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Abstract
Human biomonitoring studies are of increasing importance in regulatory toxicology; however, there is a paucity of human 
biomonitoring data for the Irish population. In this study, we provide new data for urinary biomarker concentrations of 
aluminium, arsenic, cadmium, chromium, copper, mercury, manganese, lead and selenium. One hundred urine samples, 
collected between 2011 and 2014 from healthy participants of the EuroMOTOR project, were randomly selected. Metal 
concentrations were measured via ICPMS. Descriptive statistics for each of the metals stratified by gender were performed. 
There were 58 male and 42 female participants and metals were detectable for all samples. Geometric mean urinary con-
centrations for each metal in males were as follows: aluminium 8.5 μg/L, arsenic 8.1 μg/L, cadmium 0.3 μg/L, chromium 
0.5 μg/L, copper 5.1 μg/L, mercury 0.4 μg/L, manganese 0.3 μg/L, lead 1.3 μg/L and selenium 10.8 μg/L; and in females: 
aluminium 8.5 μg/L, arsenic 10.2 μg/L, cadmium 0.4 μg/L, chromium 0.6 μg/L, copper 5.6 μg/L, mercury 0.3 μg/L, man-
ganese 0.2 μg/L, lead 1.6 μg/L and selenium 13.7 μg/L. We observed higher geometric mean concentrations in women for 
arsenic, cadmium, chromium, copper, lead and selenium, with equal geometric mean concentrations for aluminium and 
manganese, leaving only mercury with lower geometric mean concentrations in women. Aluminium, cadmium, chromium, 
lead and urinary concentrations of metals were slightly elevated compared to European data, while for arsenic, copper, 
manganese and selenium, Irish levels were lower. Our findings highlight that there are differences in urinary metal concen-
trations between European populations.
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Introduction

Human biomonitoring studies are of increasing importance 
in modern regulatory toxicology, providing a means to 
measure population exposures to chemicals and investigate 
associations between biomarkers of these chemicals and 
human health outcomes. Internationally, several long-
running human biomonitoring programmes are well 
established including NHANES in the USA, and the Korean 
NHANES programme. In Europe in 2009, the COPHES 
project (http:// www. eu- hbm. info/ cophes) developed 
harmonised protocols allowing the collection of comparable 
HBM data throughout Europe. These were then piloted in 
its twin project, the DEMOCOPHES project (http:// www. 
eu- hbm. info/ democ ophes), between 2010 and 2012. These 
were succeeded by the HBM4EU project (https:// www. 
hbm4eu. eu) which runs from 2017 to 2022. In Ireland, 
however, information on biological markers of metal 
exposures is lacking.
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The most important study to measure toxic metals in 
Irish individuals previously was the DEMOCOPHES 
study. This was an EU wide study of human biomoni-
toring amongst children aged 6 to 11 and mothers aged 
45 or younger in Europe that aimed to develop common 
strategies and scientific protocols across member states 
using 4 exposures as a pilot: urinary cadmium, hair mer-
cury, urinary cotinine and urinary phthalate metabolites 
(Schindler et al. 2014). Irish mothers who smoked (N = 35) 
had median urinary cadmium concentration of 0.38 µg/g 
creatinine, non-smoking mothers (N = 82) had median 
urinary cadmium concentrations of 0.28 µg/g creatinine, 
and children (N = 119) had median urinary cadmium con-
centrations below the limit of quantification (LOQ) (Ber-
glund et al. 2015). Hair from Irish mothers (N = 120) had 
median mercury concentration of 0.188 μg/g, while Irish 
children (N = 120) had median mercury concentration of 
0.100 μg/g. Few other studies of toxic metal biomarkers 
from the Irish population exist. A 1998 study sought to 
determine reference levels for urinary antimony in Irish 
infants (Cullen et al. 1998). A sample of 100 Irish infants 
was recruited from the Eastern area birth register and a 
median urinary antimony concentration of 0.42 μg/g cre-
atinine with a 95th percentile of 2.6 ng/mg creatinine was 
determined (Cullen et al. 1998).

In the current study, we provide new data regarding 
urinary biomarker concentrations amongst Irish adults 
for the following metallic minerals: copper and selenium; 
trace minerals: chromium and manganese and toxins: alu-
minium, arsenic, cadmium, mercury and lead.

Methods

Study population

The EuroMOTOR project was an international case–con-
trol study investigating the role of environmental exposures 
in ALS that included amyotrophic lateral sclerosis (ALS) 
patients and age and sex-matched controls (D’Ovidio et al. 
2017). ALS patients had been recruited from the popu-
lation-based Irish ALS register between 2011 and 2014, 
with controls recruited via individual matching to patients 
by gender, age (± 5 years) and by location (controls were 
recruited through general practitioners located within the 
same county as matched patients) (D’Ovidio et al. 2017). 
As part of the EuroMOTOR study design, controls with 
a history of neurological conditions were excluded. A 
sample of 100 controls was randomly selected from 305 
controls who had provided urine samples. Corresponding 
age, gender, BMI and education data were extracted from 
the EuroMOTOR dataset.

Sample collection

Urine samples were collected from participants at the 
time of interview for the EuroMOTOR survey (D’Ovidio 
et al. 2017). Urine samples were collected in 10-ml sterile 
collection tubes with no preservative. Urine samples 
were centrifuged immediately at 1500 g for 15 min. The 
supernatant was then aliquoted in 2-ml cryovials, as 4 × 2 ml 
aliquots and transported to the laboratory at 4 °C. Within 
24 h, samples were stored at − 80 °C.

Element determination by ICP‑sf‑MS measurement

Urine samples were thawed slowly and diluted 1/5 with 0.5% 
 HNO3. 103Rh was administered to each sample at a final 
concentration of 1 µg/L as internal standard and subsequently 
analysed. An ELEMENT 2, ICP-sf-MS instrument (Thermo 
Scientific, Bremen, Germany) was employed for the 
determination of 112Cd, 202Hg and 208Pb in low-resolution 
mode, 27Al, 52Cr, 55Mn and 65Cu in medium-resolution mode, 
whereas 75As and 77Se were measured in high-resolution 
mode. Sample introduction was carried out using an ESI-Fast-
system (Elemental Scientific, Mainz, Germany) connected to 
a Micromist nebuliser with a cyclon spray chamber. The RF 
power was set to 1200 W, the plasma gas was 15 L Ar /min, 
whereas the nebuliser gas was approximately 0.9 L Ar/min 
after daily optimization. The limits of detection (LOD) for 
each metal in non-diluted urine were as follows: Al 3 ng/L, As 
8 ng/L, Cd 1.5 ng/L, Cr 1.5 ng/L, Cu 1.5 ng/L, Hg 1.5 ng/L, 
Mn 1.5 ng/L, Pb 1.5 ng/L, Se 16 ng/L.

Quality control for element determinations

The determination methods had been validated previously 
by successful regular laboratory intercomparison studies. 
Routinely, each ten measurements three blank determinations 
and a control determination of a certified control standard for 
all mentioned elements were performed. Calculation of results 
was carried out on a computerized lab-data management 
system, relating the sample measurements to calibration 
curves, blank determinations and control standards.

Statistical analysis

Demographic variables collected included age and sex, 
maximum education level, smoking status (ever vs never) and 
BMI. Geometric and arithmetic means and percentiles (P10, 
P25, P50, P75, P90, P95) were calculated for the full cohort 
and stratified by sub-groups. Where case counts in a given 
category were < 5, data was censored for privacy reasons. 
All statistical analyses were carried out using R Statistical 
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Software version 4.0.5 (R Core Team 2022) and additional 
packages (Taiyun and Simko 2021; Wickham 2017; Yoshida 
and Bartel 2021). (Analysis code is available at: https:// 
github. com/ jpkro oney/ Urina ry_ Metals_ Irish_ Adults.)

Results

There were 58 male and 42 female participants. Demo-
graphic details are shown in Table 1. Demographic char-
acteristics were similar across genders, although men had a 
higher mean BMI at 27.3 compared to 26.5 in women, and 
a greater percentage of women (45%) had post-secondary 
education compared to men (39%). Urinary metal concentra-
tions from the 100 participants are summarised in Table 2. 

(Supplementary Table 1 displays the urinary metal con-
centrations adjusted for urinary creatinine concentration). 
Detection rates were 100% for all metals. For arsenic, cad-
mium, chromium, copper, lead and selenium, the geomet-
ric mean concentration was marginally higher in women 
than in men (Table 2). These differences were reflected 
also in the percentile figures, particularly at the higher per-
centiles (Table 2). The concentrations were only higher in 
men across all percentiles for total mercury concentration 
(Table 2). Similar gender related patterns are observed here 
with creatinine adjusted metal concentrations being higher 
in woman compared to men for all metals, likely reflecting 
that creatinine concentration is lower in women in the 25th 
to 75th percentile range (Supplementary Table 1). Figure 1 
displays the correlations between metal concentrations in the 
samples after adjustment for creatinine. Most of the metals 
were positively correlated with each other, with only arsenic 
appearing to be uncorrelated with other metals. Cadmium, 
copper, mercury and selenium concentrations were particu-
larly strongly positively correlated with each other. Table 3 
summarises data geometric means and 95th percentiles from 
the current study in context with data from other recent stud-
ies. For 12 samples, urinary cadmium concentrations were 
found to be above the age -specific HBM1 threshold recently 
defined by the HBM4EU project for urinary cadmium (Lam-
karkach et al. 2021; Schulz et al. 2011). Only 2 samples 
were above the HBM1 threshold for mercury by the German 

Table 1  Demographic details by gender for 100 Irish adults

Female Male

N 42 58
Age, mean (sd) 66.5 (11.2) 64.1 (11.0)
BMI, mean (sd) 26.5 (6.1) 27.3 (3.8)
Education
Primary 8 (19%) 16 (28%)
Secondary 15 (36%) 19 (33%)
Technical 10 (24%) 9 (15%)
University 9 (21%) 14 (24%)

Table 2  Means and percentiles of urinary toxic metal concentrations by gender in 100 Irish individuals

Toxic metal Sex N Arithmetic 
mean (μg/L)

Geomet-
ric mean 
(μg/L)

P10% (μg/L) P25% (μg/L) P50% (μg/L) P75% (μg/L) P90% (μg/L) P95% (μg/L)

Aluminium Female 42 17.0 8.5 2.6 5.0 7.7 13.2 31.6 53.3
Male 58 13.7 8.5 1.9 5.8 10.2 15.9 26.2 40.3

Arsenic Female 42 37.9 10.2 1.4 3.5 9.8 24.9 71.2 223.2
Male 58 24.8 8.1 1.3 2.6 7.6 22.2 58.7 69.4

Cadmium Female 42 1.0 0.4 0.1 0.2 0.5 0.9 1.5 1.8
Male 58 0.4 0.3 0.1 0.2 0.3 0.6 0.8 0.9

Chromium Female 42 1.1 0.6 0.1 0.5 0.8 1.0 1.2 1.5
Male 58 0.7 0.5 0.1 0.5 0.8 0.9 1.0 1.1

Copper Female 42 12.0 5.6 1.0 3.2 6.2 11.8 20.4 27.1
Male 58 7.7 5.1 1.0 3.1 7.3 11.5 14.6 18.6

Mercury Female 42 3.6 0.3 0.0 0.1 0.4 0.8 1.5 2.1
Male 58 0.9 0.4 0.1 0.1 0.6 1.0 2.2 2.5

Manganese Female 42 0.6 0.2 0.0 0.1 0.2 0.4 0.9 1.6
Male 58 0.3 0.2 0.0 0.1 0.2 0.4 0.8 0.9

Lead Female 42 2.6 1.6 0.2 1.3 2.4 2.8 3.9 4.2
Male 58 1.9 1.3 0.2 1.1 2.2 2.4 2.8 3.0

Selenium Female 42 29.2 13.7 2.6 7.7 15.5 30.5 49.2 53.9
Male 58 17.2 10.8 2.1 4.9 13.7 28.9 37.3 39.7

https://github.com/jpkrooney/Urinary_Metals_Irish_Adults
https://github.com/jpkrooney/Urinary_Metals_Irish_Adults
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Human Biomonitoring Commission. Threshold levels have 
not been defined for the other metals measured.

Discussion

In this study, we have described the concentrations of 9 
metals in urine samples from 100 Irish adults recruited 
between 2011 and 2014. Previous comparable studies in 
this population are rare; however, our finding of geometric 
mean urinary cadmium concentration in women of 0.7 μg/g 
creatinine is higher than that measured in Irish mothers as 
part of the DEMOCOPHES study where non-smoking moth-
ers (N = 82) had a geometric mean of 0.24 μg/g creatinine 
and smoking mothers (N = 35) had a geometric mean of 
0.33 μg/g creatinine (Berglund et al. 2015) (Table 3). We 
note however, that while the DEMOCOPHES participants 
were recruited between 2011 and 2012 which overlapped the 
recruitment period of our study, the mean age of our female 
participants was 66.5, while DEMOCOPHES recruited 

women between the ages of 24 to 52(Berglund et al. 2015). 
It is known that cadmium accumulates in the kidney and 
increasing in urinary cadmium with age has been observed 
in Chinese (Sun et al. 2016) and Swiss (Jenny-Burri et al. 
2015) populations. Furthermore, we found unadjusted uri-
nary cadmium concentrations in women (GM: 0.4 μg/L) to 
be comparable to those found in 968 French women (GM: 
0.39 μg/L) (Nisse et al. 2017) and 160 Czech women (GW: 
0.33 μg/L) (Batáriová et al. 2006), somewhat higher than 
those found in a cohort of 1001 mixed gender Belgians 
(GM: 0.228 μg/L) (Hoet et al. 2013), but notably higher 
than that found in 1092 German women (GM: 0.071 μg/L) 
(Vogel et al. 2021) (Table 3). In men, we found a geometric 
mean unadjusted urinary cadmium concentration of 0.3 μg/L 
which is comparable to 942 French men (GM: 0.37 μg/L) 
(Nisse et al. 2017), somewhat higher than concentrations in 
497 Czech men (GM: 0.27 μg/L) (Batáriová et al. 2006), but 
again, concentrations were markedly lower in 1158 German 
men (GM: 0.074 μg/L) (Vogel et al. 2021) (Table 3). For 
mixed genders at the 95th percentile, concentrations in the 

Fig. 1  Correlation matrix of 
urinary toxic metal concentra-
tions adjusted for creatinine
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Table 3  Reference values (μg/L) for trace elements from international studies

Study reference Country Study period Sex Age range N GM P95%

Al Ireland 2011–2014 Female 40–88 42 8.5 53.3
Male 37–84 58 8.5 40.3

(Nisse et al. 2017) Northern France 2008–2010 Female 20–59 968 2.28 12.7
Male 942 1.53 9.94

(Hoet et al. 2013) Belgium 2010–2011 Mixed 18–80 1001 2.15 9.27
As Ireland 2011–2014 Female 40–88 42 10.2 223.2

Male 37–84 58 8.1 69.4
(Nisse et al. 2017) Northern France 2008–2010 Female 20–59 968 18.2 127

Male 942 19.2 136
(Hoet et al. 2013) Belgium 2010–2011 Mixed 18–80 1001 15.4 157
(CDC, 2019) USA 2015–2016 Mixed  > 20 1794 N/A 49.9
(Saravanabhavan et al. 2017) Canada 2009–2011 Mixed 3–79 2480 N/A 27

Cd Ireland 2011–2014 Female 40–88 42 0.4 1.8
Male 37–84 58 0.3 0.9

(Berglund et al. 2015) Ireland 2011–2012 Female (smokers) 24–52 35 0.33b 1.07b

Female
(non-smokers)

82 0.24b 0.63b

(Nisse et al. 2017) Northern France 2008–2010 Female 20–59 968 0.39 1.3
Male 942 0.37 1.36

(Vogel et al. 2021) Germany 2015–2017 Female 3–17 1092 0.071 0.23
Male 1158 0.074 0.26

(Hoet et al. 2013) Belgium 2010–2011 Mixed 18–80 1001 0.228 1.06
(Batáriová et al. 2006) Czech Republic 2002–2003 Female 18–58 160 0.33 1.48

Male 497 0.27 1.24
(CDC, 2019) USA 2015–2016 Mixed  > 20 1794 N/A 1.08
(Saravanabhavan et al. 2017) Canada 2009–2011 Mixed 20–79 1196 N/A 1.3

Mixed
(never smokers)

 > 18 613 0.31 N/A

(Sun et al. 2016) China 2013–2014 Mixed
(former smokers)

 > 18 46 0.41 N/A

Mixed
(current smokers)

 > 18 237 0.44 N/A

Cr Ireland 2011–2014 Female 40–88 42 0.6 1.5
Male 37–84 58 0.5 1.1

(Nisse et al. 2017) Northern France 2008–2010 Female 20–59 968 0.39 1.62
Male 942 0.39 1.54

(Vogel et al. 2021) Germany 2015–2017 Female 3–17 1158 0.4 0.84
Male 1092 0.386 0.8

(Hoet et al. 2013) Belgium 2010–2011 Mixed 18–80 1001 0.103 0.45
Cu Ireland 2011–2014 Female 40 –88 42 5.6 27.1

Male 37–84 58 5.1 18.6
(Hoet et al. 2013) Belgium 2010–2011 Mixed 18 –80 1001 6.94 19.6
(Saravanabhavan et al. 2017) Canada 2009–2011 Mixed 20–79 1513 N/A 25

Hg Ireland 2011–2014 Female 40–88 42 0.3 2.1
Male 37–84 58 0.4 2.5

(Nisse et al. 2017) Northern France 2008–2010 Female 20–59 968 0.82 6.31
Male 942 0.92 6.84

(Vogel et al. 2021) Germany 2015–2017 Female 3–17 1089 0.062 0.23
Male 1153 0.072 0.28
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USA (1.08 μg/L)(CDC, 2019) and Canada (1.3 μg/L) (Sara-
vanabhavan et al. 2017) were higher than that in Irish males 
(0.9 μg/L) but not females(1.8 μg/L); however, we interpret 
this cautiously due to our small sample size.

For other metals, we could not find comparable Irish 
data. However, European/International data is available. Our 
finding of aluminium concentration GM: 8.5 μg/L in both 
men and women was higher than urinary concentrations in 
French women (GM: 2.28 μg/L) and men (GM: 1.53 μg/L) 
(Nisse et al. 2017), and also higher than that in in a mixed 
cohort of 1001 Belgian men and women (GM: 2.15 μg/L) 
(Hoet et al. 2013) (Table 3). For arsenic, we found con-
centrations of GM: 10.2 μg/L in women and GM: 8.1 μg/L 
in men. These concentrations were lower than arsenic con-
centrations found in the in French women (GM: 18.2 μg/L) 
and men (GM: 19.2 μg/L) (Nisse et al. 2017), and lower 
than that in Belgians (GM: 15.4 μg/L) (Hoet et al. 2013). 

For chromium, comparison data was again available for 
Belgium, France and Germany. Geometric mean concen-
trations in Irish women (GM: 0.6 μg/L) and men (GM: 
0.5 μg/L) were higher than those in the other countries with 
Belgium having the lowest concentrations (GM: 0.1 μg/L) 
(Table 3). For copper, urinary concentrations in Irish men 
(GM: 5.1 μg/L) and women (GM: 5.6 μg/L) were lower than 
those in a mixed Belgian cohort (GM: 8.18 μg/L) in men and 
women combined (Hoet et al. 2013).

The only previous study of mercury biomarkers in the 
Irish population used hair mercury levels and is therefore 
not directly comparable (Cullen et al. 2014). Nevertheless, 
comparable data was available from a range of countries 
(Table 3). Mercury levels in Irish women (GM: 0.3 μg/L) 
and men (GM: 0.4 μg/L) were higher than those in German 
women (GM: 0.062 μg/L) and men GM: 0.072 μg/L) (Vogel 
et al. 2021), and those in the Belgian mixed cohort (GM: 

Geometric mean (GM) and 95.th percentile (P95%) values given as μg/L unless otherwise stated. Aluminium (Al), Arsenic (As), Cadmium (Cd), 
Chromium (Cr), Copper (Cu), Mercury (Hg), Manganese (Mn), Lead (Pb), Selenium (Se)
a 95.th percentile values not calculated for Ireland due to sample size
b Values given as μg/g creatinine

Table 3  (continued)

Study reference Country Study period Sex Age range N GM P95%

(Hoet et al. 2013) Belgium 2010–2011 Mixed 18–80 1001 0.26 1.88

(Batáriová et al. 2006) Czech Republic 2002–2003 Female 18–58 160 0.96 11.8

Male 497 0.52 5.35

(Castaño et al. 2019) Spain 2009–2010 Female 18–50 832 1.14 3.99

Male 872 1.09 4.23

(CDC, 2019) USA 2015–2016 Mixed  > 20 1802 N/A 1.22

(Saravanabhavan et al. 2017) Canada 2012–2013 Female 20–79 241 N/A N/A

Male 217 N/A 0.73
Mn Ireland 2011–2014 Female 40–88 42 0.2 1.6

Male 37–84 58 0.2 0.9
(Nisse et al. 2017) Northern France 2008–2010 Female 20–59 968 0.29 1.06

Male 942 0.27 1.07
(Hoet et al. 2013) Belgium 2010–2011 Mixed 18—80 1001 N/A 0.355
(CDC, 2019) USA 2015–2016 Mixed  > 20 1794 N/A 0.28

Pb Ireland 2011–2014 Female 40–88 42 1.6 4.2
Male 37–84 58 1.3 3.0

(Nisse et al. 2017) Northern France 2008–2010 Female 20–59 968 0.9 3.24
Male 942 1.26 4.26

(Hoet et al. 2013) Belgium 2010–2011 Mixed 18–80 1001 0.74 2.81
(CDC, 2019) USA 2015–2016 Mixed  > 20 1794 N/A 1.38
(Saravanabhavan et al. 2017) Canada 2015–2016 Mixed 20–79 3210 N/A 1.9

Se Ireland 2011–2014 Female 40–88 42 13.7 53.9
Male 37–84 58 10.8 39.7

(Hoet et al. 2013) Belgium 2010–2011 Mixed 18–80 1001 21.6 61.6
(Saravanabhavan et al. 2017) Canada 2009–2011 Mixed 20–79 3211 N/A 120
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0.26 μg/L) (Hoet et al. 2013). In contrast, Irish geometric 
mean urinary mercury concentrations were lower when 
compared to Czech women (GM: 0.96 μg/L) and men (GM: 
0.52 μg/L) (Batáriová et al. 2006), French women (GM: 
0.82 μg/L) and men (GM: 0.92 μg/L) (Nisse et al. 2017) 
and in Spanish women (GM: 1.14 μg/L) and men (GM: 
1.09 μg/L) (Castaño et al. 2019) than in the Irish data.

Urinary manganese concentrations had a geometric 
mean of 0.2 μg/L in both Irish men and women, which is 
lower than that in French women (GM: 0.29 μg/L) and men 
(GM: 0.27 μg/L) (Nisse et al. 2017). At the 95th percen-
tile, however, Irish levels (women 95th: 1.6 μg/L, men 95th: 
0.9 μg/L) were higher than those reported by NHANES 
(2015–2016 women 95th: 0.35 μg/L, men 95th 0.27 μg/L)
(CDC 2019).

Lead levels in Irish women (GM: 1.6 μg/L) were notably 
high compared to French women (GM: 0.9 μg/L) (Nisse 
et al. 2017); however, for Irish men (GM: 1.3 μg/L), levels 
were comparable to that of French men (GM: 1.26 μg/L) 
(Nisse et al. 2017). The age profile of the French study 
(20 to 59 years) differs to ours (37 to 88 years); however, 
this is unlikely to explain gender-specific differences. 
The mixed gender Belgian cohort had a blood lead level 
GM = 0.74 μg/L, lower than Irish results for either gender. 
Finally, for urinary selenium concentrations in Irish women 
(median: 15.5 μg/L) and men (median: 13.7 μg/L) were 
lower than the Belgian cohort (GM 21.6 μg/L) (Hoet et al. 
2013).

Strengths and weaknesses

The EuroMOTOR study was a population-based study; how-
ever, with just 100 participants, our sample size is not large 
enough to establish population normative data for urinary 
metals in the Irish population. In addition, as the matching of 
EuroMOTOR selected controls with an age-range reflecting 
the age range of typical ALS incidence, our results do not 
reflect all ages in the population. Nevertheless, our study 
provides new data where it was previously almost entirely 
lacking. Specifically with regard to lead measurements, uri-
nary lead concentration typically reflects short-term expo-
sure. It is therefore less suitable for human biomonitoring 
than the analysis of lead in blood, where approximately 95% 
of the lead is bound to the erythrocytes.

Conclusions

Here, we report the first data on multiple metals in urinary 
samples collected from Irish adults. We observed slightly 
higher geometric mean concentrations in women for arse-
nic, cadmium, chromium, copper, lead and selenium, with 
equal geometric mean concentrations for aluminium and 

manganese, leaving only mercury with lower geometric 
mean concentrations in women. In our cohort, aluminium, 
cadmium, chromium, lead and urinary concentrations of 
metals appear comparable but slightly elevated compared to 
available European data, while for arsenic, copper, manga-
nese and selenium, Irish levels are slightly lower than avail-
able European data. For urinary total mercury concentration, 
Ireland lies in the mid-range of European data. Our findings 
highlight that there are differences in urinary metal con-
centrations between European populations. There is a lack 
of human biomonitoring data for metal concentrations in 
Ireland, and further explanation of these results will require 
investigation via purpose-built international human bio-
monitoring programmes, such as the upcoming EU-funded 
Partnership for the Assessment of Risk from Chemicals 
(PARC) (https:// www. efsa. europa. eu/ en/ fundi ng- calls/ europ 
ean- partn ership- asses sment- risks- chemi cals- parc).
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