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4 ABSTRACT: Determining cell death mechanisms occurring in
5 patient and animal tissues is a longstanding goal that requires
6 suitable biomarkers and accurate quantification. However, effective
7 methods remain elusive. To develop more powerful and unbiased
8 analytic frameworks, we developed a machine learning approach
9 for automated cell death classification. Image sets were collected of
10 HT-1080 fibrosarcoma cells undergoing ferroptosis or apoptosis
11 and stained with an antitransferrin receptor 1 (TfR1) antibody,
12 together with nuclear and F-actin staining. Features were extracted
13 using high-content-analysis software, and a classifier was
14 constructed by fitting a multinomial logistic lasso regression
15 model to the data. The prediction accuracy of the classifier within
16 three classes (control, ferroptosis, apoptosis) was 93%. Thus, TfR1
17 staining, combined with nuclear and F-actin staining, can reliably detect both apoptotic and ferroptosis cells when cell features are
18 analyzed in an unbiased manner using machine learning, providing a method for unbiased analysis of modes of cell death.

19 ■ INTRODUCTION
20 Regulated cell death is a complex and tightly regulated
21 phenomenon, involving intricate molecular mechanisms. For
22 numerous cell death processes, molecular markers have been
23 developed that identify cells undergoing apoptosis1 or
24 necroptosis2 through immunolabeling. Such markers may be
25 used in cell culture and tissue histopathological applications to
26 examine the prevalence of cell death processes, which may
27 improve the treatment and diagnosis of diseases in which these
28 processes are implicated.
29 Ferroptosis is a form of regulated cell death characterized by
30 the iron-dependent accumulation of lipid peroxides, as well as
31 the loss of cellular antioxidant repair capabilities.3 The enzyme
32 glutathione peroxidase 4 (GPX4) is a cellular regulator of lipid
33 peroxidation levels, and several ferroptosis inducers have been
34 developed that specifically target the activity of this enzyme
35 through direct inhibition (e.g., RSL3).4 A second class of
36 ferroptosis inducers (e.g., IKE and erastin) causes inactivation
37 of GPX4 through depletion of glutathione via inhibition of the
38 antiporter system xc

−.5 Ferroptosis has been implicated in
39 several disease pathologies, such as degenerative diseases and
40 organ injury.6,7 Furthermore, ferroptosis induction may have
41 potential as a cancer treatment strategy.8,9

42 Toward the goal of specific identification of ferroptosis in
43 tissue samples, we previously discovered an effective
44 ferroptosis-staining reagent, 3F3 anti-Ferroptotic Membrane
45 Antibody (3F3-FMA), that can be used to stain cells and tissue
46 samples directly.10 The antigenic target of 3F3-FMA is
47 transferrin receptor 1 (TfR1), a membrane receptor that

48internalizes iron-bound transferrin through receptor-mediated
49endocytosis.11 This iron uptake activity of TfR1 contributes to
50intracellular iron levels necessary for ferroptosis.12 3F3-FMA,
51as well as other anti-TfR1 antibodies, exhibit an increase in
52total and membrane-localized fluorescence when used to stain
53cells undergoing ferroptosis in culture (compared to vehicle-
54treated control cells). TfR1 has been used to identify the
55occurrence of ferroptosis in traumatic brain injury13 and
56myocardial ischemia/reperfusion injury,14 among other uses.
57Thus, TfR1 serves as a biomarker to facilitate the identification
58of ferroptosis in cell and tissue contexts.
59The identification of plasma membrane fluorescence as a
60distinguishing feature between ferroptosis and other cell death
61processes upon staining with anti-TfR1 antibodies was
62discovered using visual inspection; here, we sought instead
63to evaluate the use of machine learning as an unbiased tool to
64detect ferroptotic cells. Machine learning methods facilitate the
65high-throughput analysis of cell image sets versus tedious and
66subjective manual processes; in cell biology applications,
67machine learning can increase processing capabilities and
68objectivity. The supervised machine learning pipeline involves
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69 image collection and preprocessing, object detection, and
70 feature extraction and prioritization.15 Our goals were to assess
71 the machine learning potential in discriminating ferroptosis,
72 apoptosis, and control-treated samples as well as to provide a
73 pipeline for identification of features that best distinguish those
74 cell death modalities in our setting.
75 Therefore, after collecting images of fluorescently stained
76 cells treated with vehicle only or undergoing ferroptosis or
77 apoptosis, images were analyzed via high-content-image
78 analysis, and a classifier was trained on the extracted data.
79 The trained classifier corresponds to a nonexclusive list of
80 informative features with assigned coefficients, which was
81 validated with a second data set by successfully predicting the
82 same classes. These results expand and strengthen the
83 applicability of biomarkers, such as 3F3-FMA/TfR1, for
84 differentiating cell death mechanisms in an objective and
85 high-throughput manner.

86 ■ RESULTS AND DISCUSSION

87 To explore the application of machine learning to the
88 classification of different cell death modalities, we collected
89 large numbers of images of cells fixed and immunofluor-
90 escently stained with 3F3 anti-Ferroptotic Membrane Anti-
91 body (3F3-FMA), a ferroptosis-specific antibody with TfR1 as
92 its target antigen. Specifically, HT-1080 cells were treated with
93 ferroptosis inducers (RSL3, a GPX4 inhibitor, or IKE, a system
94 xc

− inhibitor), an apoptosis inducer (staurosporine, STS),16 or
95 DMSO vehicle control. In addition to being stained with anti-
96 TfR1 3F3-FMA (labeled with AlexaFluor 594), cells were
97 stained with DAPI as a nuclear marker and FITC-phalloidin as

98a cytoplasmic (F-actin) marker to assist identification of
99cellular features for machine learning classification (see below).
100Machine learning tools are designed to adapt to any data
101pattern associated with the task to learn. There were several
102important aspects to consider in collecting images for machine
103learning classification. First, all treatments within a day (i.e.,
104using the same microscope settings) were balanced. Moreover,
105we collected all images of the discovery data on day 1 and the
106validation data later on a different day. Second, the extent of
107cell death was standardized across different conditions to
108analyze cells in an early stage of cell death induction.
109Specifically, we fixed cells under each treatment condition
110when they reached 10−20% cell death, so that cell death had
111been initiated, but not to the extent of excessive end-stage
112necrosis. At this point, the cells should still have intact cell
113membrane integrity and not have detached from the surface.
114The CellTiter-Glo (CTG) viability assay, which measures
115intracellular ATP levels as an indicator of viability, was used to
116monitor the extent of cell death. We performed a pilot study
117and established optimal concentration and time point ranges
118for each treatment (Figure S1).
119Guided by the results of the pilot study, the first image set
120for training and discovery of classifiers was collected, and
121immunofluorescence experiments were performed when the
122extent of cell death reached 10−20% compared to DMSO
123 f1control treatment in parallel CTG assays (Figure 1). Viewing
124the images, the characteristic membrane localization of the
1253F3-FMA signal can be seen in ferroptotic cells compared to
126the DMSO control,10 and characteristic membrane blebbing
127can be observed in apoptotic cells.17

Figure 1. Images undergoing different cell death modalities for machine learning analysis. (A) HT-1080 cells were incubated with ferroptosis
inducers RSL3 (1 μM) or IKE (20 μM), apoptosis inducer STS (1 μM), or DMSO control. Nuclei were stained with DAPI (blue). TfR1 was
labeled with 3F3-FMA and Alexa Fluor 594 secondary antibody (red). F-actin was labeled with FITC-phalloidin (green). Images were captured
using a Zeiss LSM800 confocal microscope at 63×/1.40 oil DIC objective. For each treatment, representative images from the training data set are
depicted. (B) In parallel with the immunofluorescence experiments, CellTiter-Glo viability assays were used to monitor the percentage cell death
for each treatment, and cells were fixed when percentage cell death reached 10−20%. The concentrations and time points that resulted in this
extent of cell death in each set are listed for each treatment.

ACS Chemical Biology pubs.acs.org/acschemicalbiology Articles

https://doi.org/10.1021/acschembio.1c00953
ACS Chem. Biol. XXXX, XXX, XXX−XXX

B

https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
pubs.acs.org/acschemicalbiology?ref=pdf
https://doi.org/10.1021/acschembio.1c00953?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as


128 For the training set, once the cells were fixed and stained
129 with DAPI, FITC-phalloidin, and anti-TfR1 3F3-FMA, 120
130 images were collected per treatment condition (DMSO
131 control, RSL3, IKE, STS) with an average of 10 cells per

f2 132 image (Figure 2A), which corresponds to a cell density of
133 approximately 80% for DMSO-treated cells. Subsequently, we

134analyzed images with the PerkinElmer Columbus high-
135content-analysis software. For this purpose, nuclei were
136identified using the DAPI signal, and based on this, the
137cytoplasm and the membrane regions were segmented using
138the F-actin signal (Figure S2). The intensity, the morphology,
139and the symmetry of the objects, as well as the texture and

Figure 2. Feature extraction and classifier discovery. (A) The experiment consisted of 120 images per condition (DMSO, IKE, RSL3, STS). The
image analysis software extracted 1473 features for the blue, green, and red fluorescence signals. The features can roughly be grouped in intensity,
morphology/symmetry, and texture features. Undefined values (NaN, “Not a Number”). (B) Principal component analysis of 1373 features
extracted from the images. Individual images are visualized as points on the scatter plot of the first two principal components. The color code is
according to the treatment label (red = DMSO, blue = RSL3, green = IKE, and purple = STS) and was added after the PCA was conducted. (C)
Feature matrix of the training data set (scaled for visualization purposes) is cleared for highly correlated features (“included”) and informative
features are isolated by pairwise logistic lasso regressions (“selected”). Finally, a multinomial logistic lasso regression model is fitted to the reduced
feature matrix, and a classifier is identified (“classifier”: 23 features with corresponding regression model coefficients). blgr = bluegreen
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140 structure of the fluorescence signal, were determined within
141 these cell segments for the blue, green, and red channels,
142 respectively. Consequently, we were able to extract a large
143 number of features for each image. Importantly, during the
144 analysis, the features for single cells were averaged for each
145 image (median). This gave rise to 120 observations per
146 treatment for each feature. The blue (DAPI) and green (FITC-
147 phalloidin) channel provided together 738 features, while the
148 red (TfR1) channel provided 735 features (Figure S2). Among
149 these features, there were frequently used features such as
150 “Number of Nuclei”, “Nucleus Intensity”, and “Nucleus
151 Roundness”. As expected, different effects are visible for
152 basic features after treatment, but no reasonable classification
153 could be made (Figure S3A−C). In order to validate the
154 quality of the data, we analyzed the membrane fluorescence
155 intensity for the TfR1 signal. As expected, we found a
156 significant increase in TfR1 fluorescence intensity after
157 treatment with RSL3 and IKE but not upon treatment with
158 DMSO or STS (Figure S3D).

159We then removed all features that contained undefined
160values (NaN, “Not a-Number”) and reduced the number of
161features from 1473 to 1,373. We performed a principal
162component analysis (PCA) with the data matrix of 1373
163features and a total of 480 observations (= 120 images per
164condition; DMSO, IKE, RSL3, and STS) and visualized
165principal components 1 and 2 (Figure 2B). The cells treated
166with RSL3 and IKE separated well from the other samples in
167the first principal component (Figure 2B). As expected, the
168RSL3-treated and IKE-treated samples overlapped in the first
169two principal components, as both induce the same type of cell
170death modality, namely ferroptosis. Cells treated with STS also
171separated from the DMSO population, although to a lesser
172extent compared to ferroptosis inducers. STS differs not only
173from the vehicle DMSO but also from RSL3 and IKE, although
174cell death in the CTG viability assay performed in parallel was
175almost identical. This indicated that the staining and analysis
176strategy was able to distinguish vehicle-treated from
177ferroptosis, and from apoptosis.

Figure 3.Model validation. (A) The classifier was applied to the independent test data set for model validation. (B) Comparison of the known class
with the predicted class measures classifier performance. Each class is enriched in the corresponding samples, thereby validating the model. (C and
D) Confusion tables for the multiclass prediction. (C) DMSO, IKE+RSL3, and STS classes are predicted with an accuracy of 93%. (D) DMSO,
IKE, RSL3, and STS are predicted with 94% accuracy, when IKE and RSL3 are combined.
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178 This data set was then used for supervised machine learning
179 to build a classifier that would allow the determination of
180 whether treatments of cells with certain substances trigger
181 ferroptosis or apoptosis (Figure 2C).
182 A classifier is a mathematical function or procedure that
183 assigns a sample to one or several classes, usually by calculating
184 class scores for each sample (i.e., image) from its feature
185 values. With respect to the type of mathematical procedure,
186 classifiers vary in terms of interpretability and transferability to
187 new data sets. Multinomial logistic regression models using the
188 lasso (least absolute shrinkage and selection operator)
189 inherently provide a feature selection and return a vector of
190 coefficients for the selected features, called signature, which is
191 directly interpretable and transferable.
192 For numerical stability of a treatment classifier, all non-
193 normally distributed features (Shapiro−Wilk test of normality
194 in discovery data, alpha = 0.05) were Box-Cox transformed
195 (parameters lambda1 = 0 and lambda2 = 1 if the p value of this
196 test was increased by transformation). Reduction of
197 dimensionality was carried out by removal of redundancies
198 (according to feature-pairwise Pearson correlation of |r| > 0.9
199 in discovery data) and by preselection of informative features
200 through treatment-pairwise logistic lasso regression analysis.
201 Notably, only informative features of limited correlation
202 among each other were used for signature discovery. The
203 CRAN package glmnet was used to perform multinomial
204 logistic lasso regression.19 For classification of three groups
205 (DMSO; IKE/RSL3; STS), a signature of 23 features was
206 identified (Table S1). These features have biological meanings
207 and can be interpreted as such: for instance, the feature
208 “Membrane.Region.Red.SER.Valley.0.px” is based on texture
209 changes (= SER.Valley.0.px; SER = Spots, Edges and Ridges)
210 of the TfR1 staining (= Red) within the cell membrane (=
211 Membrane.Region). We have previously shown that TfR1
212 plasma membrane intensity staining changes under ferroptotic
213 conditions.10 Thus, it is plausible that this feature should be
214 represented in a classifier signature. Interestingly, the signature
215 also consists of features that are not TfR1 related. For example,
216 the feature “Nucleus.Region.Blue.SER.Saddle.2.px” describes a
217 texture (SER.Saddle.2.px) in the nucleus that is determined
218 using the blue channel (DNA staining). Importantly, this
219 particular texture changes upon treatment with apoptosis
220 inducers, which is expected as apoptosis induces alterations to
221 DNA and chromatin structure. Similar to these two examples,
222 the biological context of features can be interpreted.
223 Together, this unbiased approach to classifier identification
224 offers the possibility of discovering features that previously
225 have not been considered in cell death. Hence, this strategy
226 allows the development of a signature using features whose
227 changes human eyes would not necessarily perceive and helps
228 to more accurately classify cell death states. Notably, there are
229 highly correlated features in the full data set (Table S2), which
230 are potentially replaceable in the classifier (after refitting the
231 coefficients). Features that were not included in the classifier
232 are not necessarily uninformativethey were not selected,
233 because they do not contribute additional information to
234 improve the classifier.
235 We then collected an independent second image setusing
236 the same conditions with viabilities in the 80−90% range
237 (Figure S4A)in order to generate biological replicates for
238 model validation (Figure S4B). For this experiment, termed
239 the “validation experiment”, we ran an identical analysis to
240 extract image data and generated the same set of features as

241was used in the “training experiment”. For model validation,
242the data from the validation experiment was used to challenge
243the identified classifier. The coefficients of the 23 features in
244the classifier were used to predict the class of the samples in
245the validation experiment, i.e., control, ferroptosis, or apoptosis
246 f3(Figure 3A,B). The accuracy of prediction for the three classes
247of control (DMSO), ferroptosis (RSL3+IKE), or apoptosis
248(STS) was 93% (447 out of 479 cases correct; Figure 3C).
249A four-class classifier trained to distinguish the three
250inducers (IKE, RSL3, and STS), as well as the DMSO control,
251did not differentiate between IKE and RSL3, as expected. Both
252classes were assigned identically to IKE (89 cases each) or
253RSL3 (31 and 29 cases) and minimally to STS (0 or 1 case).
254Combining IKE and RSL3 resulted in an accuracy of 94%
255(Figure 3D). Consistently, even when excluded from model
256discovery, IKE validation set images were constantly identified
257as RSL3-like by two-class logistic lasso regression classifiers
258trained to discriminate DMSO control from RSL3 or STS from
259RSL3 (120 of 120 and 113 of 120 images, respectively−see
260supplementary PDF file “MachineLearning_Ferroptosis_-
261SI.pdf”: “Binary Prediction”). Importantly, this suggests that
262both ferroptosis inducers induce a similar phenomenology with
263respect to the features extracted from the images.
264The classifier performed well for detecting ferroptosis, as
265TfR1 is a known ferroptosis marker, and features from this
266channel are prominently represented in the signature.
267However, we were intrigued that apoptosis was also readily
268distinguished from the control group using the developed
269signature.
270This classifier is based on images of cells treated with
271ferroptosis or apoptosis inducers and stained with anti-TfR1
2723F3-FMA, DAPI, and FITC-Phalloidin. It is important to
273consider that for any new (unknown) small molecule that is
274desired to be tested with this classifier, the concentration and
275incubation times reducing the viability to 80−90% have to be
276identified in advance. Standardized microscopy image acquis-
277ition of treated cells in combination with this classifier could
278provide the information on whether the substances induce
279ferroptosis or apoptosis. As with any analysis tool, some
280refinement might be needed.
281Further, this work may have important implications for
282tissue analysis and allow for a high-throughput, objective
283procedure to identify ferroptosis and other cell death
284modalities in a tissue context, whether with animal disease
285models or patient samples. One such application may involve
286assessing the response of cancer patients to therapy.9

287This classifier cannot directly be applied to images taken
288under entirely different conditions (treatments, staining, etc.).
289However, we present a workflow on how researchers can
290develop a classifier based on a training image set for various
291cell death processes with the help of standardization of
292experiments and corresponding analysis tools. Hence, this
293strategy may serve as a blueprint to be employed for the
294detection of other cell death pathways, including necroptosis
295and pyroptosis, and ultimately a universal classifier that detects
296and classifies all of the major types of cell death.

297■ METHODS
298Cell Culture. HT-1080 (ATCC Cat# CRL-7951, RRID:CVCL
2990317) cells were grown in Dulbecco’s Modified Eagle Medium
300(DMEM) with 10% fetal bovine serum, 1% penicillin-streptomycin,
301and 1% nonessential amino acids. Cells were grown in a humidified
302incubator at 37 °C and 5% CO2.
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303 CellTiter-Glo Assay. HT-1080 cells were plated in technical
304 triplicates in white opaque 96-well plates at 15 000 cells/100 μL
305 media per well. For the pilot experiment, the cells were treated with 1
306 μM RSL3, 20 μM IKE, or 1 μM staurosporine (STS) at different time
307 points. For the immunofluorescence experiments, the cells were
308 treated at the time points determined in the pilot experiment and
309 several time points before and after. A total of 100 μL of 50%
310 CellTiter-Glo (Promega) and 50% cell culture medium was added to
311 each well, and the cells were incubated and shaken for 2 min at RT.
312 Luminescence was measured using a Victor X5 plate reader
313 (PerkinElmer).
314 Immunofluorescence (IF). HT-1080 cells were treated with 1
315 μM RSL3, 20 μM IKE, or 1 μM STS on poly lysine-coated coverslips
316 (Sigma-Aldrich P4832) in 24-well plates. When the cell death
317 percentage reached around 10−20% (determined using the CellTiter-
318 Glo assay), media were removed, and the cells were gently washed
319 with PBS2+ (PBS with 1 mM CaCl2 and 0.5 mM MgCl2) twice,
320 ensuring the cells did not dry out. The cells were fixed and
321 permeabilized with 4% PFA in PBS with 0.1% Triton X-100 (PBT),
322 with 200 μL per well. The plates were covered with foil, and the cells
323 were incubated and shaken at RT for 15−20 min. The PFA was
324 disposed of safely, and the cells were washed with PBT three times.
325 The cells were blocked with 5% normal goat serum (NGS;
326 ThermoFisher 50197Z) in PBT for 1 h at RT. The cells were then
327 incubated with mouse 3F3 anti-Ferroptotic Membrane Antibody
328 (3F3-FMA) at a 1:500 dilution in PBT with 1% bovine serum
329 albumin (BSA) and 5% NGS at 4 °C overnight. The cells were
330 washed with PBT for 5 min three times. The cells were then
331 incubated with goat antimouse IgG (H+L) Highly Cross-Adsorbed
332 Secondary Antibody, Alexa Fluor 594 (Thermo Fisher Scientific Cat#
333 A-11032, RRID:AB_2534091) at 1:200 dilution, and FITC-phalloidin
334 at 1:1000 dilution in PBT with 1% BSA for 1 h at RT. The cells were
335 washed with PBT for 5 min three times. The cells were placed on
336 slides using Prolong Diamond antifade mountant with DAPI
337 (ThermoFisher P36962). All images were collected on a Zeiss LSM
338 800 confocal microscope using a Plan-Apochromat 63×/1.40 oil DIC
339 objective with constant laser intensity for all images.
340 Automated Image Analysis. Image analysis was performed
341 using Columbus software version 2.8.0 (PerkinElmer). In the
342 following, the analysis steps in Columbus are described: the DAPI
343 and FITC signals were smoothened for the cell segmentation process
344 using Median filters to reduce noise signals. Nuclei were detected via
345 the DAPI signal. The FITC channel was used to define the cytoplasm
346 and membrane region. In a next step, morphology/symmetry features,
347 texture (SER features), and intensity properties of the DAPI, FITC,
348 and red channel were calculated for each cell region (nuclei,
349 cytoplasm, and membrane). Moreover, we applied a filter to remove
350 border objects (nuclei that cross image borders). For the detailed
351 analysis pipeline in Columbus, please see Figure S2 and the analysis
352 sequences.
353 Statistical Data Analysis: Transformation and Feature
354 Selection. From two data sets containing 480 samples each (120
355 DMSO, 120 IKE, 120 RSL3, 120 STS) 1473 features were generated
356 and exported by the Columbus imaging software. The data sets were
357 filtered for completeness, i.e., all features containing “not-a-number”
358 (NaN) were excluded from analysis, resulting in 1373 features. The
359 data set generated first was assigned to model discovery, the second
360 data set to model validation. Features that were non-normally
361 distributed in the discovery data according to the Shapiro test for
362 normality (p < 0.05) were log-transformed (i.e., log(1 + x) also
363 known as two-parameter Box−Cox transformation with lambda1 = 0
364 and lambda2 = 1), if the transformed data were closer to normality in
365 terms of the Shapiro-test p value. Of all pairs of features that were
366 highly correlated in the discovery data (i.e., absolute Pearson
367 correlation coefficient of larger than 0.9), one member was excluded
368 from analysis iteratively; starting with the feature participating in the
369 largest number of correlations in the training data set for classifier
370 discovery, which was preserved, all highly correlated features were
371 removed from both data sets.

372Classifier Discovery. Further feature preselection was conducted
373on the discovery data by logistic regression for pairwise classification
374among control, ferroptosis, and apoptosis using the lasso (least
375absolute shrinkage and selection operator).18 All features that were
376selected at least once in the pairwise logistic regressions were
377preserved in the training data set for classifier discovery, on which the
378classifier was trained. For classification, a multinomial logistic
379regression model with the lasso was used, resulting in a signature
380for sample classification. Lambda.1se was used as a criterion for
381selection of the optimal penalty parameter. The quality of this
382signature was determined in terms of accuracy of classification of the
383validation data, where true class membership is known. The
384importance of signature features was estimated by the product of
385the standard deviation of the transformed feature in the discovery data
386and the coefficient in the regression model. All statistical calculations
387were conducted using R version 4.0.3; for lasso regression, the glmnet
388package was used.19

389Data Availability Statement. The data underlying this study
390(raw data as txt files, R code Rmd file, and complete and intermediate
391Rdata files) are openly available in Columbia University Academic
392Commons at 10.7916/3hdp-9j07.
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