the different model variants we per-
formed leave-one-out cross-validation (LOOCV), using the efficient
Pareto-smoothed LOOCV (Vehtari et al., 2017).

From the LOOCV, we obtain the Expected Log-Predictive
Density (ELPD)

Pn
i¼1 log ð

Ð
pðyijhÞpðhjyi�1ÞdhÞÞ for samples

i ¼ 1; . . . ; n, ith observation yi, data yi�1 with the ith data point left
out, and model parameters h. Thus, the ELPD is the average log pre-
dictive density of the observed data points based on the leave-one-
out posterior distributions. This measure has the advantage over
other performance measures like classification accuracy of not only
taking into account the location of the predictive distribution (the
number of correct predictions) but also the width, i.e. how confident
the model is in its predictions. For a description of ELPD in the con-
text of LOOCV, see Vehtari et al. (2017) and Gneiting et al. (2007).

2.5 Data
The model was fit with several datasets consisting of viral sequences
paired to host HLA class I data:
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• A large HIV dataset consisting of a subset of sequences from the

HOMER (Brumme et al., 2007, 2008a) cohort, the Western

Australian HIV Cohort Study (WAHCS, Bhattacharya et al.,

2007; Moore, 2002) and participants of the US AIDS Clinical

Trials Group (ACTG) protocol 5142 (John et al., 2008) who also

provided Human DNA under ACTG protocol 5128 (Haas et al.,

2003) (total N ¼ 1383). These data were in part also used in the

Phylogenetic Dependency Network study (Carlson et al., 2008).

The dataset contains sequences spanning the gag, pol, env, nef,

vif, vpr, vpu, tat and rev genes.
• A set of 351 HIV sequences mostly spanning the pol gene from

the Arevir database (Roomp et al., 2006).
• A set of 544 Hepatitis-B-Virus sequences (Timm et al., 2021).

The dataset contains sequences of the preC/core, LHBs, Pol and

HBx proteins.
• A set of 104 Hepatitis-D-Virus sequences containing the HDV-

antigen (Karimzadeh et al., 2018).
• A set of 41 HIV sequences spanning the gag and pol genes.

Lists of known epitopes were collected from the Immune
Epitope Database (IEDB, Vita et al. (2019)). For HBV and HIV, we
added data from the Hepitopes database (Lumley et al., 2016) and
the Los Alamos HIV Molecular Immunology Database (Yusim
et al., 2018), respectively. In total, we obtained 20 epitopes for
HDV, 339 for HBV and 2684 epitopes for HIV. The counts refer to
unique pairs of epitope and HLA alleles.

2.6 Data preparation
For all sequences, we applied the following preparation steps:

1. For each dataset, the sequences were split into subsequences, ei-

ther by protein or gene.

2. If not already present in this format, sequences were translated

into their amino acid representations.

3. Multiple sequence alignments were produced with MAFFT

(Katoh et al., 2013) (default parameters). In the few cases when

the alignment introduced frameshifts, these were corrected

manually.

4. RAxML-NG (Kozlov et al., 2019) version 1.0.0 was used to gen-

erate a maximum likelihood phylogenetic tree for each gene/pro-

tein using the –model GTRþGþI option with all other

parameters set to default values. If available, we used RNA or

DNA sequences for this step, rather than protein sequences.

3 Results

In order to understand what the different building blocks of
HAMdetector contribute, we applied four different Bayesian models
of increasing complexity to each dataset, starting with the standard
logistic regression model (Equation 1) and adding then the further
components, i.e. the horseshoe prior (Equation 5), phylogeny
(Equation 3) and epitope prediction, resulting in the full model
(Supplementary Equation S1). For comparisons to existing methods,
we also applied Fisher’s exact test and the Phylogenetic Dependency
Network Carlson et al. (2008) to the same data.

3.1 Run times and convergence
For a standard office computer, run times of HAMdetector on the
smaller HDV dataset were of the order of minutes and on the order
of hours for the Hepatitis B dataset. For the large HIV dataset, the
models were run overnight. Run times scale approximately linearly
with the product NK, where N is the number of sequences and K is
the number of substitutions. All model fits showed no signs of infer-
ence issues. In total, samples were drawn from four Hamiltonian
Markov chains with 1000 iterations each after 300 warm-up itera-
tions. The effective sample size exceeded 200 for all model parame-
ters, R̂ convergence diagnostic values were below 1.1 in all cases.

3.2 Posterior predictive checks
The model yields well-calibrated posterior predictive probabilities of
substitutions. This is exemplified in Supplementary Figure S1 for
HBV core protein, but also holds true for the other datasets
(Supplementary Fig. ‘Calibration plots’).

The predictions of the tested models are enriched in epitopes
over baselines for almost all tested datasets (Fig. 1 for HBV preC/
core protein and Supplementary Fig. ‘HAM enrichment plots’ for
other datasets). Although the relative and absolute performance
varies by protein (see Supplementary Fig. ‘HAM enrichment sum-
mary’), HAMdetector consistently outperforms all other methods in
all but two datasets, and performs on-par with the other methods in
these two cases. For the best ranked HAMs, Fisher’s exact test per-
forms about as well as the HAMdetector backbone logistic regres-
sion model (model 1 in Fig. 1). Each of the following three model
stages of HAMdetector increases HAM enrichment further. The
horseshoe prior alone (model 2) is a drastic improvement over
model 1, even though it does not include any specific external infor-
mation. The logistic regression model with horseshoe prior works
roughly as well as the Phylogenetic Dependency Network Carlson
et al. (2008), which includes much more information. Model 3 with
its additional inclusion of phylogeny has higher enrichment than
model 2, and finally, the full model 4 with the inclusion of epitope
prediction leads to a further improvement. Note that, model 4 only
uses epitope prediction software and does not use any information
of experimentally confirmed epitopes. The latter are here only used
for model evaluation.

The Bayesian approach lends itself to incorporation of prior
knowledge which usually helps in accurate modeling and prediction.
In fact, a considerable effect is confirmed by the HAM enrichment
plots with their ladder of improvements with increasing inclusion of
information. It may be particularly surprising that the sparsifying
horseshoe prior has such an impact although it does not use specific
prior information. However, this is in principle the same mechanism
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Fig. 1. HAM enrichment plot for HBV preC/core protein: number Ne of associations

inside the boundary of known epitopes versus rank r. D: Phylogenetic Dependency

Network; F: Fisher’s exact test; 1: simple logistic regression model with broad

Student-t priors; 2: logistic regression model with horseshoe prior; 3: logistic regres-

sion model with horseshoe prior and phylogeny; 4: full model with epitope predic-

tion. Unannotated gray lines at the bottom of the graph are HAM enrichment

curves for random permutations of the list of HLA allele—substitution pairs and act

as baselines
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as for the other information components: it is known that HAMs
are sparse per HLA allele, and therefore supplying this information
to the inference improves predictions. Figure 2 illustrates the effect
of the sparsifying prior with an example, the substitution 11D in
HIV integrase (Arevir dataset). There is no evidence for an associ-
ation of HLA-A*01 with this substitution, whereas for HLA-B*44
the data is consistent with a strong association. The horseshoe prior
has the effect of shrinking toward 0 specifically those regression
coefficients with weak evidence of an association (A*01 in Fig. 2).
This reduces the standard error for the remaining coefficients, lead-
ing in our example to narrowed histogram for the association with
B*44 in the model with horseshoe prior.

3.3 Leave-one-out cross-validation
To quantify the ability of the four different model stages of
HAMdetector to generalize to unseen cases, we computed the ELPD
with Pareto-smoothed leave-one-out cross-validation. Table 1 shows
results for the HBV preC/core protein in terms of ELPD changes
with each new model stage. Each new model stage adds ELPD, i.e. is
better at generalizing than the simpler model stages.

The model with horseshoe prior alone already has a much higher
ELPD than the standard logistic regression model, even though it
does not use any specific external data. This is because including the
sparsity assumption allows the model to better separate signal from
noise and the uncertainty of the close-to-zero coefficients does not
propagate into uncertainty of predictions.

Including phylogeny further improves model performance a lot,
as the assumption of independent and identically distributed data is
replaced with specific information from the shared phylogenetic
history.

While addition of sparsity and phylogeny has an effect on all
substitutions and samples, epitope prediction only influences those
substitutions that are restricted by a given HLA allele and only those
samples that are annotated with the allele. Therefore, inclusion of
epitope prediction does not improve ELPD as much as inclusion of

phylogeny and the sparsity assumption. However, inclusion of epi-
tope prediction is highly useful for determining which HLA alleles
are associated with a substitution, as shown in the previous section.

3.4 HAMs in HDV as test case
The hepatitis D virus (HDV) dataset (Karimzadeh et al., 2019) is an
excellent test case: we have (i) a set of paired HDV sequences and
patient HLA alleles, (ii) HAM predictions by Fisher’s exact test as
implemented in SeqFeatR (Budeus et al., 2016) and (iii) an in vitro
assay to quantify the effect of the predicted HAMs on IFN-c release
of CD8þ T cells (IFN-c production assays, Karimzadeh et al., 2019).
This allows us to see whether HAMdetector decreases the false posi-
tive rate in comparison to the simpler Fisher’s exact test, and we can
make bona fide predictions on previously undetected HAMs. We
have 15 HAMs predicted in HDV by Fisher’s exact test at signifi-
cance level 5� 10�3 (Supplementary Table S1) as published
(Karimzadeh et al., 2019). The corresponding P-values have no clear
relation to experimental confirmation, i.e. P-values for confirmed
HAMs are not generally lower than those of non-confirmed ones.

For HAMdetector, we use in Supplementary Table S1 the poster-
ior probability of a positive regression coefficient (Pðbjk > 0Þ as
measure for the confidence in having detected a HAM. HAMs with
strong support have a posterior probability close to 1, associations
with no support a probability close to 0.5 (corresponding to a re-
gression coefficient centered around 0). The five predicted HAMs
with top posterior probabilities (all � 0:90) have all been experi-
mentally confirmed. There is only one outlier with posterior prob-
ability 0.75 (P89T and B*37).

HAMdetector strongly supports 15 substitution—allele pairs
that have previously not been identified (question marks in last col-
umn of Supplementary Table S1). All of them have association prob-
abilities of 0.90 or higher, while their P-values from Fisher’s exact
test exceed the significance level of 5� 10�3 used in Karimzadeh
et al. (2019). Given the superior performance of HAMdetector on
the experimentally tested HAMs, these 15 bona fide predictions sug-
gest that most true HAMs may still to be discovered. A striking ex-
ample is K43R—A*02 with a P-value of 0.22 in Fisher’s exact test
but a HAM-probability of 0.90 and location inside an A*02
restricted epitope.

3.5 Linkage disequilibrium
For three of the false positives proposed by Fisher’s exact test
(Supplementary Table S1), HAMdetector identifies associations
with the same substitution but a different allele (P49L—B*13 in-
stead of P49L—A*30; K43R—A*02 instead of K43R—B*13; and
D33E—B*13 instead of D33E—A*03). One possible explanation
for this observation is HLA linkage disequilibrium: If a certain HLA
allele selects for a specific HAM and there is another HLA allele
that co-occurs with that HLA allele, any method that relies on the

without horseshoe prior

0 2 4
β HLA-A*01

0 2 4
β HLA-B*44

with horseshoe prior

0 2 4
β HLA-A*01

0 2 4
β HLA-B*44

Fig. 2. Marginal posterior distributions of regression coefficients for the association

of substitution 11D of the HIV integrase with HLA alleles A*01 and B*44. Top

half: inferred with logistic regression model, bottom half: inferred with logistic re-

gression with sparsifying horseshoe prior

Table 1. Prediction performance changes in terms of ELPD as

HAMdetector components are added

ELPDdiff sediff

Logistic regression (baseline) 0.0 0.0

þHorseshoe prior 949.8 65.2

þPhylogeny 4440.9 94.4

þEpitope prediction 63.1 18.9

Note: Values computed for HBV preC/core protein. Each value in the col-

umn ELPDdiff is the ELPD difference to the model in the previous row, e.g.

the ELPD difference between the model with epitope prediction and the previ-

ous one is 63.1. Models with larger ELPD have better predictive performance,

e.g. the model with all components, including epitope prediction, has better

predictive performance than the model lacking epitope prediction. All differ-

ences are several times the estimated standard error (column sediff ) away from

zero, indicating that models that include more information have better pre-

dictive performance.
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statistical analysis of pairs of HLA allele and substitution alone will
also detect these associations. Due to random sampling variation,
the HLA allele that selects for a mutation might not necessarily have

the strongest correlation. Inclusion of additional information like
epitope prediction can help to identify associations that are other-

wise confounded by noise.
Indeed, out of the 12 times P49L is observed in sequences anno-

tated with A*30, B*13 is also present in 5 of those cases
(Spearman’s rank correlation coefficient q ¼ 0:5). A similar observa-
tion can be made for K43R and D33E, although the correlation be-

tween the respective alleles is much weaker. A*30 and B*13 have
been shown to be in strong linkage disequilibrium (Brumme et al.,
2007, Supplementary Table S2).

Figure 3 shows regression coefficients of the HLA alleles A*30

and B*13 for substitution P49L. With the simplest logistic regres-
sion model (model 1), both A*30 and B*13 have medium evi-
dence of being associated with substitution P49L. However, with

phylogeny and sparsity-promoting prior (model 3) both regres-
sion coefficients shrink close to 0—the associations are not con-
vincingly supported by the data. Using epitope prediction as

additional source of information (model 4) allows to disentangle
the association of the correlated alleles with P49L and identify

B*13 as likely associated with P49L. The association between
P49L and A*30 (predicted by Fisher’s exact test) remains shrunk
toward 0.

3.6 HAMs outside epitopes
It is important to consider that biologically relevant HAMs do not
necessarily have to lie within or close to the boundary of an epitope.
In Supplementary Section S5, we outline that the model is still able

to identify associations outside predicted epitopes and that epitope
information augments evidence obtained from sequence data.

4 Discussion

HAMdetector follows a general paradigm of Bayesian modeling,
namely to map all information that is available about a system of
interest onto a probabilistic model, and then to apply Bayesian infer-
ence to learn about probable parameter values of that model, e.g.
about bjk, the association of HLA j with substitution k. The more
relevant information we infuse into the model, the sharper the infer-
ence. HAMdetector outperforms other methods as it includes an un-
precedented amount of relevant information.

We have demonstrated that the logistic regression backbone is a
platform that can be extended by model components that contribute
new information. We have selected such modules guided by widely
accepted knowledge, such as phylogeny or epitope location.
However, even knowledge that is rarely stated explicitly may be
helpful in inference, as in the case of sparsity of HLA associations.
Since the included knowledge is generic for interactions of variable
viruses with CTL immunity, HAMdetector performance does not
depend on the virus.

Yet, HAMdetector is far from perfect. For instance, the outlier in
Supplementary Table S2 could point to missing information in
HAMdetector. Another deficiency is that it currently works only
with two-digit HLA alleles. We are currently exploring models for
4-digit HLA alleles that exploit partial pooling so that we can at-
tenuate effects of the increased data fragmentation.

Generally, the platform character of HAMdetector model allows
optimization of prediction performance by replacing components by
more powerful ones, for example replacing a single epitope predict-
or by an ensemble predictor (Hu et al., 2010). Another extension of
our model would be to better account for phylogenetic uncertainty
by using a Bayesian method to estimate a posterior distribution over
possible tree topologies. The uncertainty over the tree topologies
and the underlying parameters of the phylogenetic model would
then propagate into uncertainty of the estimated probabilities
Pðyik ¼ 1jWÞ. However, the good performance of the current version
of HAMdetector makes it already a valuable tool for the study of
interactions between viruses and T-cell immunity.

Acknowledgements

The authors thank Drs. Mina John and Simon Mallal for providing data.

Funding

This work was supported by Deutsche Forschungsgemeinschaft (grant HO

1582/10-1). ZLB is supported by the Canadian Institutes for Health Research

(through project grant PJT-148621) and by the Michael Smith Foundation for

Health Research (through a Scholar Award).

Conflict of Interest: none declared.

References
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