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Abstract
Crop model intercomparison studies have mostly focused on the assessment of pre-

dictive capabilities for crop development using weather and basic soil data from the

same location. Still challenging is the model performance when considering com-

plex interrelations between soil and crop dynamics under a changing climate. The

objective of this study was to test the agronomic crop and environmental flux-related

performance of a set of crop models. The aim was to predict weighing lysimeter-

based crop (i.e., agronomic) and water-related flux or state data (i.e., environmental)

obtained for the same soil monoliths that were taken from their original environment

Abbreviations: AC, AgroC; BL, Bad Lauchstädt; CE, Expert-N coupled to CERES; DC, DailyDayCent; Dd, Dedelow; D-W, region with drier and warmer
climatic conditions; DY, Daisy; GE, Expert-N coupled to GECROS; HE, HERMES; HG, HydroGeoSphere; MM, multi-model mean; MO, MONICA; Se,
Selhausen; SP, Expert-N coupled to SPASS; SU, Expert-N coupled to SUCROS; TERENO, TERrestrial ENvironmental Observatories; TH, THESEUS;
W-W, region with wetter and warmer climatic conditions.
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and translocated to regions with different climatic conditions, after model calibra-

tion at the original site. Eleven models were deployed in the study. The lysimeter

data (2014–2018) were from the Dedelow (Dd), Bad Lauchstädt (BL), and Selhausen

(Se) sites of the TERENO (TERrestrial ENvironmental Observatories) SOILCan net-

work. Soil monoliths from Dd were transferred to the drier and warmer BL site and

the wetter and warmer Se site, which allowed a comparison of similar soil and crop

under varying climatic conditions. The model parameters were calibrated using an

identical set of crop- and soil-related data from Dd. Environmental fluxes and crop

growth of Dd soil were predicted for conditions at BL and Se sites using the cali-

brated models. The comparison of predicted and measured data of Dd lysimeters at

BL and Se revealed differences among models. At site BL, the crop models predicted

agronomic and environmental components similarly well. Model performance val-

ues indicate that the environmental components at site Se were better predicted than

agronomic ones. The multi-model mean was for most observations the better predic-

tor compared with those of individual models. For Se site conditions, crop models

failed to predict site-specific crop development indicating that climatic conditions

(i.e., heat stress) were outside the range of variation in the data sets considered for

model calibration. For improving predictive ability of crop models (i.e., productivity

and fluxes), more attention should be paid to soil-related data (i.e., water fluxes and

system states) when simulating soil–crop–climate interrelations in changing climatic

conditions.

1 INTRODUCTION

Process-based crop growth models are an essential and invalu-
able tool to assess the impact of climate change on future
crop yields (Adam et al., 2020; Challinor et al., 2018). The
crop models used in these climate change impact assessments
studies generally assume an ecosystem response to chang-
ing climatic conditions. For instance, the response to rising
temperature and CO2 in plant productivity can be described
with similar functional relationships and parameterization as
under current climatic conditions (Ainsworth & Rogers, 2007;
Asseng et al., 2015; Lenka et al., 2020). In addition, Boote
et al. (2010) pointed out that in the past, developers of crop
models have often assumed that these functional relation-
ships are correct, and that insufficient effort has been made
to improve these relationships or to test them in light of the
latest scientific findings.

Future crop growth assessments based on process-based
crop model intercomparison studies have mostly been car-
ried out using model parameters calibrated for soils under
original climatic conditions in their original regions (Mulla
et al., 2020; Ruane et al., 2017; F. Tao et al., 2020; Web-
ber, Hoffmann, & Rezaei, 2018). All these studies were based
on soils developed at a site under a specific past climate
and management, assuming that the soil–crop–atmosphere

system is adapted to the atmospheric and lower boundary
conditions. The problem with this approach is that model-
ers calibrate and validate their specific model in a range of
environments (i.e., soil and climate conditions) and use the
parameterized models with given structures to predict crop
development under environments not included in the calibra-
tion, as pointed out by Wallach, Palosuo, Thorburn, Gour-
dain, et al. (2021) and Wallach, Palosuo, Thorburn, Hochman,
Andrianasolo, et al. (2021). Changes in climatic conditions
(e.g., induced by future climate change) will affect not only
crop growth but also the soils (e.g., Robinson et al., 2016,
2019). Thus, the ability of individual crop models to pre-
dict effects of changing climatic conditions on soil ecosys-
tems remains untested for the range beyond the measured site-
specific variability of environmental conditions.

Furthermore, the analyses of crop model simulations
mostly focus on the physiological processes such as growth
in biomass, yield, and phenological development during the
vegetation period (e.g., Martre et al., 2015; Wallach, Palosuo,
Thorburn, Gourdain, et al., 2021; Wallach, Palosuo, Thor-
burn, Hochman, Andrianasolo, et al., 2021; Yin et al., 2017).
However, for the simultaneous prediction of agronomic (crop
production) and environmental (boundary and internal fluxes
and states) variables under changing climatic conditions, the
soil–plant–atmosphere system must be considered as a whole
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(i.e., adequate attention should be paid to crops and soil
water fluxes and states). This includes continuous simula-
tions, including crop-free periods and lead times (e.g., Groh,
Diamantopoulos, et al., 2020). Analyzing water and element
fluxes, as well as soil water storage, becomes increasingly
important when trying to predict crop development under
changing climatic and environmental conditions because of
the feedbacks of those fluxes and states with the crop
development.

A common strategy to develop site-specific soil use and
management strategies and predict agricultural productivity
in the same soil under changing climatic conditions is to
carry out crop model simulations for climate scenarios, gen-
erated based on global atmospheric circulation models (e.g.,
Abd-Elmabod et al., 2020; Chisanga et al., 2020; Zydelis et al.,
2021). Typically, crop models have first been calibrated and
validated based on multiannual observations for a specific
crop (or crop rotation) at various sites (e.g., Kollas et al.,
2015; Nendel et al., 2011) to represent a wide range of envi-
ronmental conditions in these studies. In a second step, the
calibrated models have been applied to predict crop produc-
tivity under future climatic conditions (e.g., Schleussner et al.,
2018). However, the ideal situation regarding data quality for
calibration and validation (Kersebaum et al., 2015) has been
realized only in a few studies (Archontoulis et al., 2020).
Even more frequently, the models are often calibrated at a
single site only, for example, due to other experimental con-
straints. Crop model intercomparison studies as performed
by the Agricultural Model Intercomparison and Improvement
Project (AgMIP) (Ruane et al., 2017) or by the Modelling
Agriculture with Climate Change for Food Security (MAC-
SUR) (Asseng et al., 2013; Bassu et al., 2014) among other
initiatives, explained differences in predictions between the
crop models at the same site by a differential response to
increased temperature and atmospheric CO2 concentrations
in leaf area development due to different model formulations
(e.g., F. Tao et al., 2020) or by the limited representation
of differences in soil properties at heterogeneous landscapes
(Groh, Diamantopoulos, et al., 2020). Well balanced, high-
quality datasets as demanded by Kersebaum et al. (2015) for
model calibration and validation are rare, and in various cases,
datasets have been used in which the crop has not entirely been
free of stress. For the model calibration procedure, this means
that modelers calibrate plant-specific parameters, while they
should have also accounted for soil-related parameters (e.g.,
Asseng et al., 2013; Bassu et al., 2014). The resulting parame-
ter set then often delivers a successful simulation in the appli-
cation case, but for the wrong reasons (Wallach, Palosuo,
Thorburn, Hochman, Gourdain, et al., 2021)

The validation of crop model predictions has furthermore
been limited by the availability of data from climate change
experiments, especially from long-term monitoring studies
(Peng et al., 2020) that also include water and matter fluxes

Core Ideas
∙ We demonstrate the use of high precision weigh-

able lysimeter for full model calibration and vali-
dation.

∙ Lysimeter data from translocated soils represent
effects of changing climatic conditions.

∙ We compare calibration with blind forward simu-
lations (fixed soil and calibrated crop parameter).

∙ We compare individual crop model predictions
with multi-model mean.

∙ We test the predictive ability of crop models and
multi-model mean.

in the soil. Although future climatic conditions may be mim-
icked (e.g., Deltedesco et al., 2019; Köhler et al., 2019), it is
widely unclear how to consider future soil conditions. So far,
the coevolution of soil–crop–ecosystems under changing cli-
matic conditions as a longer term process cannot be described
yet, but models were developed that could be used for predic-
tions. However, this is crucial, as the effect of soils on cli-
mate can lead to large-scale climatic changes. One step to test
and develop simulation models or model components could be
to compare simulated crop developments and fluxes obtained
with calibrated crop model with experimental data from sites
with different climates. However, this approach does not allow
to disentangle the effect of soil from that of climate because it
neglects that soil development is site-specific, depending on
climate, vegetation, and parent material, and soils may reach
another state with changing boundary conditions (Maurer &
Gerke, 2016; Robinson et al., 2016; Zeng et al., 2004).

Testing the ability of crop models for different climatic
conditions but for the same soil characteristics requires the
translocation of soils into climate zones where they did not
develop. Soil monoliths in cropped weighing lysimeters have
been proposed for this purpose (Pütz et al., 2016). Thereby,
the original soil structure of the soil profile during extrac-
tion is preserved. Furthermore, water balance components
such as precipitation and evapotranspiration including non-
rainfall water (i.e., dew and fog) can be determined more accu-
rately with high-precision weighable lysimeters compared
with other typical methods and instruments (Alfieri et al.,
2012; Gebler et al., 2015; Groh et al., 2019; Haselow et al.,
2019). In general, precise data help to improve model param-
eterization (Groh, Stumpp, et al., 2018). These lysimeters can
be either installed in climate chambers as larger-scale labora-
tory systems (e.g., Roy et al., 2021) or moved to other regions
exhibiting different climatic conditions (e.g., Pütz et al.,
2016) to observe and compare the soil–ecosystem response
under different climatic conditions, which perhaps includes
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the transition period towards arriving at a new state. In the
TERENO SOILCan lysimeter project (TERrestrial ENviron-
mental Observatories; https://www.tereno.net), the transfer of
intact soil monoliths between the lysimeter stations followed
a space-for-time substitution approach, and sites are represen-
tative of agricultural regions in Central Europe with the high-
est vulnerability to expected climate change effects (Zacharias
et al., 2011). The transfer of soils along environmental gradi-
ents therefore mimics expected climate changes effects.

Recent field experiments on ecosystem responses to cli-
mate change focused mainly on plant- or crop-related pro-
cesses (e.g., Drought-Net) (Hilton et al., 2019; Loik et al.,
2019) and environmental aspects such as soil water content;
water and element fluxes received far less attention. Agro-
nomic variables such as grain yield and aboveground biomass
are inherently connected with the water and plant nutrient sta-
tus of the soil (e.g., Kersebaum, 2007). Therefore, in addition
to variables controlling crop growth, the soil status control-
ling the environmental fluxes, as well as the knowledge about
the lower boundary conditions (i.e., groundwater level), are
needed for a holistic crop model calibration and validation
(Groh, Diamantopoulos, et al., 2020; Groh et al., 2016). So
far, lysimeter data from the same site (climate) but for differ-
ent soil profiles have been used for crop model predictions
(Groh, Diamantopoulos, et al., 2020). Applying these same
data from the SOILCan lysimeter network, especially from
those translocated to regions with different climatic condi-
tions, bears the opportunity to test whether the structure of
the models is adequate to simultaneously predict crop devel-
opment and environmental fluxes for same soil under different
climatic conditions.

The overall aim of this study was to compare the ability of
an ensemble of crop models to predict the ecosystem’s agro-
nomic productivity (grain yield and above ground biomass),
environmental fluxes (evapotranspiration, drainage), and
states (soil water content) for lysimeters containing the same
soils but exposed to different climates. We hypothesize, that
all the calibrated crop models when using identical soil
hydraulic properties will be able to similarly well reproduce
the agronomic and environmental variables at the calibration
site, but model performance will diverge when predicting crop
growth, yield, and soil water flux for conditions outside the
range of site-specific variations. The objectives were (a) to
assess the effect of changed climatic conditions on key agro-
nomic and environmental variables and (b) to test the pre-
dictive capability of crop models to simulate this effect. The
model comparison will contribute to test a widely used pro-
cedure in climate change impact assessments studies (e.g.,
Falconnier et al., 2020; Franke et al., 2020; Rosenzweig et al.,
2014; Zydelis et al., 2021), in which calibration is based on
a set of climatic conditions and prediction will be made for
climatic conditions outside the calibration range.

2 MATERIAL AND METHODS

2.1 Site and soil descriptions

The Dedelow (Dd; Figure 1) site (53˚22′2.45′′ N,
13˚48′10.91′′ W, 50–60 m asl) is located in the region
of the younger moraines in northeastern Germany, which is
an intensively cultivated hummocky arable soil landscape.
The Dd lysimeter station is part of the Northeast German
Lowland Observatory of TERENO (Heinrich et al., 2018)
and the German-wide lysimeter network SOILCan (Pütz
et al., 2016). A total of nine intact eroded Luvisol soil
monoliths (c.f., Groh, Diamantopoulos, et al., 2020) were
extracted along an approximately 20-m transect within the
experimental field in Dd in 2010 (Figure 2).

Following the concept of the TERENO SOILCan lysime-
ter experiment, three of the soil monoliths have been trans-
ferred from Dd to (a) a drier and warmer (D-W) region in
the central (Bad Lauchstädt, BL) and three have been trans-
ferred to (b) a wetter and warmer (W-W) region in the western
part of Germany (Selhausen, Se). Crop management remained
similar at all sites except for regionally adopted fertilizer
application, plant growth regulators, and pesticides (see Sup-
plemental Tables S3–S6). Three soil monoliths remained
at the Dd station. The experimental field station in BL
(51˚23′37′′ N, 11˚52′41′′ E, 113 m asl) is located in cen-
tral Germany and the station in Se (50˚52′7′′ N, 6˚26′58′′ E,
104 m asl) is located in the western part of Germany
(Figure 1). The BL site is part of the Harz/Central Ger-
man Lowland Observatory, whereas the Se site is part of the
Eifel/Lower Rhine Valley Observatory of the TERENO net-
work (Bogena et al., 2018; Wollschläger et al., 2016). At each
site, the air temperature (Ta), global radiation (Rg), wind speed
(WS), rainfall (R), relative humidity, and barometric pressure
data were monitored.

The climatic conditions at BL and Se (Figure 1) differed
from those of the (soil-origin) site in Dd with respect to annual
mean Ta, mean annual R, grass reference evapotranspiration
(ET0), WS, and annual Rg. For 2014–2018, the soil mono-
liths from Dd were subjected at Se to higher annual average Ta
(+1.6˚C), R (+58 mm yr−1), and Rg (+65.4 kWh m−2 yr−1),
but to a lower WS (−0.3 m s−1), and ET0 (−102 mm yr−1).
At BL, the annual averages were higher than in Dd for Ta
(+1.0˚C), ET0 (+28 mm yr−1), and Rg (+31.3 kWh m−2 yr−1),
but lower for WS (−0.1 m s−1), and R (−77 mm yr−1, see
Table 1).

The D-W climatic conditions at BL are characterized by
a climatic aridity index (AI = ET0/R) of 1.47, and the W-
W climate by an AI value of 0.96, as compared with the AI
value of 1.23 at Dd (Table 1). The water balance components
obtained from three lysimeters at each site (Supplemental
Table S1) show the basic hydrological differences between

https://www.tereno.net
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F I G U R E 1 Map of selected TERENO (TERrestrial ENvironmental Observatories) SOILCan sites and associated hydrological watersheds in
the northern part of Germany (adapted from Pütz et al., 2016) indicating the transfer routes of the soil monoliths from Dedelow (Dd) to Bad
Lauchstädt (BL) and Selhausen (Se). The table in the left corner shows the differences (denoted as Δ) in climatic conditions for the hydrological years
November 2014–October 2018 related to those at the Dedelow site as arrows (up = larger, down = smaller) for Δ annual global radiation (Rg), Δ

mean annual rainfall (R), Δ mean annual grass reference evapotranspiration (ET0), Δ mean air temperature (Ta), and Δ mean daily wind speed (WS)

the sites and the four cropping seasons. The Dd site was
characterized by relatively large variability in annual R for
the hydrological years 2016–2017 (858 mm yr−1) and 2017–
2018 (443 mm yr−1) as compared with 2014/15–2015/16 (531
and 532 mm yr−1). Regarding crop productivity (Supplemen-
tal Table S2), the highest grain yield (GY) for all crops was
observed for the Dd lysimeters at the original Dd site; in terms
of grain equivalent units, it outperformed the overall crop pro-
ductivity of the Se lysimeters by almost 100%.

2.2 Model comparison strategy

Eleven models participated in the study to predict environ-
mental and agronomic variables; AgroC (AC) (Klosterhalfen
et al., 2017), DailyDayCent (DC) (Del Grosso et al., 2001),
Daisy (DY) (Hansen et al., 2012), HERMES (HE) (Kerse-
baum, 2007), MONICA (MO) (Nendel et al., 2011), THE-
SEUS (TH) (Wegehenkel et al., 2019), Expert-N (Priesack
et al., 2006) coupled to CERES (CE), GECROS (GE), SPASS

(SP), and SUCROS (SU), and one hydrological model Hydro-
GeoSphere (HG) (AQUANTY, 2013). A multi-model mean
(MM) was calculated considering the corresponding simula-
tion outputs of the 10 crop models, excluding HG, which does
not simulate crop growth.

Daily values of actual evapotranspiration (ETa), R, and net
drainage water flux at the bottom boundary of the lysimeter
at 1.5-m depth (NetQ) were determined from the high preci-
sion weighing lysimeters directly (c.f., Groh, Stumpp, et al.,
2018), which have a surface area of 1 m2. Volumetric soil
water content was measured with time domain reflectometry
(CS610, Campbell Scientific) and soil water pressure heads
with tensiometers (TS1, METER), with pairs of both types of
sensors installed at 0.1-, 0.3-, and 0.5-m depths, and a TS1
sensor at 1.4-m depth. Observations on volumetric soil water
content were aggregated to a mean soil water content (SWC),
which represents the soil’s main root zone (from 0- to 0.6-m
soil depth).

The crop management and development data for each site
included sowing and harvest dates, crop type, information on
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F I G U R E 2 Photo of (a) the Dedelow site before, and (b) after lysimeter extraction July 2010. (c) Typical soil profile with Ap-, Bt-, and
C-horizons of the Luvisol. In the back of Photos a and b, the instrument for lysimeter extraction can be seen. In Photo a, an air-suspended truck is
shown, which was used to transport the excavated soil monoliths to the experimental research field station in Bad Lauchstädt and Selhausen. Photo
by Wilfried Hierold, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg

the previous crop, seed density, emergence, tillage operations,
crop residual management (Supplemental Table S3), the crop
development in BBCH stages (Biologische Bundesanstalt,
Bundessortenamt and Chemical industry), and applications
of fertilizers (Supplemental Table S4), plant growth regula-
tors, and pesticides (Supplemental Tables S5 and S6) were
provided to set up the simulation. Daily values of Ta (min-
imum, maximum, and mean), WS, relative humidity, baro-
metric pressure, and Rg were also provided for the simula-
tion. ET0 was calculated for hourly time steps according to
the FAO56 Penman–Monteith method (Allen et al., 2006)
and summed up to obtain daily values. We have to note that
R input provide from lysimeter observations also contained
inputs from nonrainfall events (i.e., dew and hoar frost; Groh,
Slawitsch, et al., 2018). Pressure heads (hPa) measured in each
lysimeter by tensiometers at 1.4-m soil depth or the depth
to water table (m; converted from pressure head observa-
tions) were used to define the lower boundary of the corre-
sponding soil profile. Soil physical and chemical characteris-
tics were obtained from laboratory data derived from intact
core samples and disturbed bulk soil samples (Supplemen-
tal Tables S7 and S8). These data were used to parameter-
ize the soil hydraulic properties and chemical characteristics
(e.g., total N content, C/N ratio) of the soil profiles and were
provided to set up the simulation. More details on the deter-
mination on those soil characteristics and initial conditions for
the simulation can be found in Groh, Diamantopoulos, et al.
(2020).

The calibration of the crop model parameters for each crop
was based solely on the data from the Dd site. The provided
data to calibrate the models included end-of season agro-
nomic variables GY and aboveground biomass (AgBio), and
in-season observations of leaf area index (LAI) (for mea-
surement methods for LAI see Groh, Diamantopoulos, et al.
[2020]) over four cropping seasons. Additionally, the daily
main environmental variables (ETa, NetQ, and SWC) from
lysimeters at Dd, including the three Dd lysimeters and two
additional lysimeters of the present study (eroded Luvisols;
c.f., Groh, Diamantopoulos, et al., 2020), were provided for
the calibration process.

For the predictive simulations of the Dd soil–ecosystem
under a D-W and W-W climate, the measured soil physical
and chemical characteristics of each individual lysimeter and
the atmospheric conditions, as well as lower boundary infor-
mation for each lysimeter (site), were used. During model cali-
bration, each modeling group identified and adjusted a single
set of plant related model parameters for each crop (winter
wheat [Triticum aestivum L.], winter rye [Secale cereale L.],
and oat [Avena sativa L.]) for the soils at the reference site
in Dd. This approach was chosen because the crop param-
eters in models are plant specific but remain the same for
all soil types. We followed recommendations from Wallach,
Palosuo, Thorburn, Hochman, Gourdain, et al. (2021) to doc-
ument the calibration process for each model (see Supple-
mental Tables S9–S18), including information on the choice
of fitting parameters, the estimated parameter values (i.e.,
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optimal and range), and the software or method used to obtain
the parameter values.

The crop model parameters determined during calibration
to describe crop development and soil water fluxes for the
different boundary conditions at BL and Se, but similar crop
management (see Supplemental Table S3) was used in a for-
ward simulation to validate the predictive ability of the mod-
els. Also, for these sites, climate and crop management data as
well as the soil hydraulic properties and chemical character-
istics were provided. The “Data set Classification software”
developed by Kersebaum et al. (2015) was used to quantita-
tively analyze and classify our dataset for calibration and val-
idation of crop models. The estimated ranking showed a score
of >200 points (“Platinum”), which classifies our calibration
dataset as highly suitable for parametrizing, calibrating, and
improving crop models.

The individual model and MM performance for the calibra-
tion and prediction was evaluated for the agronomic related in-
and end-season variables (LAI, AgBio, and GY) and the main
in-season environmental variables (ETa, NetQ, and SWC).
The normalized root mean square error (nRMSE) was used as
the objective function for model calibration and as criterion
for model evaluation as

nRMSE = 100
SD (Obs)

√∑𝑁

𝑖 = 1
(
Sim𝑖 − Obs𝑖

)2
𝑁

(1)

where SD is the standard deviation of GY, AgBio, LAI, ETa,
NetQ, and SWC; N is the number of observations; and Sim
and Obs are the simulated and observed values. Note that we
have used SD instead of the mean value to take into account
variables such as NetQ, which include negative (drainage)
and positive values (upward directed water flux). To evaluate
the overall model performance, we calculated the combined
nRMSE for each lysimeter nRMSETotal as

nRMSETotal =

(
nRMSEGY + nRMSEAgBio + nRMSELAI
+ nRMSESWC + nRMSEETa + nRMSENetQ

)
𝑀

(2)
where M is the number of individual available measured vari-
ables (i.e., 6, if all measured variables were considered).

The water use efficiency (WUE) (kg m−3) at the ecosystem
level was described as

WUE = GY
ETa

(3)

and represents the measure of consumed water during the
growing season (i.e., from sowing until harvest) of the cor-
responding crop (Katerji et al., 2008). As a second crucial
agricultural index, the harvest index (HI) was calculated (Hay,

1995) as

HI = GY
AgBio

(4)

The HI index was used here to compare how crop models
perform under different environmental conditions (e.g. water
stress) (Fereres & González-Dugo, 2009) and crop manage-
ment decisions (e.g., growth regulator) (Hütsch & Schubert,
2018).

3 RESULTS

3.1 Model calibration

The mean deviation of model results from data in terms of
nRMSE after calibration (Figure 3) indicates characteristic
differences between the tested models for the boundary fluxes
(ETa, NetQ), crop development and yield (LAI, GY, AgBio),
and soil state variables (SWC). Except for LAI, the model per-
formances (Figure 3) were relatively similar for all models,
including the MM. For the crop related variables, the nRMSE
values ranged from 15 to 121% for GY, 13 to 72% for AgBio,
and 44 to 192% for LAI. The lowest nRMSE values were
obtained with the MO model for GY and LAI and with the
SP model for AgBio (Figure 3).

For the water balance related variables, the nRMSE values
range from 48 to 87% for ETa, 84 to 234% for NetQ, and 33 to
102% for SWC, with lowest nRMSE values achieved always
by the MM (Figure 3). The standard deviation in nRMSE val-
ues between all models after calibration was relatively large
for NetQ (15%), mainly caused by few models with low pre-
dictive performance (HE, MO, DC, and GE), smallest for ETa
(2%), and relatively similar for GY (10%), AgBio (7%), LAI
(7%), and SWC (8%). Performance for models describing the
soil water balance through a capacitance approach (i.e., in the
non-Richards-based models HE, MO, and DC) showed large
variability between single soil profiles reflected by higher
standard deviations of nRMSE values for NetQ, SWC, and
GY (Figure 3). Most models showed a good fit for the vari-
ables GY, AgBio, and ETa (i.e., nRMSE values ≤50%). On the
other hand, nRMSE for NetQ and LAI were relatively large
(≥100%). The overall agreement between observations and
simulation after calibration for the Dd soil at the Dd site was
best for the MM (see blue asterisks in Figure 3), based on the
multiobjective criterion nRMSETotal.

3.2 Model prediction ability

For the evaluation of the predictive model performance
(Figure 4), the deviations between simulated and measured



GROH ET AL. 9 of 25Vadose Zone Journal

F I G U R E 3 Individual model (x axis) performance in terms of the mean (symbols) and standard deviation (error bars) of the normalized RMSE
(nRMSE, y axis) for grain yield (GY), aboveground biomass (AgBio), leaf area index (LAI), actual evapotranspiration (ETa), net water flux at 1.5-m
soil depth (NetQ), and mean soil water content down to 0.6-m depth (SWC) resulting from the calibration step using the data of the five soil
lysimeters at Dedelow. For each of the soils, one nRMSE was calculated over all observations of the respective variable. Models include AgroC
(AC), Expert-N SPASS (SP), Expert-N SUCROS (SU), Expert-N CERES (CE), Expert-N GECROS (GE), HERMES (HE), MONICA (MO),
THESEUS (TH), HydroGeoSphere (HG), DailyDayCent (DC), Daisy (DY), and multi-model mean (MM); the asterisks denote the best model
describing the respective crop or soil variable (green) and the model with the best performance over all variables (blue)

data were used to calculate the MnRMSE, which is the vari-
able specific total mean nRMSE averaged over the entire crop
rotation and averaged over the three replicate lysimeters at
each site. The MnRMSE values from the calibration at the Dd
site were compared with MnRMSE values from predictions
for BL and Se site (Figure 3). Similar MnRMSE values in cal-
ibration and prediction models can also predict crop growth
and environmental fluxes under a different climate. In case of
stronger deviations, this means that calibrated model parame-
ters are not able to describe the observed processes as well. As
expected, the MnRMSE values averaged for each model over
the three soil profiles per site (Figure 4) are mostly larger for
the validation at BL and Se sites than those obtained at the
calibration site Dd.

The MnRMSE values for the prediction of GY, ETa, and
NetQ at BL (Dd soil at W-D climate) were relatively similar
for most models except for GE, HE, and DC (Figure 4). For
the latter models, the performance even improved for NetQ.
The MnRMSE values for the prediction of AgBio and SWC,
however, deviated largely from the 1:1 line for most models
at BL site (Figure 4). For Se, the MnRMSE values for most
predictions of GY were relatively large, whereas AgBio was
captured well (as compared with BL) by most crop models
except for DC, DY, and SP (Figure 4). Note that results for
LAI were not included in the analysis here, because of a lack
in LAI observations at Se and BL. For ETa, the MnRMSE val-
ues were relatively similar among all three sites, with slight

shifts from the 1:1 line indicating overestimation mainly at Se
(Figure 4). For NetQ, most models achieved relatively similar
or even better (i.e., DC, GE, HE) quality measures at the val-
idation site. For SWC, the MnRMSE values were relatively
large at the validation sites except for models AC, HE, TH,
HG, and DY, where the prediction quality was similar to that
obtained at the Dd calibration site.

3.3 Crop growth and yield

For GY (Figure 5) most models described the measured yield
relatively well at the calibration site Dd (i.e., the reference: Dd
soil at Dd site). Despite water stress during high temperature
periods in June and July 2018 (Dr. G. Verch, ZALF Research
Station Dedelow, personal communication, 2019), the predic-
tions of oat GY matched the observation with an early ripen-
ing of the oat well, except for model CE. The simulated GY
at the validation site BL was also mostly in agreement with
observations except for the winter wheat predicted by the GE
and MO models and for the winter rye GY predicted with AC,
HE, TH, DC, and GE models. For oat, predictions largely
matched the observations at BL (Figure 5). In contrast, the
predicted GY for the Dd soil lysimeters at the validation site
Se (Figure 5) was overestimated, in particular for winter wheat
in the growing season 2014–2015, by all crop models except
for the DC and TH model. Furthermore, models GE and SU
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F I G U R E 4 Comparison of the model performance in terms of the normalized RMSE (nRMSE) for simulations of lysimeter data at the
reference site Dedelow (i.e., model calibration) with those transferred to the locations Bad Lauchstädt (BL) and Selhausen (Se) for grain yield (GY),
aboveground biomass (AgBio), leaf area index (LAI; no data at BL and Se), actual evapotranspiration (ETa), net drainage (NetQ) at 1.5-m soil depth,
and average soil water content at 0-to-60-cm depth (SWC). The nRMSE for each site was averaged over the nRMSE values of the three profiles per
model and site (MnRMSE). Models include AgroC (AC), Expert-N SPASS (SP), Expert-N SUCROS (SU), Expert-N CERES (CE), Expert-N
GECROS (GE), HERMES (HE), MONICA (MO), THESEUS (TH), Theseus-HydroGeoSphere (HG), DailyDayCent (DC), Daisy (DY), and the
multi-model mean (MM)

predicted the GY for oat and winter wheat relatively well, but
not the GY for winter rye. The mismatch for the MM for GY
was relatively small with average MnRMSE values over all
crops of 40% at Dd and 49% at BL. However, at Se predictions
of GY were clearly overestimated by the MM and achieved a
MnRMSE value of 205%.

The AgBio could be described well by most models at the
calibration site Dd (Supplemental Figure S1). One exception
is perhaps the winter wheat in the first growing season
2014–2015, which was underestimated by AC, DC, and DY
models and overestimated by TH. Predictions of AgBio at
BL were less accurate than those at Se. Here, AgBio was
underestimated for winter rye by all models except for SP and
for the winter wheat crop mainly by AC, DC, and MO models.
In contrast to GY, the prediction of AgBio at Se were mostly
in agreement with the observations (Supplemental Figure
S1), with only DC underestimating and AC and DY overes-
timating AgBio. AgBio predictions deviated remarkably for
winter rye by SP model and for winter wheat by TH model
(Supplemental Figure S1). The MM achieved lowest
MnRMSE values at Se site and the SP model at Dd site and

the SU model at BL site (both belonging to the Expert-N
model family) performed best in simulating AgBio with
regard to other models. However, MnRMSE values for
AgBio for MM were higher at the validation sites BL (66%)
as compared with the reference site Dd (30%) and validation
site Se (29%).

Crop model predictions can be used to calculate agronomic
measures such as the HI (Figure 6). For the reference site Dd,
HI values were obtained with reasonable accuracy by most
models except for DC, DY, GE, and TH (MnRMSE > 150%).
Note that the DC model used a fixed GY/biomass ratio for all
crops. The predicted HI values were overestimated by most
models for the W-D site BL compared with the reference site
Dd, except for DC and SU models. Largest deviations of HI
at BL were observed (MnRMSE = 472%) by the MO model
(Figure 6), overestimating the HI for winter rye and underes-
timating for winter wheat for one of the soils. At the Se val-
idation site (Figure 6), most models failed to predict HI val-
ues. The model performance was generally low and MnRMSE
values ranged from 144 to 544% because of the overestima-
tion of GY. The predictions by all models failed to describe
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F I G U R E 5 Comparison of simulated vs. measured grain yield (GY) for lysimeters at the reference site Dedelow (Dd, green symbols; i.e.,
model calibration) with those transferred to the locations Bad Lauchstädt (BL, red symbols) and Selhausen (Se, blue symbols) for winter wheat
(squares), winter rye (circles), and oat (triangles). Models include AgroC (AC), DailyDayCent (DC), Daisy (DY), Expert-N SPASS (SP), Expert-N
SUCROS (SU), Expert-N CERES (CE), Expert-N GECROS (GE), HERMES (HE), MONICA (MO), THESEUS (TH), THESEUS-
HydroGeoSphere (HG; no data), and the multi-model mean (MM). MnRMSE denotes the average normalized RMSE over three lysimeters at each
site

the decrease in HI values in the order from the Dd refer-
ence site (0.5–0.6) to the validation sites BL (0.4–0.5) and Se
(<0.4).

3.4 Crop water use and soil ecosystem
fluxes

The majority of the models underestimated ETa (crop wise)
for the growing seasons (Figure 7) at the three sites and

achieved relatively similar MnRMSE values (e.g., for MM,
49% at Dd, 53% at BL, and 56% at Se). The ETa for oat in
2018 was only captured by DY. The models AC, MO, GE,
and HG more or less systematically underestimated ETa dur-
ing the whole crop rotation, whereas other models (DC, CE,
SP, SU, TH, and the MM) for certain crops under and over-
predicted measured ETa (Figure 7).

In contrast with ETa, the actual bare soil evaporation (Ea)
during periods without vegetation (Supplemental Figure S2)
is controlled by weather and the soil hydraulic properties,
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F I G U R E 6 Comparison of simulated vs. measured harvest index (HI; i.e., ratio between grain yield and total biomass) for lysimeters at the
reference site Dedelow (Dd, green symbols; i.e., model calibration) with those transferred to the locations Bad Lauchstädt (BL, red symbols) and
Selhausen (Se, blue symbols) for winter wheat (squares), winter rye (circles), and oat (triangles). Models include AgroC (AC), DailyDayCent (DC),
Daisy (DY), Expert-N SPASS (SP), Expert-N SUCROS (SU), Expert-N CERES (CE), Expert-N GECROS (GE), HERMES (HE), MONICA (MO),
THESEUS (TH), THESEUS-HydroGeoSphere (HG; no data), and the multi-model mean (MM). MnRMSE denotes the average normalized RMSE
over three lysimeters at each site

but not by plant properties. The Ea was here assigned to a
specific cropping period by cumulating daily Ea values of the
calendric periods before planting and after harvest of the crop.
Simulated Ea values agreed with observations fully for the
HG model and MM approach, partly for DC, DY, HE, MO,
TH, and AC (Supplemental Figure S2). The AC, HE, and
TH models underestimated Ea, whereas the Expert-N models
(CE, GE, SP, and SU) overestimated Ea, especially before and
after oat cropping at both validation sites. These deviations of
predicted Ea from observation were largest for relatively long

bare soil periods before and after the oat crop (August 2017
until March 2018).

The predicted WUE did not match well for most crop
models at the reference site Dd, and model performance
values even increase considerably for the validation sites
(Figure 8). For all crops, WUE was overestimated by AC and
MO and underestimated by the DC model. For oat, CE and
SP overestimated WUE, and for winter wheat, the DY model
showed relatively large scatter (Figure 8). Predictions for
the validation sites underestimated WUE for winter rye (AC,
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F I G U R E 7 Comparison of simulated vs. measured cumulative actual evapotranspiration (i.e., ETa) for lysimeters at the reference site Dedelow
(Dd; green symbols) and lysimeters transferred to Bad Lauchstädt (BL; red symbols) and Selhausen (Se; blue symbols) for winter wheat (squares),
winter rye (circles), and oat (triangles). Models include AgroC (AC), DailyDayCent (DC), Daisy (DY), Expert-N SPASS (SP), Expert-N SUCROS
(SU), Expert-N CERES (CE), Expert-N GECROS (GE), HERMES (HE), MONICA (MO), THESEUS (TH), THESEUS-HydroGeoSphere (HG), and
the multi-model mean (MM). MnRMSE denotes the average normalized RMSE over three lysimeters at each site, calculated based on daily values

DC, CE, SU, and HE), and overestimated WUE for winter
wheat (AC, GE), winter rye (MO), and oat (AC CE, GE, and
SP). The WUE was overestimated similarly to DC’s GY for
almost all crops. A similar overestimation of WUE for oat
at Dd by CE and SP models was predicted at BL. Except
for DC, the crop models mostly overestimated the WUE at
Se (Figure 8), because WUE depends on GY, which was
overpredicted by most models at this site. The MM was in
better agreement with observations, in particular for values
at Dd and BL, somehow reflecting a compensation of over-
and underestimations of WUE by the different crop models.

The predictions of the cumulative net drainage flux out of
the lysimeters (NetQ) agreed with observations at the refer-
ence site Dd for AC, DY, CE, SP, SU, MO, TH, and HG
(Supplemental Figure S3). For the validation site BL, simu-
lated NetQ values fully agreed with observations for DC, DY,
CE, SP, and HE model (Supplemental Figure S3). Note that
NetQ simulated by the HE model was always zero because
capillary rise was restricted for cases of deeper groundwater
levels. For the second validation site Se, with a W-W
climate, the same crop models either overestimated (AC,
HG, TH, MO) or underestimated (CE, GE, SP, SU) NetQ.
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F I G U R E 8 Comparison of simulated vs. measured water use efficiency (WUE, defined as grain yield [kg m−2] per volume of crop water use
[m3 m−2] in terms of actual evapotranspiration) for lysimeters at the reference site Dedelow (Dd; green symbols) and lysimeters transferred to Bad
Lauchstädt (BL; red symbols) and Selhausen (Se; blue symbols) for the growing seasons of winter wheat (squares), winter rye (circles), and oat
(triangles). Models include AgroC (AC), DailyDayCent (DC), Daisy (DY), Expert-N SPASS (SP), Expert-N SUCROS (SU), Expert-N CERES
(CE), Expert-N GECROS (GE), HERMES (HE), MONICA (MO), THESEUS (TH), THESEUS-HydroGeoSphere (HG; no data), and the
multi-model mean (MM). MnRMSE denotes the average normalized RMSE over three lysimeters at each site

Predictions of NetQ by DY and partly also by TH and HE
were close to the 1:1 line. The NetQ predicted by DY model
and the MM agreed best for all sites. The MnRMSE values
of MM were similar among the reference site Dd (90%) and
validation sites Se (89%) and BL (89%).

The mean seasonal SWC in the upper 0.6 m agreed with
observations when looking at the values for the reference site
Dd (Supplemental Figure S4), with a MnRMSE value across
all models of 63%. The match for predicted SWC among
the models at the validation site BL was less (MnRMSE of

97%) because DC, CE, SP, SU, and the MO models tended
to underestimate the SWCs. Note, that the scatter between
the SWC values of the three soil profiles (e.g., during the oat
cropping season) at BL was related to a limited availability
of SWC data. The tendency of the models to underestimate
SWC was even more pronounced at the second validation site
Se (MnRMSE value of 109%), indicating that these values
were either not well represented in the measurements used
for model calibration and that relevant processes describing
the SWC dynamics outside the calibration range could not be
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parameterized during calibration. Both, the Richards- (AC,
DY, TH) and the non-Richards-based (HE) soil water mod-
els seem to comparably describe the SWC dynamics at the Se
site.

3.5 Combined assessment of ecosystem
productivity and fluxes

The overall simulation performance of the models was sep-
arated in a crop-related part that consisted of the arithmetic
mean nRMSE values describing productivity (GY, AgBio,
LAI) and in an environmental part describing soil water fluxes
and soil water content (ETa, NetQ, SWC). The model per-
formance for the agronomic variables at reference site Dd
(nRMSE range: 13–121%) and the site BL (nRMSE range:
12–140%) was for most models in a relatively similar range of
nRMSE values (Figure 9). For the validation site Se, nRMSE
values were larger (range nRMSE: 16–530%), especially for
individual crop models and the MM (Figure 9). Here, indi-
vidual models such as MO for reference site Dd, DY and SU
for the validation sites BL and Se, outperformed the MM for
the agronomic variables. Again, the agronomic nRMSE was
only calculated for GY and AgBio for the validation sites,
as no LAI observations were available. The variables ETa,
NetQ, and SWC had a similar model performance in terms
of the mean environmental nRMSE at the reference site as for
the validation sites. For the environmental nRMSE, the MM
outperformed the results of the individual models at both the
reference and the validation sites. However, considering both
agronomic and environmental nRMSE values, the MM per-
formed better than any single model, except for the validation
site Se. Here, the model SU showed the overall best perfor-
mance and outperformed the MM, as the simulation results of
other models for the agronomic part were partially very poor
(nRMSE > 150%).

4 DISCUSSION

4.1 Model calibration

The use of a larger and more encompassing dataset con-
taining in- and end-season agronomic variables as well
as environmental data for model calibration improved the
performance of crop models in general for the same sites and
years (Figure 9). It seems that the calibration of phenology,
which controls important variables like GY, AgBio, and LAI,
does not contain enough information to predict all agronomic
and environmental states and fluxes well, when comparing
calibration to phenology only, as discussed by Groh, Diaman-
topoulos, et al. (2020). This was already shown for GY of
wheat (Asseng et al., 2013), but not for a more comprehensive

F I G U R E 9 Comparison of model performance in terms of
normalized RMSE (nRMSE) for crop-related variables (bars oriented to
the left) and for the ecosystem-related variables (bars oriented to the
right) resulting from the 4-yr simulations (Nov. 2014–Oct. 2018) for the
reference site Dedelow (Dd; top) and soils transferred to Bad
Lauchstädt (BL; mid) and Selhausen (Se, bottom) for models AgroC
(AC), DailyDayCent (DC), Daisy (DY), Expert-N SPASS (SP),
Expert-N SUCROS (SU), Expert-N CERES (CE), Expert-N GECROS
(GE), HERMES (HE), MONICA (MO), THESEUS (TH),
THESEUS-HydroGeoSphere (HG), and the multi-model mean (MM).
Error bars indicate the variability between individual lysimeters and the
red dashed line the mean nRMSE over all models, excluding HG and
MM

set of environmental variables. Here, it has to be noted that
it was not intended in our study to compare the different
embedded functions describing the effect of the environ-
ment on plant production and environmental fluxes, rather
to compare amongst different models. A comprehensive
comparison and evaluation of the different model embedded
functions and ways to calibrate them harmonically among
different crop models is still ongoing research and would
be out of scope here. The improvement by calibration
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based on all available data was particularly visible for the
end-season-related agronomic variables GY (Figure 4) and
AgBio (Supplemental Figure S1). This can be explained by
the fact that mainly crop-related parameters were calibrated
within this study. The GY of the winter wheat between both
cropping periods differed substantially (Supplemental Table
S2), which was captured only by some of the crop models
(i.e., CE, SU, and MO). A recent study using two long-term
experiments (1969–2018) suggested that the choice of cul-
tivar can, apart from other management decisions (e.g., crop
growth regulator) (Hütsch & Schubert, 2018) or weather con-
ditions, substantially influence GY of the crop winter wheat
(Aula et al., 2020). As only a single set of plant parameters
was estimated for the two different wheat cultivars grown
in the two cropping periods, our study confirmed that the
choice of cultivar as well as the use of crop growth regulators
is important to reproduce GY of both winter wheat cultivars.
The predicted GY of the oat for the reference site Dd in 2018
agreed well with observations (Figure 4), which showed that
the model parameterization obtained by calibration was able
to cope with the effect of water stress on GY for these soils.
This is also confirmed by the improvement of the average
nRMSE for oat by 182% as compared with simulations where
solely phenological stages were used for calibration (Groh,
Diamantopoulos, et al., 2020). However, other important
parameters affecting the seasonal LAI development (Figure 3,
especially maximum LAI, date of flowering) were not cap-
tured well by most of the Expert-N family models (e.g., SP,
SU, and GE), resulting in low model performance values for
LAI.

The model performance for the environmental states and
fluxes improved only slightly using the full dataset for cal-
ibration as compared with calibrating on phenology only
(c.f., Groh, Diamantopoulos, et al., 2020). Only a signifi-
cant improvement was achieved for NetQ by the DY and DC
model. The variability of the prediction from each individ-
ual model, expressed as scatter of the nRMSE, highlights
that the non-Richards-based models tend to vary much more
for the variables NetQ, SWC, and GY compared with the
Richards-based models (Table 2). Note that one can expect
that the agronomic variables would be less dispersed, as
essential plant parameters were adjusted by calibration. All
of the environmental variables were less affected because the
hydraulic parameters were fixed and only parameters for the
root water uptake (e.g., AC) or the actual crop coefficient
factor (Kc) for ET0 (e.g., AC) were estimated. The larger
variability for NetQ and SWC might be related to the dif-
ferent implementation of the given soil hydraulic parame-
ters, as the Richards equation-based models used the soil
hydraulic parameters (Mualem–van Genuchten parameters),
whereas the non-Richards equation-based models used the
water contents at saturation, field capacity and wilting point
instead. Additionally, the type of lower boundary conditions

affects the prediction of NetQ. This agrees well with previ-
ous investigations, which demonstrate that describing vari-
ably saturated flow with the Richards equation improves
predictions of the SWC dynamics compared with a bucket-
type approach (Longo et al., 2021; MacBean et al., 2020;
Soldevilla-Martinez et al., 2014).

Most of the models greatly underestimated ETa, probably
due to the way root water uptake, partitioning of ET0 into tran-
spiration and evaporation, or soil hydraulic properties were
parameterized, or due to the way the Kc factors, which scale
ET0 to a crop-type-specific ETa, were set or constrained. We
can contest that the spread among the crop models in Kc val-
ues was large. Some models used a constant value around
one over the entire period for all crops (e.g., DC, TH, and all
Expert-N related models), whereby in other models individual
Kc values for each crop was set (AC, DY, MO, and HE,). As
mentioned, the Kc factor was calibrated in for the AC model
to obtain a better match with ETa, whereby the fitted mean
cropping period Kc factor was 1.09, 1.53, and 1.48 for oat,
rye, and wheat, respectively. Hereby, the fitted Kc factors for
rye and wheat are at the maximum end or even exceed phys-
ically consistent or literature values (c.f., Allen et al., 1998;
Pereira et al., 2021).

The mean nRMSE values of the MM were lower than for
any other single crop models. The specific averaged nRMSE
for the soils at Dd (Figure 9) confirms that the MM better
predicts the overall combined assessment of agronomic pro-
ductivity, as already reported by Martre et al. (2015) and Wal-
lach, Martre, et al. (2018), and for environmental water fluxes
and states as reported by Groh, Diamantopoulos, et al. (2020).
This was also shown for MM and the variable NetQ, which
was previously not included in crop model intercomparison
studies due to the lack of data. Many recent studies, which
compared the model performance of the MM with single crop
models, have found that MM predicts single (Wallach, Palo-
suo, Thorburn, Gourdain, et al., 2021) or multiple target vari-
ables (Bassu et al., 2014; Martre, Wallach, et al., 2015) suc-
cessfully well. The reason for the superiority of MM lies in
the fact that different models have different errors, which are
consequently averaged over different models when forming an
average (Wallach, Martre, et al., 2018).

One may also consider that the observations used in
this study differed in terms of the scale from other crop
model intercomparison studies that used frequently data from
larger scale field experiments (Wallor et al., 2018). The dis-
crepancy between the lysimeter scale (1 m2) and the field
scale (>100 m2) may have affected results. However, any
such effect would influence all the results of models in the
same way and would thus not affect the model comparison. It
should be noted here that the recent study by Groh, Stumpp,
et al. (2018) confirmed that lysimeters can be representative
of a larger area with respect to environmental variables (e.g.,
NetQ, SWC, and tracers), but similar studies for agronomic
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T A B L E 2 Average standard deviation of normalized RMSE (nRMSE) values for each variable of the model calibration for all,
non-Richards-based (number of models = 3), and Richards-based models (number of models = 8)

Variable

Avg. standard deviation of nRMSE
All models Non-Richards-based models Richards-based models

%

GY 10 18 7

AgBio 7 8 7

LAI 7 3 8

ETa 2 2 2

NetQ 15 33 9

SWC 8 12 7

Note. GY, grain yield; AgBio, aboveground biomass; LAI, leaf area index; ETa, actual evapotranspiration; NetQ, net drainage water flux at the bottom boundary of the
lysimeter at 1.5-m depth; SWC, soil water content.

variables obtained from high precision weighable lysimeter
are still lacking.

4.2 Modeling agroecosystems

Holistic agroecological modeling requires consideration of
both, agronomic aspects (e.g., GY, LAI, AgBio) and envi-
ronmental water fluxes and states (e.g., ETa, NetQ, SWC)
simultaneously. This investigation is one of the rare studies
that include both parts for calibration and validation. A previ-
ous study has shown that soil properties, such as rooting zone
thickness, varying texture, and soil hydraulic properties need
to be adequately parametrized in crop models (Groh, Dia-
mantopoulos, et al., 2020). This highlights that the soil part
including vertical soil heterogeneity (horizonation) should be
considered when simulating crop ecosystems. As data for
the detailed calibration are often missing, the results from
this study provide some estimates for the expected prediction
error. However, calibrating only plant-related parameters in
crop models does not necessarily improve the simulation of
soil water flux-related key variables. The existence of com-
pensating effect during parameter calibration in crop mod-
els (Sima et al., 2020) leading to nonuniqueness, as defined
already for hydrological models in the early 1990s (Beven,
1993) is still a challenging aspect in the calibration approach.
The problem that models are often right for the wrong reason
(Kirchner, 2006), when only a single criterion is considered
in model calibration (Houska et al., 2021), is added here as a
challenge to calibration.

When the focus is on increasing food production (Hamidov
et al., 2018), soil processes are often compromised although
soil functions have important feedbacks on ecosystem pro-
ductivity, nutrient cycling, energy, and water (Deckmyn et al.,
2020; Zwetsloot et al., 2020). This emphasizes the need to bet-
ter calibrate the soil part in crop models beyond a limited con-
sideration of classical agronomic variables such as only GY,

AgBio, LAI, HI, or plant nutrient uptake and instead includ-
ing soil related observations with high temporal and if feasible
spatial (depth) resolution (Kersebaum et al., 2015).

4.3 Model prediction ability

A comparison of the predictive performance of agronomic
variables of Dd soils between the original climate in Dd and a
D-W climate in BL showed that under D-W conditions at the
BL site (nRMSE = 88%), similar predictive performance was
achieved as for calibration site Dd (nRMSE = 67%, see red
lines in Figure 9). In contrast, predictions diverged strongly
from the observations for the wet and warm region (W-W) at
the Se site (nRMSE = 163%). The observed GY decreased
substantially under W-W conditions compared with the cal-
ibration site at Dd or validation site at BL (D-W climate).
Unfortunately, the crop models used in this study, including
the MM, were not able to capture the effect of climate and
management (e.g., different application of N fertilizer and
crop growth regulator) on GY.

The observations showed a higher water use efficiency
(WUE) and reproductive output (i.e., HI) of plants growing
under conditions with lower plant-available soil water, con-
firming previous results for several soils, including those from
Dd translocated to BL and Se (Groh, Vanderborght, et al.,
2020); in this study, the lower WUE at the ecosystem level
(see Equation 3) was hereby mainly driven by higher evapo-
ration under W-W climatic conditions, as differences in ETa
were large during times where evaporation rather than tran-
spiration is dominating ETa. This might explain the partially
large underestimation of ETa or Ea by some of the crop mod-
els, because most crop models were not able to simulate
Ea well. The Ea occurs in two different stages. In Stage 1,
Ea is limited by the atmospheric evaporative demand. With
further drying of the soil, when the surface soil water con-
tent is depleted, a change in the Ea rate occurs and this rate
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drops below the potential evaporation rate (Stage 2 evapora-
tion). Here, specific model parameters, weather conditions,
intercept evaporation, and evaporation during wet soil condi-
tions (Stage 1) and soil hydraulic parameters during dry soil
conditions (Stage 2) are crucial. Thus, a better agreement of
evaporation during bare soil conditions and vegetation period
can be expected if in situ data are used to determine the soil
hydraulic properties (e.g., Schneider et al., 2021). On the other
hand, the ETa underestimation might be in addition partially
related to oxygen stress under wetter climate conditions (i.e.,
W-W with high SWC) by water logging, as for the HE model
transpiration is reduced when the air filled pores are temporar-
ily below 8% according to Supit, Hoojer, and Diepen (1994).
Other factors such as differences between stomata conductiv-
ity, resistance in stem, and other rhizosphere processes might
explain the underestimation of ETa.

In any case, the question remains why crop models were
not able to capture the reduction in GY under W-W climate.
The simulation error for GY is likely caused by the soil sta-
tus (SWC and nutrients) and altered thresholds under the new
climatic regime. The climatic conditions at the site where the
lysimeter have been transferred to were outside the range of
historical observation and thus not accounted for in the cali-
bration. This discrepancy between environmental conditions
for calibration and validation can affect the functional rela-
tionships (e.g., R and GY) of the ecosystem as shown by
Knapp, Carroll, et al. (2018) for grassland ecosystems. One
further possible improvement would be a more comparable
calibration of the crop models (e.g., choice of parameters,
software to optimize parameter, etc.), but this was beyond
the scope of this study. Several crop modeling studies have
already used different ranges of environmental conditions for
model calibration and evaluation (Asseng et al., 2015, 2019;
Biernath et al., 2011; Hussain et al., 2018) to test models’
ability to predict target variables outside the range of his-
torical observations. Wallach, Palosuo, Thorburn, Gourdain,
et al. (2021) referred to these types of studies as “extrapola-
tion” studies, which is a common procedure in modeling crop
growth under, for example, future climate conditions (Seidel
et al., 2018). Thus, changing environmental conditions and
differences in stress situations such as increasing temperature
and heat stress (Asseng et al., 2015; Pszczółkowska et al.,
2020; Rezaei et al., 2018; Webber, White, et al., 2018), tem-
poral water limitations (Sadras, Villalobos, et al., 2016), or
excess (e.g. water-logging Mäkinen, Kaseva, et al., 2018) dur-
ing a specific crop development stages might have affected the
crop development and consequently reduce GY of the spe-
cific crop under W-W climatic conditions. This explains why
the calibrated models in Dd work well under similar condi-
tions in BL, where the thresholds and their effects on the
results were calibrated indirectly. In addition to the transpi-
ration effect caused by higher air temperature, heat stress can
serve as a possible explanation for lower GY, when a critical

temperature is exceeded (Eyshi Rezaei et al., 2015). Such crit-
ical temperatures can be in particular harmful during anthe-
sis, because the anthesis period will be shortened, which will
lead to earlier flowering (L.-X. Tao et al., 2008). Additionally,
higher temperatures near anthesis will reduce the grain num-
ber, because it affects pollen fertility, increases grain abortion,
and reduces grains per spike due to accelerated crop develop-
ment (Eyshi Rezaei et al., 2015).

Observations on GY and air temperature confirm for soils,
which were transferred from Dd to BL and Se that the effect
of heat stress days during flowering increased (Figure 10a).
The average number of days with heat stress increase from
5 d at Dd to over 10 d at BL and Se. The average duration
of heat stress during this period was in general longer in Se
(2.4 d) than in BL (1.8 d). Hence, additional model param-
eters, or even model processes accounting for heat stress are
needed. Secondly, plant parameters might not have been cor-
rectly estimated during calibration in the environment without
or with less heat stress to be used to predict GY under W-W,
because limited data range might lead to a miscalibration of
the response curve or parameter sensitivity changes under dif-
ferent climatic conditions or climate change (Melsen & Guse,
2021). The GY simulation results support this assumption, as
for the site BL, which has a similar climate to Dd, the influ-
ence of heat stress (days with max air temperature > 27˚C
[Semenov & Shewry, 2011] for a period of 32 d after flow-
ering) on the yield could be reproduced well but was signifi-
cantly underestimated under a W-W climate at the Se site (see
Figure 10a). Gilardelli et al. (2018) showed for the WOFOST
(WOrld FOod STudies) model, that under unfavorable cli-
mate conditions for crop growth, predictions of GY reacts
sensitively to certain crop parameters, such as those related
to respiration ratio or specific leaf area. Observed GY and
number of heat stress days at flowering confirms a signif-
icant decrease in GY across all sites (Figure 10a). In addi-
tion, the reduction of GY showed a high correlation (r = .87;
p < .001; Figure 10b) with decreasing number of ears per
m2. The observed 1,000-kernel weight remained similar at all
sites, implying that the decrease in GY can be associated with
the number of grains. This suggest that the higher tempera-
tures and heat stress around anthesis negatively affected GY
especially at Se, due to decreasing pollen fertility or abortion
and sterile grains (Chaturvedi et al., 2021; Farooq et al., 2012;
Shenoda et al., 2021).

The challenges discussed above indicate that the param-
eters fitted outside the prediction environment or processes
not accounted for in the calibration environment might play
a crucial role for agricultural projections, especially in the
context of climate change and on the broader feedback that
soils have on climate. F. Tao et al. (2018) already summa-
rized that model structure and model parameters are an impor-
tant source of uncertainty when predicting effects of climate
change on future ecosystem services, which implies long-term
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F I G U R E 1 0 Relationship between (a) mean grain yield (observed and simulated) and the number of days with heat stress at each site for the
period of 32 d after flowering. A threshold of 27˚C maximum daily air temperature was used to define days with heat stress (Semenov & Shewry,
2011). (b) Relationship between the observed grain yield and ear density. Mean values are indicated by symbols and standard deviation by error bars.
Sites include Dedelow (Dd), Bad Lauchstädt (BL), and Selhausen (Se). Tmax is maximum temperature

projections with altered climatic conditions outside the his-
torical range where the models have been calibrated on. In
consequence and consistent to our hypothesis, crop models are
able to predict the site-specific temporal and spatial variables
when calibrated on longer historical time series only when
those “new” climatic conditions are within the range of the
historically observed climate.

4.4 Modeling crop–soil–ecosystem response
to changing boundary conditions

The study challenged the problem of improving predictions
of agroecosystem productivity and environmental fluxes and
states under changing climatic conditions for the most likely
condition that changes of environmental conditions are out-
side the historical range of observations. This includes not
only the absolute values but also the temporal distribution
of rainfall events or temperature dynamics during the sea-
son. Such information seems essential for both the calibra-
tion and validation steps of models, but also for predicting
ecosystem functioning under changing global climatic condi-
tions. In addition to the space-for-time substitution approach,
one possibility to deal with a limited site-specific range of
observations for model calibration could be to use data from
manipulative experiments to broaden the training dataset for
model calibration. For example, Forstner et al. (2021) showed
that only the combined use of observational and manipula-
tive climate change experiments was able to identify how
altering individual and multiple drivers (i.e., reduced R, ele-
vated CO2, and surface temperatures, increase in ET0) affect
ecosystem functioning of grassland ecosystems on changing
climate conditions. Still, many challenges remain in addition
to those discussed above, such as consideration of changes

in soil properties due to climatic changes and the effects of
these changes on model parameters or hints on missing model
structures, depending on changing climatic conditions (e.g.,
Robinson et al., 2016, 2019).

5 CONCLUSIONS

The present study compared the performance of commonly
used crop models for both agronomic crop-related and soil
ecosystem-related datasets from weighing lysimeters with
intact soil monoliths in situ with those translocated to a
warmer and drier and a warmer and wetter region. The aim
was to predict the crop development and ecosystem fluxes
for lysimeters with the same soil that were transferred in
regions with different climatic conditions after calibration at
the original site. As expected, the degree of model complex-
ity (i.e., non-Richard- vs. Richards-based models) in describ-
ing vadose zone processes largely explained variations in the
model performance between individual crop models. The rel-
atively similar crop model predictions at the validation site
BL indicated that the climatic conditions of the calibration
site Dd were in a similar range. The larger deviations of the
model predictions compared with lysimeter data at the Se site
suggested that either the effects of climatic conditions out-
side of the range of Dd site-specific variability could not be
described by the calibrated crop models or that the underlying
process representations have not been included in the models.
The observed decrease in grain yield, not captured by most
models, could possibly be related to an increase in heat stress.

Thus, the presently tested crop models were not able to pre-
dict the effect of such effects of changes in climatic conditions
represented in the space-for-time substitution approach. The
results confirm the hypothesis that crop models are unable to
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predict site-specific temporal and spatial variability of agro-
nomic crop and soil ecosystem variables and fluxes when
climatic conditions are outside the range of the data time
series used for calibration. The implications of this find-
ing are important for future applications of crop models
with respect to predictions of agronomic perspectives and
interrelations with ecosystem response to changing climatic
conditions. The study clearly demonstrated that a key for
improving the predictive capability of crop models in the
soil–vegetation–atmosphere continuum is the quantification
of soil related data for calibration and model testing. This
would improve predictions of above- and belowground
ecosystem processes in crop models and enhance future risk
assessment related to ecosystem functions. The results suggest
the need to develop improved concepts for model calibration
procedures that incorporate experimental data sets from sce-
narios with assumed climatic conditions.
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