
Fast computation of latent correlations

Grace Yoon1, Christian L. Müller2, and Irina Gaynanova∗1

1Department of Statistics, Texas A&M University, 3143 TAMU, College
Station, TX 77843

2Center for Computational Mathematics, Flatiron Institute, New York, NY,
Department of Statistics, LMU München, Munich, Germany,

Institute of Computational Biology, Helmholtz Zentrum München, Germany

Abstract

Latent Gaussian copula models provide a powerful means to perform multi-view
data integration since these models can seamlessly express dependencies between mixed
variable types (binary, continuous, zero-inflated) via latent Gaussian correlations. The
estimation of these latent correlations, however, comes at considerable computational
cost, having prevented the routine use of these models on high-dimensional data. Here,
we propose a new computational approach for estimating latent correlations via a hy-
brid multi-linear interpolation and optimization scheme. Our approach speeds up the
current state of the art computation by several orders of magnitude, thus allowing
fast computation of latent Gaussian copula models even when the number of vari-
ables p is large. We provide theoretical guarantees for the approximation error of our
numerical scheme and support its excellent performance on simulated and real-world
data. We illustrate the practical advantages of our method on high-dimensional sparse
quantitative and relative abundance microbiome data as well as multi-view data from
The Cancer Genome Atlas Project. Our method is implemented in the R package
mixedCCA, available at https://github.com/irinagain/mixedCCA.
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1 Introduction

Multi-view data, i.e, data collected on the same subjects from different sources or views,

are becoming increasingly common in the biomedical world thanks to advances in biologi-

cal high-throughput technologies. Large-scale data collections, such as the Cancer Genome

Atlas project (TCGA, 2013), make concurrent gene expression, methylation, mutation, and

other data views with a mixed type of measurements (e.g., continuous, binary) readily avail-

able for multi-view data analysis. Moreover, recent sequencing-based technologies provide

an abundance of high-dimensional biological data with excess zeros, ranging from Chip-Seq,

to targeted amplicon and single-cell sequencing data. Many statistical analysis routines of-

ten start with estimating covariances and correlations from the different variables. However,

standard Pearson sample covariance estimation via maximum likelihood estimation of co-

variance matrix is not well suited for these data since it is not able to handle the excess

zeros in the data and its underlying normality assumption is violated by the highly skewed

empirical data distributions.

Latent Gaussian copulas offer an elegant alternative for the analysis of multi-view data

as they model associations between mixed variable types on the common latent Gaussian

level, rather than on the mixed observed data level. Liu et al. (2009) capture possible

skewness in continuous measurements via Gaussian copula model. Fan et al. (2017) capture

binary measurements via extra dichotomization step of Gaussian copulas, thus enabling joint

modeling of continuous and binary variables. Extensions to ordinal variables have also been

considered (Quan et al., 2018; Feng and Ning, 2019). Yoon et al. (2020, 2019) capture

variables with excess zeros via extra truncation step of Gaussian copula, thus enabling joint

modeling of all continuous/binary/truncated (excess zeros) data types. These models are

very flexible and capture all dependencies via the common latent correlation matrix, which is

estimated based on a robust rank-based measure of association (Kendall’s τ). By replacing

Pearson sample correlation estimators with a rank-based correlation matrix estimator, latent

Gaussian copula models have been shown to improve graphical model estimation (Liu et al.,

2009; Fan et al., 2017; Feng and Ning, 2019; Yoon et al., 2019), canonical correlation analysis
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(Yoon et al., 2020), and discriminant analysis (Han et al., 2013).

Despite the clear advantages offered by the latent Gaussian copula models, their widespread

use on high-dimensional biological data has been hindered by the considerable computational

cost associated with the estimation of the latent correlation matrix Σ. Let σjk be the latent

correlation between variables j and k, and τ̂jk be the corresponding sample Kendall’s τ . The

two are connected via the strictly increasing bridge function F such that E(τ̂jk) = F (σjk).

This moment equation motivates the estimator σ̂jk = F−1(τ̂jk). While the explicit form of

F has been derived for multiple variable types (Fan et al., 2017; Quan et al., 2018; Feng

and Ning, 2019; Yoon et al., 2020), its inverse F−1 is not available in closed form. As a

result, the estimation requires solving a uniroot non-linear equation F (x) = τ̂jk for every

element of Σ. When the number of variables p is very large, this becomes computationally

expensive. The computational cost also depends on the type of variables (as it influences

the form of F ), and is especially problematic for truncated variable types, i.e., for data with

excess zeros such as single-cell and microbiome data. For instance, single-threaded computa-

tion of latent correlations on a subset of the American Gut amplicon data (McDonald et al.,

2018) with p = 481 species can take almost an hour on a standard computer (Yoon et al.,

2019). This makes repeated computations over sub-sampled or bootstrapped data or data

with thousands of variables computationally demanding.

Here, we overcome this challenge via a novel fast computation approach. Our idea is based

on the observation that, even though the exact analytic form of the inverse bridge function

F−1 is unknown, it is amenable to accurate multi-linear interpolation of pre-computed func-

tion values over a well-chosen fixed grid of points. This pre-computation only needs to be

done once for each pair of variable types (continuous/binary/truncated), and is then read-

ily available for any new dataset. Our interpolation scheme leads to dramatic reduction

in computational cost (e.g., latent correlation on the American Gut microbiome data now

only takes five minutes) while simultaneously controlling the approximation error required

for statistical estimation. To provide a visual illustration of the interpolation challenge, Fig-

ure 1 shows the surface of the inverse bridge function for the continuous/truncated variables
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Figure 1: (Left) Bridge inverse function F−1(τ, π0) for the continuous/truncated variables

pair. The arguments are Kendall’s τ (x-axis) and the proportion of zeros π0 in the truncated

variable (y-axis). The function values correspond to latent correlations (z-axis). (Right) The

estimated latent cutoff level ∆ versus the proportion of zeros π0 based on the moment

equation ∆̂ = Φ−1(π0).

pair, F−1(τ, π0), which depends on the value of sample Kendall’s τ and on the observed

proportion of zeros π0. While the function is strictly increasing for each fixed value of π0,

its smoothness decreases significantly when π0 increases. We present a hybrid interpolation

scheme that approximates the smooth part of the surface by multilinear interpolation of

pre-computed function values over the fixed grid of point to obtain F−1(τi, π0k), and explicit

univariate non-linear optimization for the non-smooth part.

The rest of the paper is organized as follows. In Section 2 we review the latent Gaussian

copula model for mixed data and the existing computational approach for latent correla-

tion estimation. In Section 3 we propose a new fast computation based on interpolation

and provide theoretical guidance on the approximation error. In Section 4, we assess the

empirical performance both in terms of accuracy and speed on several high-throughput bi-

ological datasets. Section 5 concludes with a discussion and future challenges. Our method

is available in the R package mixedCCA at https://github.com/irinagain/mixedCCA. A
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reproducible workflow of the presented numerical results is available at https://github.

com/GraceYoon/Fast-latent-correlation.

2 Latent correlation of latent Gaussian copula model

2.1 Latent Gaussian copula model for mixed data

We begin by reviewing the Gaussian copula model, or non-paranormal (NPN) model, of Liu

et al. (2009) for possibly skewed continuous data, e.g., gene expression.

Definition 1 (Continuous model). A random X ∈ Rp satisfies the Gaussian copula model if

there exist monotonically increasing f = (fj)
p
j=1 with Zj = fj(Xj) satisfying Z ∼ Np(0,Σ),

σjj = 1; X ∼ NPN(0,Σ, f).

For binary data, such as mutation data, Fan et al. (2017) propose generalization of

Gaussian copula via extra dichotomization step.

Definition 2 (Binary model). A random X ∈ Rp satisfies the binary latent Gaussian copula

model if there exists W ∼ NPN(0,Σ, f) such that Xj = I(Wj > cj), where I(·) is the

indicator function and cj are constants.

The binary model has been extended to ordinal variables with more than two levels

(Quan et al., 2018; Feng and Ning, 2019). For data with excess zeros, such as microbiome

and single-cell data, Yoon et al. (2020) propose extra truncation of Gaussian copula.

Definition 3 (Truncated model). A random X ∈ Rp satisfies the truncated latent Gaussian

copula model if there exists W ∼ NPN(0,Σ, f) such that Xj = I(Wj > cj)Wj, where I(·) is

the indicator function and cj > 0 are constants.

The mixed latent Gaussian copula model jointly models W = (W1,W2,W3) ∼ NPN(0,Σ, f)

such that X1j = W1j, X2j = I(W2j > c2j) and W3j = I(W3j > c3j)W3j.

5



2.2 Bridge function

The latent correlation matrix Σ is the key parameter in the Gaussian copula models. Esti-

mation of latent correlations is achieved via the bridge function F such that E(τ̂jk) = F (σjk),

where σjk is the latent correlation between variables j and k, and τ̂jk is the corresponding

sample Kendall’s τ . Given observed xj,xk ∈ Rn,

τ̂jk = τ̂(xj,xk) =
2

n(n− 1)

∑

1≤i<i′≤n
sign(xij − xi′j)sign(xik − xi′k), (1)

where n is the sample size. Using F , one can construct σ̂jk = F−1(τ̂jk) with the corre-

sponding estimator Σ̂ being consistent for Σ (Fan et al., 2017; Quan et al., 2018; Yoon

et al., 2020). The explicit form of F has been derived for all combinations of continu-

ous(C)/binary(B)/truncated(T) variables (Fan et al., 2017; Yoon et al., 2020). We summa-

rize these results below, and use CC, BC, TC, etc. to denote corresponding combinations.

Theorem 1. Let W1 ∈ Rp1, W2 ∈ Rp2, W3 ∈ Rp3 be such that W = (W1,W2,W3) ∼
NPN(0,Σ, f) with p = p1 + p2 + p3. Let X = (X1,X2,X3) ∈ Rp satisfy Xj = Wj for

j = 1, . . . , p1, Xj = I(Wj > cj) for j = p1 + 1, . . . , p1 + p2 and Xj = I(Wj > cj)Wj for

j = p1 + p2 + 1, . . . , p with ∆j = f(cj). The rank-based estimator of Σ based on the observed

n realizations of X is the matrix R̂ with r̂jj = 1, r̂jk = r̂kj = F−1(τ̂jk) with block structure

R̂ =




F−1CC(τ̂) F−1CB(τ̂) F−1CT(τ̂)

F−1BC(τ̂) F−1BB(τ̂) F−1BT(τ̂)

F−1TC(τ̂) F−1TB(τ̂) F−1TT(τ̂)




FCC(r) =
2

π
sin−1(r)

FBB(r; ∆j,∆k) = 2 {Φ2(∆j,∆k; r)− Φ(∆j)Φ(∆k)}

FBC(r; ∆j) = 4Φ2(∆j, 0; r/
√

2)− 2Φ(∆j)

FTB(r; ∆j,∆k) = 2{1− Φ(∆j)}Φ(∆k)− 2Φ3 (−∆j,∆k, 0; Σ3a(r))− 2Φ3 (−∆j,∆k, 0; Σ3b(r))

FTC(r; ∆j) = −2Φ2(−∆j, 0; 1/
√

2) + 4Φ3 (−∆j, 0, 0; Σ3(r))

FTT(r; ∆j,∆k) = −2Φ4(−∆j,−∆k, 0, 0; Σ4a(r)) + 2Φ4(−∆j,−∆k, 0, 0; Σ4b(r)),
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with

Σ3a(r) =




1 −r 1/
√

2

−r 1 −r/
√

2

1/
√

2 −r/
√

2 1


 , Σ3b(r) =




1 0 −1/
√

2

0 1 −r/
√

2

−1/
√

2 −r/
√

2 1


 ,

Σ3(r) =




1 1/
√

2 r/
√

2

1/
√

2 1 r

r/
√

2 r 1


 , Σ4a(r) =




1 0 1/
√

2 −r/
√

2

0 1 −r/
√

2 1/
√

2

1/
√

2 −r/
√

2 1 −r
−r/
√

2 1/
√

2 −r 1




Σ4b(r) =




1 r 1/
√

2 r/
√

2

r 1 r/
√

2 1/
√

2

1/
√

2 r/
√

2 1 r

r/
√

2 1/
√

2 r 1



.

Here Φ(·) is the cdf of the standard normal distribution, and Φd(·, . . . , ·; Σ) is the cdf of the

d-dimensional standard normal distribution with d-dimensional correlation matrix Σ.

2.3 Existing computation

Theorem 1 presents explicit forms of bridge functions for each data type combination. Using

the selected bridge function, the computation of latent correlation between two variables j

and k is performed via Algorithm 1. Problem (2) has to be solved for all pairs of variables,

leading to O(p2) computations. We refer to this approach as the original (ORG) computation

scheme.

3 Inversion via multilinear interpolation

The inverse bridge function is an analytic function of at most three parameters: (i) Kendall’s

τ , (ii) proportion of zeros in the 1st variable and (possibly) (iii) proportion of zeros in the

2nd variable (see Theorem 1). We propose to pre-calculate the function on a fixed 2d (or 3d)

grid, and perform multilinear interpolation to estimate its values on a new set of arguments.
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Algorithm 1 Original (ORG) method for latent correlation computation

Input: F (r) = F (r,∆j,∆k) - bridge function based on the type of variables j, k

1. Calculate τ̂jk using (1).

2. For truncated/binary variable j, set ∆̂j = Φ−1(π0j) with π0j =
∑n

i=1 I(xij = 0)/n.

3. Compute F−1(τ̂jk) as

r̂jk = arg min
r
{F (r)− τ̂jk}2 , (2)

where (2) is solved via optimize function in R.

3.1 Multilinear interpolation

Definition 4 (Bilinear interpolation). Suppose we have 4 neighboring data points fij =

f(xi, yj) at (xi, yj) for i, j ∈ {0, 1}. For {(x, y)|x0 ≤ x ≤ x1, y0 ≤ y ≤ y1}, the bilinear inter-

polation at (x, y) is

f̃(x, y) = (1− α)(1− β)f00 + (1− α)βf01 + α(1− β)f10 + αβf11 (3)

where α = (x− x0)/(x1 − x0) and β = (y − y0)/(y1 − y0).

Definition 5 (Trilinear interpolation). Suppose we have 8 neighboring data points fijk =

f(xi, yj, zk) at (xi, yj, zk) for i, j, k ∈ {0, 1}. For {(x, y, z)|x0 ≤ x ≤ x1, y0 ≤ y ≤ y1, z0 ≤ z ≤ z1},
the trilinear interpolation at (x, y, z) is

f̃(x, y, z) = (1− α)(1− β)(1− γ)f000 + (1− α)(1− β)γf001 + (1− α)β(1− γ)f010

+ α(1− β)(1− γ)f100 + (1− α)βγf011 + α(1− β)γf101 + αβ(1− γ)f110

+ αβγf111

(4)

where α = (x− x0)/(x1 − x0), β = (y − y0)/(y1 − y0) and γ = (z − z0)/(z1 − z0).

In short, d-dimensional multilinear interpolation uses a weighted average of 2d neigh-

bors to approximate the function values at the points within the d-dimensional cube of the

neighbors, see Figure 2.
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Figure 2: Bilinear (Left) and trilinear (Right) interpolation.

3.2 Error bound for multilinear interpolation

Weiser and Zarantonello (1988) provide an error bound for multilinear interpolation.

Theorem 2. For a function f : Rd → R, assume that the function values are given at 2d

points f(x1i, . . . , xdi) for i = 0, 1. Let f̃ : Rd → R denote the multilinear interpolation func-

tion of f on the d-dimensional cube Ω = {(x1, . . . , xd) : x10 < x1 < x11, . . . , xd0 < xd < xd1}
using the given 2d neighboring points. Then, for every point x = (x1, . . . , xd)

> ∈ Ω

|f(x)− f̃(x)| ≤ d

8
h2 sup

i=1,...,d

∣∣∣∣
∂2f(x)

∂x2i

∣∣∣∣ , (5)

where h = maxj=1,...,d |xj1 − xj0|.

Theorem 2 shows that the error bound in our proposed approximation via multilinear

interpolation depends on the second derivative of the bridge inverse function. The dimension

d = 2 for the BC and TC cases, and d = 3 for the TT, TB, and BB cases. While the bridge

inverse functions are differentiable, the explicit forms of derivatives are difficult to calculate

analytically. Nevertheless, we were able to derive explicit bounds for the BC and the TC

case, respectively, thus providing theoretical guidance on the aspects of the models that

affect interpolation accuracy. The proofs are in the Supplementary Materials.
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Theorem 3. Let F−1(τ,∆) be the inverse bridge function for the binary/continuous case.

Let ∆ satisfy |∆| ≤M for some constant M . Then

|F−1(τ,∆)− F̃−1(τ,∆)| ≤ 2h2|F−1(τ,∆)|(2M2 + 1) exp(M2), (6)

where h is the maximal grid width.

Theorem 3 shows that the approximation error in the BC case strongly depends on the

absolute size of ∆. Since we estimate ∆ as Φ−1(π0) (Algorithm 1), and π0 is the observed

proportion of zeros, Theorem 3 implies that the approximation is more accurate when the

numbers of zeros and ones are balanced (∆ ≈ 0), and less accurate when they are unbalanced

(see left panel in Figure 1 for the correspondence between ∆ and π0). The dependence on

the latent correlation r = F−1(τ,∆) is less strong. Nonetheless, the accuracy decreases as

|r| increases.

Theorem 4. Let F−1(τ,∆) be the inverse bridge function for the truncated/continuous case.

Let ∆ be such that ∆ ≤M for some positive constant M . Then

|F−1(τ,∆)− F̃−1(τ,∆)| ≤ 4h2
{

Φ(−
√

2M)
}2 max

( |F−1(τ,∆)|
Φ(−
√

2M)
,

√
1− {F−1(τ,∆)}2

)
, (7)

where h is the maximal grid width.

Theorem 4 shows that the approximation error in the TC case strongly depends on how

large is ∆. This is similar to the BC case. However, in the TC case, ∆ only needs to be

bounded from above. This is because as ∆ goes to negative infinity, the truncated data type

gets closer to the continuous one as the proportion of zeros π0 goes to zero (see left panel

in Figure 1). On the other hand, as M increases, Φ(−
√

2M) goes to 0 making the upper

bound in Theorem 4 very large. For example, if M = 1.64 (95% zeros, see Figure 1), then

1/Φ(−
√

2M)3 ≈ 945099. The size of the latent correlation has a milder effect on accuracy.

Nonetheless, the accuracy decreases as |r| = |F−1(τ,∆)| increases.

In summary, the approximation accuracy of our approach is affected by the observed

proportion of zeros (through the size of M) and by the size of latent correlation (the actual
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function value at the interpolation point). The interpolation accuracy is poor for binary

data when the numbers of zeros and ones are extremely unbalanced, and for truncated data,

when the proportion of zero values is close to 1.

Remark 1. The estimation consistency of the original method (Algorithm 1) is established

under conditions that all correlation values are bounded away from one, and that the val-

ues of ∆ are bounded (Fan et al., 2017; Yoon et al., 2020). Theorems 3–4 reveal that the

same conditions are required for good interpolation approximation, thus emphasizing a close

connection between statistical (estimation) and computational (approximation) accuracy.

3.3 Numerical implementation

Algorithm 2 summarizes the multilinear interpolation approach.

Algorithm 2 Multilinear Interpolation (ML) method for latent correlation computation

Input: Pre-computed values F−1(τl,∆m,∆q) on a fixed grid (τl,∆m,∆q) ∈ G based on the

type of variables j and k.

1-2. Same as Algorithm 1.

3. Set r̂jk = F̃−1(τ̂jk, ∆̂j, ∆̂k), where F̃−1 is the trilinear interpolation of F−1 using G.

We next present a hybrid scheme to prevent interpolation in regions with high approx-

imation errors. From Theorems 3 and 4, the approximation error increases when (i) the

proportion of zeros π0 increases and (ii) the absolute value of latent correlation r is large,

i.e., large absolute values of Kendall’s τ . However, the range of τ̂ values is directly affected

by π0 since sign(xij−xi′j)sign(xik−xi′k) = 0 in (1) for all pairs (i, i′) with zero values. That

is, higher π0 leads to smaller range of τ̂ . We derive upper bounds on the values of τ̂ as a

function of π0 and use these bounds to define the boundary region for interpolation.

Let x ∈ Rn and y ∈ Rn be the observed n realizations of truncated continuous and

continuous variable, respectively. The upper bound on the range of Kendall’s τ can be

obtained by enumerating the number of pairs between zero values. Let π0 = n0/n where
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n0 =
∑n

i=1 I(xi = 0) is the number of zero values out of n. Then from (1),

|τ̂(x,y)| ≤
{(

n

2

)
−
(
n0

2

)}/(n
2

)
≤ 1− n0(n0 − 1)

n(n− 1)
≈ 1− π2

0. (8)

Similarly, we can approximate the range of Kendall’s τ for other data type combinations

(see the Supplementary Materials). In summary, we obtain the following approximate bound

(ABD) on the range of |τ̂ | values

ABD =





1− (π0)
2 for TC case

1− {max(π0x, π0y)}2 for TT case

2π0 (1− π0) for BC case

2 min(π0x, π0y) {1−max(π0x, π0y)} for BB case

2 max(π0y, 1− π0y){1−max(π0y, 1− π0y, π0x)} for TB case

(9)

If value of |τ̂ | is close to ABD, this indicates a high value of zero proportion and a

high value of correlation. To prevent high approximation errors, we propose to apply linear

interpolation if |τ̂ | ≤ 0.9ABD, and to use the original estimation approach otherwise. We call

this the hybrid multilinear interpolation with boundary (MLBD) algorithm (Algorithm 3).

Algorithm 3 Multi-Linear interpolation with Boundary (MLBD) method

Input: Pre-computed values F−1(τl,∆m,∆q) on a fixed grid (τl,∆m,∆q) ∈ G based on the

type of variables j and k.

1-2. Same as Algorithm 1.

3. If |τ̂jk| ≤ 0.9ABD in (9), apply ML Algorithm 2.

If |τ̂jk| > 0.9ABD, apply ORG Algorithm 1.

We use the same grid for both Algorithms 2 and 3, it is implemented in the R pack-

age mixedCCA. The detailed description of the grid is in the Supplementary Materials.
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4 Performance Assessment

We assess the approximation quality and computational speed of three algorithm for la-

tent correlation estimation: the ORG method summarized in Algorithm 1, the multilinear

interpolation scheme (ML) in Algorithm 2, and the hybrid MLBD scheme in Algorithm 3.

4.1 Approximation accuracy of latent correlation estimation

We first focus on the approximation accuracy in computing latent correlations. We treat

the correlations computed by the ORG approach as gold standard and evaluate the max-

imum value of the absolute difference with the latent correlation estimates using the two

approximation schemes, ML and MLBD.

4.1.1 Comparison on simulated data

To assess the approximation accuracy in simulations, we generate two variables using five

types combinations: TC, TT, BC, BB, and TB. Here we present results for the TC case,

other cases are available in the Supplementary Material. First, we generate two Gaussian

variables of sample size n = 100 with mean 0 and fixed value of latent correlation (we

consider nine values from 0.05 to 0.91). Given the zero proportion value π0 (we consider

eleven values from 0.03 to 0.95), we shift both variables so that the truncation applied at

zero leads to desired value of π0. That is, we truncate one of the variables by zeroing all

negative values that remain after the shift.

Figure 3 shows the maximum absolute error between the approximated values using

interpolation and the gold standard values estimated by optimizing bridge inverse function

across 100 replications. In Figure 3, the highest maximum absolute error for the ML method

is 0.0406 at latent r = 0.91 and zero proportion rate π0 = 0.95, respectively. The MLBD

method reduced the error to 0.0101. When π0 = 0.858, ML’s maximum error is only 0.0022.

All other maximum absolute errors are less than or equal to 0.0004 and, on average, 0.0002,

thus suitable for downstream statistical inference.
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Figure 3: TC case. Maximum absolute error of multilinear interpolation approach (ML)

and hybrid estimation approach (MLBD) for two simulated variables of sample size n = 100

across 100 replications. One variable is truncated continuous with zero proportion levels

from 0.04 to 0.96 (T) and the other variable is continuous (C).

In summary, the approximation error for the TC case increases with the increase in

zero proportion. However, the MLBD method accounts for the extreme cases, leading to

significantly smaller approximation error compared to ML. The results for TT, BC, BB, and

TB cases are similar (Supplementary Material). The approximation error increases with

the increase in proportion of zeros for the truncated variable. The approximation error also

increases as the binary variable gets more unbalanced in the number of zeros and ones. In

all cases, the approximation error for the MLBD method is better compared to ML method.

4.1.2 Comparison on real data

We next consider three real-world data sets. The first data set is a subset of the quanti-

tative microbiome profiling data (QMP), put forward in Vandeputte et al. (2017), which

comprises n = 106 samples across p = 91 bacterial genera, resulting in a 91 by 91 latent

correlation matrix estimation problem. The second data set is taken from the American gut

project (AGP) (McDonald et al., 2018) and comprises filtered amplicon data for p = 481
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operational taxonomic units (OTUs) across n = 6482 samples. Both microbiome data sets

are treated as truncated continuous, and we use the bridge inverse function for the TT case.

The final dataset is based on multi-view data from TCGA-BRCA (the cancer genome atlas

breast invasive carcinoma) project, comprising gene expression data of 891 genes and micro

RNA data of 431 micro-RNAs across 500 samples. The gene expression data are treated as

continuous, and the micro-RNA data as truncated continuous. The latent correlation matrix

for the gene expression data (of size 891 by 891) can be calculated using the explicit form

of the bridge inverse function for the CC case. The correlation matrix estimates between

micro-RNAs and genes (of size 431 by 891) and between micro-RNAs (of size 431 by 431)

are calculated using the TC and the TT bridge inverse functions, respectively. The entire

latent correlation estimate is of size 1322 by 1322 (891 + 431 = 1322).

We observed that, in the QMP and AGP data, there are no pairs of variables outside of

our boundary specification (9), implying that ML and MLBD give identical estimates. In the

micro-RNA data in TCGA-BRCA, six pairs of variables are outside of the specified bounds.

We observed that maximum absolute error between ML (and MLBD) to the gold standard

is 0.0006 on both the QMP data and the AGP data. The maximum error for MLBD on the

TCGA-BRCA data is 0.0005. MLBD’s mean absolute error is 8.0e-05, 7.3e-05, and 1.1e-05

on QMP, AGP, and TCGA-BRCA data, respectively.

4.1.3 Comparison for graphical model estimation

We next assess the MLBD scheme in the context of sparse graphical model estimation with

SPRING (Semi-Parametric Rank-based approach for INference in Graphical model) (Yoon

et al., 2019). SPRING uses latent correlation estimation followed by neighborhood selection

(Meinshausen and Bühlmann, 2006) to estimate sparse graphical models from quantitative

and relative microbial abundance data. SPRING selects the optimal tuning parameter λ

level via the Stability Approach to Regularization Selection (StARS) (Liu et al., 2010) which

requires repeated subsampling of the data to estimate edge selection probabilities and thus

repeated latent correlation matrix estimation.
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Table 1: Run time (in microseconds [µs]) for latent correlation estimation across variable

pairs (C - continuous, B - binary, T - truncated).

TC TT BC BB TB

ORG 3767.28 24255.43 2516.40 2894.14 2177.13

ML 350.72 454.88 352.73 446.21 452.80

MLBD 362.72 479.92 368.92 483.67 493.77

To assess MLBD’s approximation accuracy, we measured the absolute difference of the

entries in the estimated sparse partial correlation matrices between ORG and MLBD across

two different regularization paths (λ-paths). We set the number of subsamples to 50. We

first considered a fixed λ-path with 50 values log-linearly spaced in the interval [0.006, 0.6] for

both schemes. At the StARS-selected λStARS, we observed a maximum absolute difference

of 0.0010 and mean difference of 7.4e-06, respectively, in the resulting partial correlation es-

timates. We also used a data-driven regularization path comprising 50 λ values, log-linearly

spaced in [0.01σmax, σmax] where σmax is the largest off-diagonal element in the respective

latent correlation estimates (σmax = 0.8183 for ORG, and σmax = 0.8186 for MLBD, re-

specitly). At the StARS-selected λStARS value, we observed a maximum difference of 0.0011

and a mean error of 7.8e-06 in the resulting partial correlation estimates.

4.2 Computational Speed-up

We report the numerical run times and highlight the speed-up of our approximation scheme

on all described test scenarios. Run times are measured using the microbenchmark R package

on a Linux system with Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz. Table 1 presents

run time results (in microseconds (µs)) for the synthetic data scenarios. Here, we consider

pairs of simulated variables for all five data type combinations.

The run time of the ORG method is highly data type dependent. For instance, the

TT case, which is relevant for amplicon, Chip-Seq, or single-cell data, has the longest run

time (∼ 24255µs) due to the four-dimensional normal cdfs in its bridge function. Here,
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Table 2: Run time (in seconds [s]) for latent correlation estimation on biological data.

latent correlation
SPRING on QMP

QMP AGP TCGA-BRCA

ORG 59.63† 3459.05§ 2039.52§ 1810.39§

MLBD 0.97∗ 320.56† 245.13† 68.06§

Kendall 0.94∗ 318.09† 200.27†

∗: median value over 100 repetitions and †: median value over 10 repetitions, and §: one

time result.

the ML and MLBD methods achieve a speed-up of about 50x. For the other cases, both

approximation schemes achieve a 4x − 10x speed-up compared to the direct optimization

scheme. As expected, the run time of the hybrid MLBD scheme is longer than ML but

allows tight control of approximation errors when estimated Kendall’s τ values fall outside

the boundary (see (9)).

Table 2 shows the run time results for latent correlation and graphical model estimation.

For comparison, we also include run time results for computing Kendall’s τ matrix using

cor.fk function in R package pcaPP. We observe that MLBD achieves significant speed up of

between 8x for the TCGA-BRCA data to more than 60x on the QMP data. In addition,

MLBD’s computational cost is comparable to plain Kendall’s τ calculation for the AGP and

QMP data, and is only 1.2x slower on the TCGA-BRCA data.

We next investigate the run time scaling behavior of the ORG, MLBD (using the TT

case), and Kendall’s estimators with increasing dimensions p = [20, 50, 100, 200, 300, 400] at

two different sample sizes n = 100, 6482 using the AGP data. Figure 4 summarizes the

observed scaling in a log-log plot. For all methods we observe the expected O(p2) scaling

behavior with dimension p, i.e., a linear scaling in the log-log plot. However, MLBD is

at least one order of magnitude faster than ORG and comparable in run time to standard

Kendall’s τ independent of the dimension of the problem.
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Figure 4: Computational scaling of the run time (median and standard deviation in log10

scale, in seconds) versus dimension p (in log10 scale) for the original optimization method

(ORG, two repetitions), the proposed hybrid multi-linear interpolation method (MLBD, TT

case, ten repetitions), and Kendall’s τ (Kendall, ten repetitions). The Amplicon data from

AGP is used for two different sample sizes, n = 100 (solid) and n = 6482 (dotted). All

methods show the expected O(p2) complexity as reflected in the linear run time increase

with slope ≈ 2 in the log-log plot. MLBD is one order of magnitude faster than ORG and

comparable in run time to standard Kendall’s τ .

5 Discussion

We have introduced a fast method for computing latent correlations for variable pairs of

continuous/binary/truncated types. The method is implemented in the R package mixed-

CCA and allows the estimation of latent correlations at a computational cost that is similar

to standard Kendall’s τ computation. Several improvements of the method can be pursued.

First, the hybrid MLBD method uses a boundary condition |τ̂ | > 0.9ABD, however the

constant 0.9 can be adapted for specific variable combination (TT, TC, TB, BB or TT).

Our simulation studies (Supplementary Material) suggest that a stricter boundary (lower

constant) may be needed for the BC case to achieve similar approximation error as for the
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TC case. Another alternative is to use a boundary based on the zero proportion value only.

However, this is a conservative approach as it ignores the dependence of approximation er-

ror on the size of latent correlation. For example, if the latent correlation r = F−1(τ,∆)

is very close to 0, the bound in Theorem 3 is not as large for the same value of zero pro-

portion as when |r| is close to one. Secondly, motivated by the need for fast and accurate

methods for processing modern high-dimensional sequencing data, we have focused here on

processing sparse, highly skewed count or binary data. For ordinal variable types (Quan

et al., 2018; Feng and Ning, 2019), which also have non-trivial bridge functions, our inter-

polation approach will likely also achieve faster latent correlation computation. Finally, in

its current form, our hybrid multilinear interpolation scheme requires storing pre-computed

function values on a large grid of points. An alternative potentially fruitful approach is to

construct a closed-form analytical function that approximates the inverse bridge function di-

rectly, thus completely eliminating the grid. The shape of the inverse bridge function for the

TC case (Figure 1) suggests that sigmoid log-logistic approximation functions (Kyurkchiev

and Markov, 2015, Chapter 3) could be promising candidates, since they can adapt their

smoothness to mimic the observed change from the sinusoidal function (zero proportion is

equal to zero in Figure 1) to the step function (zero proportion is equal to one). We leave

these investigations for future research.

SUPPLEMENTARY MATERIAL

Supplementary: Proofs of Theorem 3 and 4, derivation of bound (9), description of inter-

polation grid and additional approximation accuracy results for the TT, TB, BC and

BB cases (.pdf file)
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Supplementary material for “Fast
computation of latent correlations”

Grace Yoon, Christian L. Müller and Irina Gaynanova

November 5, 2020

S.1 Description of interpolation grid

In our numerical implementation, we use the same grid for both Algorithms 2 and 3,

available in the R package mixedCCA (https://github.com/irinagain/mixedCCA). For

τ , we use seq(−0.99, 0.99, by = 0.01) for the TC and TT cases. For the BC, BB and TB

cases, we construct the positive part of the grid as τ1 = c(seq(0.001, 0.095, by = 0.005)),

seq(0.101, 0.5, by = 0.007), and then we use c(−rev(τ1), 0, τ1). The grid for τ in BC, BB and

TT cases is thus more dense around zero values as those cases have more zero pairs, leading

to the decrease in the range of τ . For ∆, we first construct the grid based on the values of π0

and then convert to ∆ using the inverse of normal cdf: Φ−1 (log 10 {seq (1, 100.99, length.out = 50)})
for truncated type and Φ−1 (seq (0.01, 0.99, length.out = 50)) for the binary type, respec-

tively. The grid for truncated type is skewed to have denser grid around higher values of

π0 and coarser grid around lower value of π0 as the interpolation error decreases as the

proportion of zeros decreases. The grid sizes were chosen to satisfy 5 MB restriction on the

size of R packages on CRAN.

S.2 Approximation accuracy in calculation of latent

correlation in simulation

In this section, we complement the results of Section 4 with TC, TT, BC, BB and TB

cases using the same data generation mechanism. Figure S1 shows the mean absolute
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Figure S1: TC case. Mean absolute error of multilinear interpolation approach (ML)

and hybrid estimation approach (MLBD) as described in Section 3.3 for two simulated

variables of sample size n = 100. The y-axis represents the mean absolute error across 100

replications. One variable is truncated continuous type with varied zero proportion levels

from 0.04 to 0.96 shown on x-axis and the other variable is continuous type.

error of two approximation methods, ML and MLBD, in the TC cases. Figures S2-S5

shows maximum and mean absolute error for TT, BC, BB and TB cases. For binary

variables, we find a quantile of the variable based on the specified zero proportion value,

and then dichotomize the data by setting the value to one if it is larger than the quantile

and zero otherwise. As expected, the approximation error increases with the increase in

proportion of zeros for truncated variable. The approximation error also increases as the

binary variable gets more in-balance in the number of zeros and ones. The approximation

error for MLBD method is always better than the approximation error for ML method. A

reproducible workflow of the presented numerical results is available at https://github.

com/GraceYoon/Fast-latent-correlation.
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Figure S2: TT case. Maximum absolute error (Top) and mean absolute error (Bottom)

of multilinear interpolation approach (ML) and hybrid estimation approach (MLBD) as

described in Section 3.3 for two simulated variables of sample size n = 100. The y-axis

represents the mean absolute error across 100 replications. One variable is truncated con-

tinuous type with zero proportion π0 and the other variable is truncated continuous type

with zero proportion π0/2, where π0 is changing from 0.04 to 0.96 shown on x-axis.
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Figure S3: BC case. Maximum absolute error (Top) and mean absolute error (Bottom)

of multilinear interpolation approach (ML) and hybrid estimation approach (MLBD) as

described in Section 3.3 for two simulated variables of sample size n = 100. The y-axis

represents the mean absolute error across 100 replications. One variable is binary type

with varied zero proportion levels (x-axis) and the other variable is continuous type.
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Figure S4: BB case. Maximum absolute error (Top) and mean absolute error (Bottom)

of multilinear interpolation approach (ML) and hybrid estimation approach (MLBD) as

described in Section 3.3 for two simulated variables of sample size n = 100. The y-axis

represents the mean absolute error across 100 replications. One variable is binary type

with varied zero proportion levels (x-axis) and the other variable is also binary type with

0.5 fixed zero proportion level.
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Figure S5: TB case. Maximum absolute error (Top) and mean absolute error (Bottom)

of multilinear interpolation approach (ML) and hybrid estimation approach (MLBD) as

described in Section 3.3 for two simulated variables of sample size n = 100. The y-axis

represents the mean absolute error across 100 replications. One variable is truncated con-

tinuous type with varied zero proportion levels (x-axis) and the other variable is binary

type with 0.5 fixed zero proportion level.

6



S.3 Derivation of boundary region for multilinear in-

terpolation

The sample Kendall’s τ formula (1) in the main manuscript compares signs of all possible

pairs n(n − 1)/2 for sample size n. By subtracting how many zero pairs occur from total

number of pairs, we approximate ranges of Kendall’s τ for the TT, BC, BB and TB cases.

S3.1 TT case

Let x ∈ Rn and y ∈ Rn be the observed n realizations of two truncated continuous type

variables. Let n0x =
∑n

i=1 I(xi = 0), n0y =
∑n

i=1 I(yi = 0) be the number of zeros in each

variable, and n0both =
∑n

i=1 I(xi = 0 & yi = 0) be the number of samples having concurrent

zeros in both variables. We first find the upper bound by subtracting how many pairs are

possible between zeros in each variable from the total number of possible pairs and adding

back the number of pairs between zeros where both variables are zeros based on the general

addition rule in set operations.

|τ(x,y)| ≤


n

2


−


n0x

2


−


n0y

2


+


n0both

2





n

2




Since n0both ≤ min(n0x, n0y), we obtain

|τ(x,y)| ≤


n

2


−


n0x

2


−


n0y

2


+


min(n0x, n0y)

2





n

2




≤


n

2


−


max(n0x, n0y)

2





n

2




≤ 1− max(n0x, n0y)(max(n0x, n0y)− 1)

n(n− 1)

≈ 1−
(

max(n0x, n0y)

n

)2

= 1− {max(π0x, π0y)}2

where π0x = n0x/n and π0y = n0y/n.
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S3.2 BC case

Let x ∈ Rn and y ∈ Rn be the observed n realizations of binary and continuous variables,

respectively. Let n0 =
∑n

i=1 I(xi = 0) and π0 = n0/n. In this case, we exclude the ties,

and find the upper bound by only counting the pairs having one value of the pair as zero

and the other value as one. That is,

|τ(X, Y )| ≤ {n0(n− n0)}
/

n

2


 = 2

n0(n− n0)

n(n− 1)
= 2

(n0

n

)(n− n0

n− 1

)

≈ 2
(n0

n

)(
1− n0

n

)
= 2 (π0) (1− π0) .

(S.1)

S3.3 BB case

For binary variable, we know π0 = 1 − π1, where π1 is the proportion of zero values and

π1 is the proportion of one values. Rewriting S.1 as 2 (1− π1) (1− π0), we find the upper

bound for BB case by taking the maximal proportion between the two variables:

|τ(x,y)| ≤ 2 (1−max(π1x, π1y)) (1−max(π0x, π0y)) .

S3.4 TB case

Let x ∈ Rn and y ∈ Rn be the observed n realizations of truncated and binary variables,

respectively. Let n0x =
∑n

i=1 I(xi = 0), π0x = n0x/n, n0y =
∑n

i=1 I(yi = 0), π0y = n0y/n

and a =
∑n

i=1 I(xi = 0 & yi = 0). Then, the number of nonzero pairs is

n0y(n− n0y)− a(n0x − a) = nn0y − n2
0y − an0x + a2

=
(
a− n0x

2

)2

− n2
0x

4
+ n0y(n− n0y),

and this number of nonzero pairs is maximized at one of the extreme values of a.

First, if n0x > max (n0y, n− n0y), a satisfies n0x − n + n0y ≤ a ≤ n0y. With a =

n0x − n+ n0y,

n0y(n− n0y)− a(n0x − a) ≤ n0y(n− n0y)− (n0x − n+ n0y)(n− n0y)

= (n− n0x)(n− n0y).
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With a = n0y,

(n0y)(n− n0y)− a(n0x − a) ≤ nn0y − n2
0y − n0yn0x + n2

0y = n0y(n− n0x).

Thus, the number of nonzero pairs is bounded by

n0y(n− n0y)− a(n0x − a) ≤ max(n0y, n− n0y)× (n− n0x).

Second, if n0x ≤ max (n0y, n− n0y), either a = n0x or a = 0 maximizes the number of

nonzero pairs, which leads to the same upper bound n0y(n− n0y) as the BC case.

Combining the first and the second cases, the total number of nonzero pairs is bounded

by

n0y(n− n0y)− a(n0x − a) ≤ max(n0y, n− n0y)× (n−max(n0y, 1− n0y, n0x)).

By dividing this number by the total number of pairs


n

2


, we get the approximate upper

bound for the TB case:

|τ(x,y)| / 2 max(π0y, 1− π0y){1−max(π0y, 1− π0y, π0x)}.

S.4 Proofs of the Theorems 3 and 4

Proof of Theorem 3. From Weiser and Zarantonello (1988),

|F−1(τ,∆)− F̃−1(τ,∆)| ≤ d

8
h2 sup

x=τ,∆

∣∣∣∣
∂2F−1(x)

∂x2

∣∣∣∣ (S.2)

holds with d = 2, where h is the maximal grid width. Lemmas S.1 and S.2 give the upper

bounds of second derivatives:

∣∣∣∣
∂2F−1

∂τ 2

∣∣∣∣ ≤ |r|
π2

2
(2M2 + 1) exp(M2) and

∣∣∣∣
∂2F−1

∂∆2

∣∣∣∣ ≤ |r|
{

1 +

√
π√
2
M exp

(
M2

2

)}
.

The upper bound of the second derivative with respect to τ is always larger than the one

with respect to ∆ for all non-negative M . Thus, plugging in the second derivative with

respect to τ into (S.2) and using the constant d
8
π2

2
≤ 2 concludes the proof of Theorem 3.
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Proof of Theorem 4. Similarly to the proof of Theorem 3, assuming that ∆ ≤M for a

positive M , we have the upper bounds of second derivatives with respect to τ and ∆ from

Lemma S.3 and S.4:
∣∣∣∣
∂2F−1(τ,∆)

∂τ 2

∣∣∣∣ ≤
16|r|

{
Φ(−
√

2M)
}3 ,

∣∣∣∣
∂2F−1

∂∆2

∣∣∣∣ ≤
√

1− r2 (4 + 6M)

Φ(−
√

2M)
+

5
√

1− r2

{
Φ(−
√

2M)
}2 .

Since M is a positive and finite number, Φ(−
√

2M) ∈ (0, 0.5). For example, if M = 1.64,

Φ(−
√

2M) ≈ 0.01019. Between these two upper bounds of the second derivatives, which

one is larger depends on Φ(−
√

2M) and the size of latent correlation r. Thus we obtain

sup
x=τ,∆

∣∣∣∣
∂2F−1(x)

∂x2

∣∣∣∣ ≤
16

{
Φ(−
√

2M)
}2 max

( |F−1(τ,∆)|
Φ(−
√

2M)
,

√
1− {F−1(τ,∆)}2

)
.

S.5 Supporting lemmas

Lemma S.1. Let F−1(τ,∆) be the inverse bridge function for the binary/continuous case.

Assume −M ≤ ∆ ≤M for some positive value of M , then
∣∣∣∣
∂2F−1

∂τ 2

∣∣∣∣ ≤
π2

2
|r|(2M2 + 1) exp(M2).

Proof of Lemma S.1. The bridge function for binary/continuous case is

τ = FBC(r,∆) = F (r,∆) = 4Φ2(∆, 0; r/
√

2),−2Φ(∆)

with its inverse r = F−1(τ,∆). We first calculate the partial derivatives of bridge function

itself, and then use Lemmas S.5 and S.6 to find the second partial derivatives of bridge

inverse function.

Consider the first partial derivative of bridge function with respect to r. Using Lemma S1

from Yoon et al. (2020):

∂F (r,∆)

∂r
= 4

∂Φ2(∆, 0; r/
√

2)

∂r
= 4φ2(∆, 0; r/

√
2)/
√

2 = 2
√

2φ2(∆, 0; r/
√

2). (S.3)
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Using Lemma S.7 and the chain rule, the second partial derivative of bridge function with

respect to r is

∂2F (r,∆)

∂r2
= 2
√

2
∂φ2(∆, 0; r/

√
2)

∂(r/
√

2)

1√
2

= 2φ2(∆, 0; r/
√

2)

[
r/
√

2

1− r2/2
− ∆2r/

√
2

(1− r2/2)2

]

= φ2(∆, 0; r/
√

2)

√
2r

(1− r2/2)2

[
1− r2/2−∆2

]

= φ2(−∆, 0; r/
√

2)
2
√

2r

(2− r2)2
(2− r2 − 2∆2).

(S.4)

From Lemma S.6, we have

∂2F−1(τ,∆)

∂τ 2
= −∂

2F (r,∆)

∂r2

(
1

∂F (r,∆)
∂r

)3

. (S.5)

Therefore, plugging (S.3) and (S.4) into (S.5) gives

∂2F−1(τ,∆)

∂τ 2
= −φ2(−∆, 0; r/

√
2)

2
√

2r

(2− r2)2
(2− r2 − 2∆2)

{
1

2
√

2φ2(∆, 0; r/
√

2)

}3

= − r

(2− r2)2
(2− r2 − 2∆2)

{
1

2
√

2φ2(∆, 0; r/
√

2)

}2

.

We further simplify using φ2

(
∆, 0; r/

√
2
)

=
1

π
√

2(2− r2)
exp

{
− ∆2

2− r2

}
.

∂2F−1(τ,∆)

∂τ 2
= − r

(2− r2)2
(2− r2 − 2∆2)

1

8
π22(2− r2) exp

{
∆2

2− r2

}

= −π
2

4

r

2− r2
(2− r2 − 2∆2) exp

{
∆2

2− r2

}

= −π
2r

4
(1− 2∆2

2− r2
) exp

{
∆2

2− r2

}
.

Let z = ∆2/(2− r2). Since 2− r2 ∈ [1, 2], we have ∆2/2 ≤ z ≤ ∆2 regardless of the value

of r. Then, the second derivative with respect to τ is

∂2F−1

∂τ 2
=
π2r

2
(2z − 1) exp(z). (S.6)

For z ≤ 1
2
, we have the second derivative bounded by

∣∣∣∣
∂2F−1

∂τ 2

∣∣∣∣ ≤
π2|r|

2
. (S.7)
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For z > 1
2
, (S.6) is strictly increasing in z. Thus, if |∆| ≤M , we have

∣∣∣∣
∂2F−1

∂τ 2

∣∣∣∣ ≤
π2

2
|r(2M2 − 1)| exp(M2). (S.8)

To combine both cases (S.7) and (S.8) for all z, we use max (1, |2M2 − 1|) ≤ |2M2 + 1|.

Lemma S.2. Let F−1(τ,∆) be the inverse bridge function for the binary/continuous case.

Assume −M ≤ ∆ ≤M for some positive value of M , then
∣∣∣∣
∂2F−1

∂∆2

∣∣∣∣ ≤ |r|
(

1 +

√
π√
2
M exp(M2/2)

)
.

Proof of Lemma S.2. First, we calculate the first partial derivative of bridge function

with respect to ∆:

∂F (r,∆)

∂∆
= 4

∫ 0

−∞
φ2(∆, x2; r/

√
2)dx2 − 2φ(∆)

= 4

∫ 0

−∞
φ(∆)φ(x2|x1 = ∆, r/

√
2)dx2 − 2φ(∆)

= 2φ(∆)
{

2Φ(0|x1 = ∆, r/
√

2)− 1
}
,

(S.9)

where φ(x2|x1 = ∆, r/
√

2) denotes the conditional distribution of X2|X1 = ∆ where the

correlation between X1 and X2 is r/
√

2. For bivariate random variable (X1, X2) with

correlation r/
√

2, φ(x2|x1 = ∆, r/
√

2) is the density of the normal distribution with mean

r∆/
√

2 and variance 1− r2/2. Thus, Φ(0|x1 = ∆, r/
√

2) can be simplified as below where

z = −r∆/
√

2√
1−r2/2

.

Φ(0|x1 = ∆, r/
√

2) =

∫ 0

−∞

1√
2π
(
1− r2

2

) exp



−

1

2


 x2 − r∆√

2√
1− r2

2




2
 dx2 = Φ (z) . (S.10)

Plugging (S.10) into (S.9) gives

∂F (r,∆)

∂∆
= 2φ(∆) {2Φ(z)− 1} . (S.11)

Based on the chain rule, the first partial derivative of inverse bridge function with respect

to ∆ is

∂F−1(τ,∆)

∂∆
=
∂F−1(τ,∆)

∂τ

∂τ

∂∆
=

1
∂F (r,∆)
∂r

∂F (r,∆)

∂∆
. (S.12)
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Using (S.11) and (S.3), we obtain

∂F−1

∂∆
=
∂F

∂∆

/∂F
∂r

=
2φ(∆) {2Φ(z)− 1}
2
√

2φ2(∆, 0; r/
√

2)
.

In addition, we replace φ and φ2 with the normal density function formula and rearrange

further to simplify.

∂F−1

∂∆
=

1√
2π

exp{−∆2/2} {2Φ(z)− 1}
√

2 1

π
√

2(2−r2)
exp{− ∆2

2−r2}

=
π
√

2
√

2− r2

2
√
π

exp

{
−∆2(2− r2)− 2∆2

2(2− r2)

}
{2Φ(z)− 1}

=
(√

π
√

1− r2/2
)

exp



−

1

2

(
r∆/
√

2√
1− r2/2

)2


 {2Φ(z)− 1}

=

√
1− r2/2 {2Φ(z)− 1}√

2φ(z)
.

Next, the second derivative with respect to ∆ is

∂2F−1

∂∆2
=

√
1− r2/2√

2

{
2∂Φ(z)

∂∆

φ(z)
− (2Φ(z)− 1)

φ(z)2

∂φ(z)

∂∆

}
.

Using the chain rules:

∂Φ(z)

∂∆
=
∂Φ(z)

∂z

∂z

∂∆
= φ(z)

∂z

∂∆
and

∂φ(z)

∂∆
=
∂φ(z)

∂z

∂z

∂∆
= −zφ(z)

∂z

∂∆
,

we get

∂2F−1

∂∆2
=

√
1− r2/2√

2

{
2φ(z) ∂z

∂∆

φ(z)
+

(2Φ(z)− 1)

φ(z)2
zφ(z)

∂z

∂∆

}

=

√
1− r2/2√

2

{
2
∂z

∂∆
+
z(2Φ(z)− 1)

φ(z)

∂z

∂∆

}
.

Plugging
∂z

∂∆
= − r/

√
2√

1− r2/2
into the previous equation gives

∂2F−1

∂∆2
=

√
1− r2/2√

2
2
−r/
√

2√
1− r2/2

+

√
1− r2/2√

2

z −r/
√

2√
1−r2/2

(2Φ(z)− 1)

φ(z)

= −r +
−rz(2Φ(z)− 1)

2φ(z)
= −r

{
1 +

z(2Φ(z)− 1)

2φ(z)

}
.
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Using |2Φ(z)−1| ≤ 1 and 1/φ(z) =
√

2π exp(z2/2), we find that the second derivative with

respect to ∆ is bounded by
∣∣∣∣
∂2F−1

∂∆2

∣∣∣∣ ≤ |r|
(

1 +

√
π√
2
|z| exp(z2/2)

)
.

Recall that z = −r∆/
√

2√
1−r2/2

. |z| ≤ |∆| follows from −M ≤ ∆ ≤M for some positive constant

M and −1 ≤ r ≤ 1. This completes the proof.

Lemma S.3. Let F−1(τ,∆) be the inverse bridge function for the truncated/continuous

case. Assume ∆ ≤M for some positive value of M , then
∣∣∣∣
∂2F−1

∂τ 2

∣∣∣∣ ≤
16|r|

{
Φ(−
√

2M)
}3 .

Proof of Lemma S.3. The bridge function for truncated/continuous case is

τ = FTC(r,∆) = F (r,∆) = −2Φ2(−∆, 0; 1/
√

2) + 4Φ3 (−∆, 0, 0; Σ3(r))

where Σ3(r) =




1 1/
√

2 r/
√

2

1/
√

2 1 r

r/
√

2 r 1


 and we let inverse be r = F−1(τ,∆). Similarly

to the proof of Lemma S.1, we first calculate the first partial derivative of bridge function

with respect to r.

∂F (r,∆)

∂r
= 4

∂

∂r
Φ3 (−∆, 0, 0; Σ3(r))

= 4

∫ 0

−∞
φ3(−∆, x2, 0; Σ3(r))dx2

1√
2

+ 4

∫ −∆

−∞
φ3(x1, 0, 0; Σ3(r))dx1.

(S.13)

For X1, X2, X3 ∼ N
(

(0 0 0)> ,Σ3(r)
)

, the conditional distribution of X2|X1 = −∆, X3 =

0 is normal distribution with mean
−
√

2(1− r2)∆

2− r2
and the variance

1− r2

2− r2
. Therefore, the

first integral term of (S.13) can be simplified as
∫ 0

−∞
φ3(−∆, x2, 0; Σ3(r))dx2 =

∫ 0

−∞
φ2(−∆, 0; r/

√
2)φ

(
x2|x1 = −∆, x3 = 0;

1− r2

2− r2

)
dx2

= φ2(−∆, 0; r/
√

2)Φ


∆

√
2(1− r2)

2− r2


 .

(S.14)
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Similarly, using the conditional distribution X1|X2 = 0, X3 = 0 ∼ N (0, 1/2), the second

term of (S.13) can be re-written as

∫ −∆

−∞
φ3(x1, 0, 0; Σ3(r))dx1 =

∫ −∆

−∞
φ2(0, 0; r)φ(x1|x2 = 0, x3 = 0; 1/2)dx1

= φ2(0, 0; r)Φ(−
√

2∆).

(S.15)

Plugging (S.14) and (S.15) into (S.13) results in

∂F (r,∆)

∂r
= 2
√

2φ2

(
−∆, 0; r/

√
2
)

Φ

(
∆

√
2(1− r2)

2− r2

)
+ 4φ2(0, 0; r)Φ(−

√
2∆).

Using the fact that φ2(0, 0; r) = 1
2π
√

1−r2 further gives

∂F (r,∆)

∂r
= 2
√

2φ2

(
−∆, 0; r/

√
2
)

Φ

(
∆

√
2(1− r2)

2− r2

)
+

2

π
√

1− r2
Φ(−
√

2∆). (S.16)

Then, the second partial derivative with respect to r is

∂2F (r,∆)

∂r2
=

∂

∂r



2
√

2φ2

(
−∆, 0; r/

√
2
)

Φ


∆

√
2(1− r2)

2− r2


+

2

π
√

1− r2
Φ(−
√

2∆)





= 2
√

2
∂

∂r
φ2

(
−∆, 0; r/

√
2
)

Φ


∆

√
2(1− r2)

2− r2




+ 2
√

2φ2

(
−∆, 0; r/

√
2
) ∂

∂r
Φ


∆

√
2(1− r2)

2− r2




+
2

π
Φ(−
√

2∆)
∂

∂r

(
1√

1− r2

)
.

(S.17)

Next we find three partial derivatives with respect to r in the previous display separately.

∂

∂r
φ2

(
−∆, 0; r/

√
2
)

=
1√
2
φ2(−∆, 0; r/

√
2)

[
r/
√

2

1− r2/2
− ∆2r/

√
2

(1− r2/2)2

]

= φ2(−∆, 0; r/
√

2)

[
r

2− r2
− ∆2r

(2− r2)2/2

]

= φ2(−∆, 0; r/
√

2)

[
r(2− r2)− 2∆2r

(2− r2)2

]

= φ2(−∆, 0; r/
√

2)
r(2− r2 − 2∆2)

(2− r2)2
.

(S.18)
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∂

∂r
Φ


∆

√
2(1− r2)

2− r2


 = φ


∆

√
2(1− r2)

2− r2


 ∂

∂r



∆

√
2(1− r2)

2− r2





= φ


∆

√
2(1− r2)

2− r2



√

2∆

2

(
1− r2

2− r2

)−1/2 −2r

(2− r2)2

= φ


∆

√
2(1− r2)

2− r2


 −

√
2r∆

(1− r2)1/2(2− r2)3/2
.

(S.19)

∂

∂r

(
1√

1− r2

)
=

(
−1

2

)
(1− r2)−3/2(−2r) =

r

(1− r2)3/2
. (S.20)

Plugging (S.18), (S.19) and (S.20) into (S.17) and rearranging yields

∂2F (r,∆)

∂r2
= 2
√

2φ2(−∆, 0; r/
√

2)
r(2− r2 − 2∆2)

(2− r2)2
Φ


∆

√
2(1− r2)

2− r2




+ 2
√

2φ2

(
−∆, 0; r/

√
2
)
φ


∆

√
2(1− r2)

2− r2


 −

√
2r∆

(1− r2)1/2(2− r2)3/2

+
2r

π(1− r2)3/2
Φ(−
√

2∆)

= −2
√

2r(2− r2 − 2∆2)

(2− r2)2
φ2(−∆, 0; r/

√
2)Φ

(
∆

√
2(1− r2)

2− r2

)

− 4r∆

(2− r2)3/2(1− r2)1/2
φ2(−∆, 0; r/

√
2)φ

(
∆

√
2(1− r2)

2− r2

)

+
2r

π
√

(1− r2)3
Φ(−
√

2∆).

(S.21)

From (S.5), we have

∂2F−1(τ,∆)

∂τ 2
= −

∂2F (r,∆)
∂r2{

2
√

2φ2

(
−∆, 0; r/

√
2
)

Φ

(
∆
√

2(1−r2)
2−r2

)
+ 2

π
√

1−r2 Φ(−
√

2∆)

}3 .

Here, φ2

(
−∆, 0; r/

√
2
)

Φ

(
∆
√

2(1−r2)
2−r2

)
in the denominator is always non-negative. We

find the upper bound of this second derivative of F−1 with respect to τ by eliminating the

non-negative term in the denominator.

∣∣∣∣
∂2F−1(τ,∆)

∂τ 2

∣∣∣∣ ≤

∣∣∣∣∣∣∣

∂2F (r,∆)
∂r2{

2
π
√

1−r2 Φ(−
√

2∆)
}3

∣∣∣∣∣∣∣
.
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Plugging (S.21) into the numerator of the previous display and rearranging results in

∣∣∣∣
∂2F−1(τ,∆)

∂τ 2

∣∣∣∣

≤
∣∣∣∣∣−

2
√

2r(2− r2 − 2∆2)

(2− r2)2
φ2(−∆, 0; r/

√
2)Φ

(
∆

√
2(1− r2)

2− r2

)
π3(1− r2)3/2

23
{

Φ(−
√

2∆)
}3

+
4r∆

(2− r2)3/2(1− r2)1/2
φ2(−∆, 0; r/

√
2)φ

(
∆

√
2(1− r2)

2− r2

)
π3(1− r2)3/2

23
{

Φ(−
√

2∆)
}3

− rπ2

(
Φ(−
√

2∆)
)2

∣∣∣∣∣

≤ |r|
∣∣∣∣∣
2
√

2(2− r2 − 2∆2)

(2− r2)2
φ2(−∆, 0; r/

√
2)Φ

(
∆

√
2(1− r2)

2− r2

)
π3(1− r2)3/2

23
{

Φ(−
√

2∆)
}3

∣∣∣∣∣

+ |r|
∣∣∣∣∣
4∆(1− r2)

(2− r2)3/2
φ2(−∆, 0; r/

√
2)φ

(
∆

√
2(1− r2)

2− r2

)
π3

23
{

Φ(−
√

2∆)
}3

∣∣∣∣∣

+ |r|
∣∣∣∣∣

π2

(
Φ(−
√

2∆)
)2

∣∣∣∣∣ .

To further simplify, we use 2 − r2 ∈ [1, 2], 1 − r2 ∈ [0, 1], Φ(x) ≤ 1 for all x ∈ R and

1−r2
(2−r2)3/2

≤ 1
2
√

2
for all r ∈ [−1, 1]. In addition, we have

φ

(
∆

√
2(1− r2)

2− r2

)
≤ φ (|∆|) =

1√
2π

exp

{
−∆2

2

}

from 0 ≤ 2(1−r2)
2−r2 ≤ 1 and

φ2

(
−∆, 0; r/

√
2
)

=
1

π
√

2(2− r2)
exp

{
− ∆2

2− r2

}
≤ 1

π
√

2
exp

{
−∆2

2

}
.

Therefore,

∣∣∣∣
∂2F−1(τ,∆)

∂τ 2

∣∣∣∣

≤ |r|
∣∣∣∣∣
2
√

2

π
√

2
(2− r2 − 2∆2) exp

{
−∆2

2

}
π3

23
{

Φ(−
√

2∆)
}3

∣∣∣∣∣

+ |r|
∣∣∣∣∣4
|∆|
π
√

2
exp

{
−∆2

2

}
1√
2π

exp

{
−∆2

2

}
π3

23
{

Φ(−
√

2∆)
}3

∣∣∣∣∣+ |r|
∣∣∣∣∣

π2

(
Φ(−
√

2∆)
)2

∣∣∣∣∣ ,
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and further cancelling and rearranging gives
∣∣∣∣
∂2F−1(τ,∆)

∂τ 2

∣∣∣∣

≤ |r|π
2

22

|2− r2 − 2∆2| exp

{
−∆2

2

}

{
Φ(−
√

2∆)
}3 + |r|π

3/2

4

|∆| exp {−∆2}
{

Φ(−
√

2∆)
}3 + |r| π2

{
Φ(−
√

2∆)
}2 .

Assume that ∆ ≤M for some positive constant M . Otherwise, Φ(−
√

2∆)→ 0 which leads

the upper bound of second derivative of F−1 with respect to τ to infinity. Using the fact

that |∆ exp {−∆2}| ≤ exp{−1/2}/
√

2 for all ∆ ∈ R, we obtain

∣∣∣∣
∂2F−1(τ,∆)

∂τ 2

∣∣∣∣

≤ |r|π
2

22

|2− r2 − 2∆2| exp

{
−∆2

2

}

{
Φ(−
√

2M)
}3 + |r|π

3/2

4
√

2

exp{−1/2}
{

Φ(−
√

2M)
}3 + |r| π2

{
Φ(−
√

2M)
}2 .

(S.22)

From 2− r2 ∈ [1, 2], we have 1− 2∆2 < 2− r2 − 2∆2 < 2− 2∆2. If ∆2 = 3/4, |2− 2∆2| =
|1− 2∆2| = 1/2. For ∆2 < 3/4, |2− r2 − 2∆2| ≤ 2− 2∆2 which leads to

|2− r2 − 2∆2| exp

{
−∆2

2

}
≤ (2− 2∆2) exp

{
−∆2

2

}
≤ 2. (S.23)

On the other hand, if ∆2 > 3/4, |2− r2 − 2∆2| ≤ 2∆2 − 1. Thus,

|2− r2 − 2∆2| exp

{
−∆2

2

}
≤ (2∆2 − 1) exp

{
−∆2

2

}
≤ 4 exp {−1/2} .

Using 4 exp {−1/2} < 2 and (S.23), we obtain |2−r2−2∆2| exp {−∆2/2} ≤ 2 for all ∆ ∈ R

and (S.22) can be simplified as
∣∣∣∣
∂2F−1(τ,∆)

∂τ 2

∣∣∣∣ ≤
|r|π2

{
Φ(−
√

2M)
}3

[
1

2
+

exp{−1/2}
4
√

2π
+
{

Φ(−
√

2M)
}]

.

Finally, using π2

{
1

2
+

exp(−1/2)

4
√

2π
+ 1

}
≤ 16 completes the proof.

Lemma S.4. Let F−1(τ,∆) be the inverse bridge function for the truncated/continuous

case. Assume ∆ ≤M for some positive value of M , then

∣∣∣∣
∂2F−1

∂∆2

∣∣∣∣ ≤
√

1− r2 (4 + 6M)

Φ(−
√

2M)
+

5
√

1− r2

{
Φ(−
√

2M)
}2 .
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Proof of Lemma S.4. Consider the first partial derivative of bridge function F with

respect to ∆:

∂F (r,∆)

∂∆
=

∂

∂∆

[
−2Φ2(−∆, 0; 1/

√
2) + 4Φ3 (−∆, 0, 0; Σ3(r))

]

= −2
∂

∂∆

∫ −∆

−∞

∫ 0

−∞
φ2(x1, x2; 1/

√
2)dx2dx1

+ 4
∂

∂∆

∫ −∆

−∞

∫ 0

−∞

∫ 0

−∞
φ3 (x1, x2, x3; Σ3(r)) dx3dx2dx1

= 2

∫ 0

−∞
φ2(−∆, x2; 1/

√
2)dx2 − 4

∫ 0

−∞

∫ 0

−∞
φ3 (−∆, x2, x3; Σ3(r)) dx2dx3

(S.24)

For a bivariate random variable (X1, X2) with mean (0 0)> and correlation 1/
√

2, the

conditional distribution X2|X1 = −∆ satisfies N(−∆/2, 1/2). Then, the first integral term

in the previous display can be simplified as

∫ 0

−∞
φ2(−∆, x2; 1/

√
2)dx2 =

∫ 0

−∞
φ(−∆)φ(x2|x1 = −∆; 1/

√
2)dx2

= φ(∆)

∫ 0

−∞

1√
2π/
√

2
exp

{
−1

2

(
x2 + ∆/2

1/
√

2

)2
}
dx2

= φ(∆)Φ(∆/
√

2).

(S.25)

Note that φ(∆) = φ(−∆). For X1, X2, X3 ∼ N
(

(0 0 0)> ,Σ3(r)
)

, since the conditional

distribution is

X2, X3|X1 = −∆ ∼ N




−

∆√
2

− r∆√
2


 ,Σ2(r) =


1/2 r/2

r/2 (2− r2)/2




 , (S.26)

we have
∫ 0

−∞

∫ 0

−∞
φ3 (−∆, x2, x3; Σ3(r)) dx2dx3

=

∫ 0

−∞

∫ 0

−∞
φ(−∆)φ2 (x2, x3|x1 = −∆; Σ2(r)) dx2dx3.

If we let g(r,∆) =
∫ 0

−∞
∫ 0

−∞ φ2 (x2, x3|x1 = −∆; Σ2(r)) dx2dx3, then the second term in

(S.24) is ∫ 0

−∞

∫ 0

−∞
φ3 (−∆, x2, x3; Σ3(r)) dx2dx3 = φ(∆)g(r,∆). (S.27)
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Using (S.25) and (S.27), we obtain

∂F (r,∆)

∂∆
= 2φ(∆)Φ(∆/

√
2)− 4φ(∆)g(r,∆).

Using (S.12), we obtain the first partial derivative of F−1 with respect to ∆

∂F−1

∂∆
=
∂F

∂∆

/∂F
∂r

=
2φ(∆)Φ(∆/

√
2)− 4φ(∆)g(r,∆)

2
√

2φ2

(
−∆, 0; r/

√
2
)

Φ

(
∆
√

2(1−r2)
2−r2

)
+ 2

π
√

1−r2 Φ(−
√

2∆)

.

Let the whole term in the denominator of ∂F−1

∂∆
as H(r,∆), then the second derivative of

F−1 with respect to ∆ is

∂2F−1

∂∆2
=

∂

∂∆

2φ(∆)Φ(∆/
√

2)− 4φ(∆)g(r,∆)

H(r,∆)

=
−2∆φ(∆)Φ(∆/

√
2) +

√
2φ(∆)φ(∆/

√
2) + 4∆φ(∆)g(r,∆)− 4φ(∆)∂g(r,∆)

∂∆

H(r,∆)

− 2φ(∆)Φ(∆/
√

2)− 4φ(∆)g(r,∆)

H(r,∆)2

∂H(r,∆)

∂∆
.

(S.28)

Here, H(r,∆) can be rewritten as below using normal probability density function.

H(r,∆) =
2

π
√

2− r2
exp

{
− ∆2

2− r2

}
Φ

(
∆

√
2(1− r2)

2− r2

)
+

2

π
√

1− r2
Φ(−
√

2∆)

Since 2
π
√

2−r2 exp
{
− ∆2

2−r2
}

Φ

(
∆
√

2(1−r2)
2−r2

)
≥ 0, we have

H(r,∆) ≥ 2

π
√

1− r2
Φ(−
√

2∆)

and we find the upper bound for H(r,∆)−1 and H(r,∆)−2 from this lower bound.

1

H(r,∆)
≤ π

√
1− r2

2Φ(−
√

2∆)

1

H(r,∆)2
≤ π2(1− r2)

22
{

Φ(−
√

2∆)
}2 .

(S.29)

The first derivative of H(r,∆) is

∂H(r,∆)

∂∆
=

2

π
√

2− r2
exp

{
− ∆2

2− r2

}(
− 2∆

2− r2

)
Φ

(
∆

√
2(1− r2)

2− r2

)

+
2

π
√

2− r2
exp

{
− ∆2

2− r2

}
φ

(
∆

√
2(1− r2)

2− r2

)√
2(1− r2)

2− r2

+
2

π
√

1− r2
φ(−
√

2∆)(−
√

2).
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Using the facts that |∆ exp{−∆2/2}| ≤ exp{−1/2}, exp{−∆2/2} ≤ 1 for all ∆ and φ(x) ≤
1√
2π

for all x ∈ R, we obtain

∣∣∣∣
∂H(r,∆)

∂∆

∣∣∣∣ ≤
4

π
exp

{
−1

2

}
+

2

π

1√
2π

+
2
√

2

π
√

1− r2

1√
2π

≤ c1 + c2
1√

1− r2

(S.30)

where c1 = 4
π

exp
{
−1

2

}
+
√

2
π
√
π

and c2 = 2
π
√
π

are constants that do not depend on r and ∆.

Plugging (S.29) and (S.30) into (S.28) gives us
∣∣∣∣
∂2F−1

∂∆2

∣∣∣∣

≤ π
√

1− r2

2Φ(−
√

2∆)

{
2|∆|φ(∆)Φ(∆/

√
2) +

√
2

2π
+ 4|∆|φ(∆)g(r,∆) + 4φ(∆)

∣∣∣∣
∂g(r,∆)

∂∆

∣∣∣∣

}

−
(
c1 + c2

1√
1− r2

)
π2(1− r2)

22
{

Φ(−
√

2∆)
}2

∣∣∣2φ(∆)Φ(∆/
√

2)− 4φ(∆)g(r,∆)
∣∣∣ .

We use |∆|φ(∆) ≤ exp{−1/2}/
√

2π and φ(x) ≤ 1√
2π

for all x ∈ R to simplify further.

∣∣∣∣
∂2F−1

∂∆2

∣∣∣∣ ≤
π
√

1− r2

2Φ(−
√

2∆)

[
2 exp

{
−1

2

}
√

2π
+

√
2

2π
+

4 exp
{
−1

2

}
√

2π
g(r,∆) +

4√
2π

∣∣∣∣
∂g(r,∆)

∂∆

∣∣∣∣

]

+
π2
√

1− r2
(
c2 + c1

√
1− r2

)

22
{

Φ(−
√

2∆)
}2

∣∣∣∣
2

2π
− 4√

2π
g(r,∆)

∣∣∣∣ .

(S.31)

Next, we find the upper bound for g(r,∆) and ∂g(r,∆)
∂∆

.

g(r,∆) =

∫ 0

−∞

∫ 0

−∞
φ2 (x2, x3|x1 = −∆; Σ2(r)) dx2dx3

=

∫ 0

−∞

∫ 0

−∞
φ
(
x3|x2; rx2

2, 1− r2
)
dx3φ

(
x2;−∆/

√
2, 1/2

)
dx2

=

∫ 0

−∞

∫ 0

−∞

1√
2π(1− r2)

exp

{
−(x3 − rx2)2

2(1− r2)

}
dx3

1√
π

exp

{
−
(
x2 +

∆√
2

)2
}
dx2

=
1√
π

∫ 0

−∞
Φ

( −rx2√
1− r2

)
exp

{
−
(
x2 +

∆√
2

)2
}
dx2.

For bivariate random variable (x2, x3|x1 = −∆) in (S.26), the conditional distribution

X3|X2 = x2 is normally distributed with mean rx2
2 and variance 1 − r2, denoted as

21



φ (x3|x2; rx2
2, 1− r2) in the second line. φ

(
x2;−∆/

√
2, 1/2

)
denotes probability density

function of a normal variable x2 with mean −∆/
√

2 and variance 1/2. The upper bound

for g(r,∆) is

|g(r,∆)| ≤ 1√
π

∫ 0

−∞
exp



−

1

2

(
x2 + ∆/

√
2

1/
√

2

)2


 dx2 = Φ(∆) ≤ 1. (S.32)

The first derivative of g(r,∆) with respect to ∆ is

∂g(r,∆)

∂∆
=

1√
π

∫ 0

−∞
Φ

( −rx2√
1− r2

)
exp

{
−(x2 + ∆/

√
2)2
}

(−
√

2x2 −∆)dx2

= −
√

2

π

∫ 0

−∞
x2Φ

( −rx2√
1− r2

)
exp

{
−(x2 + ∆/

√
2)2
}
dx2 −∆g(r,∆),

and the upper bound is

∣∣∣∣
∂g(r,∆)

∂∆

∣∣∣∣ ≤
∣∣∣∣∣

√
2

π

∫ 0

−∞
x2 exp

{
−(x2 + ∆/

√
2)2
}
dx2

∣∣∣∣∣+ |∆|Φ(∆).

Using the change of variable technique via y =
√

2(x2 + ∆/
√

2) yields

∣∣∣∣∣

√
2

π

∫ 0

−∞
x2 exp

{
−(x2 + ∆/

√
2)2
}
dx2

∣∣∣∣∣

=

∣∣∣∣∣

√
2√

2π

∫ ∆

−∞

(
y√
2
− ∆√

2

)
exp

{
−y

2

2

}
dy

∣∣∣∣∣

=

∣∣∣∣∣

√
2√

2π

∫ ∆

−∞

y√
2

exp

{
−y

2

2

}
dy

∣∣∣∣∣+

∣∣∣∣∣

√
2√

2π

∫ ∆

−∞

∆√
2

exp

{
−y

2

2

}
dy

∣∣∣∣∣

≤ 1√
2π

exp

{
−∆2

2

}
+ |∆|Φ(∆).

Therefore, assume that ∆ ≤M for a positive M ,

∣∣∣∣
∂g(r,∆)

∂∆

∣∣∣∣ =
1√
2π

exp

{
−∆2

2

}
+ 2|∆|Φ(∆) ≤ 1√

2π
+ 2M.

Plugging the upper bound of g(r,∆) and
∂g(r,∆)

∂∆
into (S.31) gives

∣∣∣∣
∂2F−1

∂∆2

∣∣∣∣ ≤ π
√

1− r2

2Φ(−
√

2∆)

[
c3 +

4√
2π

(
1√
2π

+ 2M

)]
+
π2
√

1− r2
(
c2 + c1

√
1− r2

)
c4

22
{

Φ(−
√

2∆)
}2
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where c3 =
2 exp

{
−1

2

}
√

2π
+

√
2

2π
+

4 exp
{
−1

2

}
√

2π
≈ 1.68 and c4 =

4√
2π
− 1

π
≈ 1.28. Note that

√
1− r2 ≥ 1 − r2 for all r ∈ (−1, 1). To further simplify, we use

π

2
c3 + 1 ≤ 4, 2

√
2π ≤ 6

and
π2c4(c1 + c2)

22
≤ 5. This concludes the proof.

Lemma S.5. Let f−1 is an inverse function of f such that y = f(x) and x = f−1(y).

Then,
∂f−1(y)

∂y
=

1
∂f(x)
∂x

(expressed in y).

Proof of Lemma S.5. We take a derivative with respect to x on both side of f−1(y) = x,

then we obtain
∂f−1(y)

∂x
= 1. By the chain rule,

∂f−1(y)

∂y

∂y

∂x
= 1.

Therefore,

∂f−1(y)

y
=

1
∂y
∂x

=
1

∂f(x)
∂x

.

Lemma S.6. Let f−1 be an inverse function of f such that y = f(x) and x = f−1(y).

Then,

∂2f−1(y)

∂y2
= −∂

2f(x)

∂x2

(
1

∂f(x)
∂x

)3

(expressed in y).

Proof of Lemma S.6. From the result of Lemma S.5, we differentiate ∂f−1(y)
∂y

one more

time with respect to y using the chain rule to obtain

∂

∂y

∂f−1(y)

∂y
=

∂

∂y

1
∂f(x)
∂x

= − 1
(
∂f(x)
∂x

)2

∂2f(x)

∂x2

∂x

∂y
= − 1

(
∂f(x)
∂x

)2

∂2f(x)

∂x2

∂f−1(y)

∂y
.

Lemma S.7. For the bivariate normal probability density function with mean 0 and cor-

relation r,

φ(x1, x2; r) =
1

2π

1√
1− r2

exp

[
− 1

2(1− r2)

{
x2

1 + 2rx1x2 + x2
2

}]
,
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the partial derivative with respect to r and x1 is

∂φ(x1, x2; r)

∂r
= φ(x1, x2; r)

[
r

1− r2
− x1x2

1− r2
− (x2

1 + 2rx1x2 + x2
2)r

(1− r2)2

]

∂φ(x1, x2; r)

∂x1

= −φ(x1, x2; r)
x1 + rx2

1− r2
.

Proof of Lemma S.7.

Consider

∂φ(x1, x2; r)

∂r
=

{
∂

∂r

1√
1− r2

}
1

2π
exp

[
−x

2
1 + 2rx1x2 + x2

2

2(1− r2)

]

+ φ(x1, x2; r)

[
∂

∂r

{
−x

2
1 + 2rx1x2 + x2

2

2(1− r2)

}]

= −1

2

1√
1− r2

−2r

1− r2

1

2π
exp

[
− 1

2(1− r2)

{
x2

1 + 2rx1x2 + x2
2

}]

+ φ(x1, x2; r)

{
− 2x1x2

2(1− r2)
− x2

1 + 2rx1x2 + x2
2

2

(
− −2r

(1− r2)2

)}

= φ(x1, x2; r)

[
r

1− r2
− x1x2

1− r2
− (x2

1 + 2rx1x2 + x2
2)r

(1− r2)2

]
.

Next

∂φ(x1, x2; r)

∂x1

= φ(x1, x2; r)

[
∂

∂x1

{
− 1

2(1− r2)

(
x2

1 + 2rx1x2 + x2
2

)}]

= −φ(x1, x2; r)
1

2(1− r2)
{2x1 + 2rx2}

= −φ(x1, x2; r)
x1 + rx2

1− r2
.
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