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Graphical Abstract

∙ Long-term lifestyle habits including diet, physical activity, smoking and alco-
hol consumption jointly shape epigenetic patterns and affect methylation age.

∙ These effects clearly dominate over those driven by age and obesity alone.
∙ An interplay of lifestyle aspects needs to be considered when analysing epige-
netic data with regard to complex metabolic diseases.
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Abstract
Objective: Obesity is driven by modifiable lifestyle factors whose effects may
be mediated by epigenetics. Therefore, we investigated lifestyle effects on blood
DNA methylation in participants of the LIFE-Adult study, a well-characterised
population-based cohort from Germany.
Research design and methods: Lifestyle scores (LS) based on diet, physical
activity, smoking and alcohol intake were calculated in 4107 participants of the
LIFE-Adult study. Fifty subjects with an extremely healthy lifestyle and 50 with
an extremely unhealthy lifestyle (5th and 95th percentiles LS) were selected for
genome-wide DNA methylation analysis in blood samples employing Illumina
Infinium R©Methylation EPIC BeadChip system technology.
Results: Differences in DNA methylation patterns between body mass index
groups (<25 vs. >30 kg/m2) were rather marginal compared to inter-lifestyle dif-
ferences (0 vs. 145 differentially methylated positions [DMPs]), which identified
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4682 differentially methylated regions (DMRs; false discovery rate [FDR <5%)
annotated to 4426 unique genes. A DMR annotated to the glutamine-fructose-6-
phosphate transaminase 2 (GFPT2) locus showed the strongest hypomethylation
(∼6.9%), and one annotated to glutamate rich 1 (ERICH1) showed the strongest
hypermethylation (∼5.4%) in healthy compared to unhealthy lifestyle individu-
als. Intersection analysis showed that diet, physical activity, smoking and alcohol
intake equally contributed to the observed differences, which affected, among
others, pathways related to glutamatergic synapses (adj. p < .01) and axon guid-
ance (adj. p< .05).We showed thatmethylation age correlateswith chronological
age andwaist-to-hip ratio with lowerDNAmethylation age (DNAmAge) acceler-
ation distances in participants with healthy lifestyles. Finally, two identified top
DMPs for the alanyl aminopeptidase (ANPEP) locus also showed the strongest
expression quantitative trait methylation in blood.
Conclusions: DNA methylation patterns help discriminate individuals with a
healthy versus unhealthy lifestyle, which may mask subtle methylation differ-
ences derived from obesity.

KEYWORDS
alcohol, diet, DNA methylation, epigenetic clock, epigenetics, lifestyle score, physical activity,
smoking

1 OBJECTIVE

Obesity is well recognised as a multifactorial disease
in most modern societies, with not only individuals’
genetic background contributing to the disease burden
but also with a crucial role of lifestyle and environment,
strongly influencing epigenetic mechanisms controlling
metabolic processes.1 However, common lifestyle inter-
vention regimes vary greatly in structure and length and,
thus, in their individual success on weight reduction
(reviewed in Aronica et al.2). Observed direct effects, for
example, on DNA methylation patterns after short-term
lifestyle interventions, are oftenmarginal,2 whichmight be
due to their short duration and low intensity.3 Recent stud-
ies have demonstrated that successful short-term weight
loss interventions may reduce methylation age (mAge) to
the chronological age level.4 Furthermore, DNA methyla-
tion patterns may predict the success of lifestyle-induced
weight loss.5–7
Comprehensive studies investigating the underlying

interaction between genetics, epigenetics and especially
lifestyle are currently lacking. Therefore, we (1) analysed
and compared the human blood DNA methylation pat-
terns between subjects living a healthy lifestyle and those
living an unhealthy lifestyle. (2) We further compared
obese and nonobese subjects to identify DNA methylation
patterns, which are related to an obese phenotype despite

a healthy lifestyle or potentially associated with a healthy
(lean) phenotype in an allegedly unhealthy obesogenic
environment. (3) We elucidated lifestyle-specific effects on
the epigenetic clock. (4) Finally, we investigated the role
of genetic variants cis to the identified target regions by
methylation quantitative trait loci (meQTL) analyses and
addressed the potential consequences of these changes on
the blood transcriptome by matrix expression quantitative
trait methylations (eQTMs).

2 RESEARCH DESIGN ANDMETHODS

2.1 Study population

The present analyses included participants of the LIFE-
Adult study, a population-based cohort of European ances-
try, focusing on lifestyle diseases.8,9 The cohort com-
prised ∼10 000 adult subjects aged from 18 to 80 years
(mean ± standard deviation [SD]: age = 57.4 ± 12.5 years,
bodymass index [BMI]= 27.3± 4.9 kg/m2) from the region
of Leipzig, Germany. All participants underwent extensive
phenotyping, including anthropometric measurements,
social and lifestyle-behaviour questionnaires and blood
parameters. For most subjects, ethylenediaminetetraacetic
acid (EDTA) blood samples are available.8 All partici-
pants gave written informed consent to participate in the
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TABLE 1 Study characteristics

LIFE cohort

Healthy lifestyle
(LS ≤5th
percentile)

Unhealthy
lifestyle
(LS ≥95th
percentile)

p-Values
(LS 5th vs.
95th
percentile)

N (total number) 4107 216 207
Gender (N: female/male) 2109/1998 160/56 66/141
Age (years) 55.9 ± 12.8 60.14 ± 12.76 54.03 ± 10.47 1.22E-9
BMI (kg/m2) 27.03 ± 4.65 27.11 ± 4.74 27.31 ± 4.69 .51
BMI category (N:
lean/obese/overweight)

1488/1659/940 73/95/48 67/93/46

Waist circumference (cm) 95.71 ± 13.02 93.46 ± 12.18 99.52 ± 13.59 3.09E-6
Waist-to-hip ratio 0.93 ± 0.09 0.9 ± 0.08 0.97 ± 0.08 <2.2E-16
Fasting plasma glucose (mmol/L) 5.56 ± 0.79 5.63 ± 0.79 5.61 ± 0.72 .86
Fasting plasma insulin (pmol/L) 63.33 ± 42.82 58.53 ± 36.99 66.66 ± 43.77 .08
Plasma low-density lipoprotein
(mmol/L)

3.5 ± 0.95 3.5 ± 0.93 3.63 ± 0.97 .35

Plasma high-density lipoprotein
(mmol/L)

1.62 ± 0.46 1.79 ± 0.45 1.44 ± 0.42 1.19E-15

Plasma apolipoprotein A1 (g/L) 1.67 ± 0.3 1.76 ± 0.27 1.6 ± 0.3 1.27E-9
Plasma triglycerides (mmol/L) 1.38 ± 1.1 1.17 ± 0.58 1.68 ± 1.03 2.78E-9
Diet score 12.39 ± 3.22 8.69 ± 1.94 15.39 ± 3.08 <2.2E-16
Physical activity score 7.55 ± 6.47 0.58 ± 1.6 17.25 ± 3.8 <2.2E-16
Smoking score 5.91 ± 6.70 0.09 ± 0.68 16.81 ± 3.58 <2.2E-16
Alcohol score 1.34 ± 2.22 0.09 ± 0.68 2.97 ± 2.46 <2.2E-16
LS 27.19 ± 11.02 9.45 ± 1.54 52.42 ± 4.07 <2.2E-16

Note: Phenotypic data are described for all in the LS analysis included LIFE-Adult subjects as well as for the healthy (≤5th percentile) and unhealthy (≥95th
percentile) living extreme subgroups as the mean ± standard deviation (SD) (including discovery and validation cohort; detailed in Table S2). p-Values show
significant differences between healthy and unhealthy subgroups.
Abbreviations: BMI, body mass index; LS, lifestyle score.

study, and procedures were approved by the University of
Leipzig’s ethics committee (registration number: 263-2009-
14122009) and conducted according to the Declaration of
Helsinki. Study participation, assessments and interviews
were supervised and carried out by trained staff and under
supervised standard operation procedures.8

2.2 Lifestyle score

We created a lifestyle score (LS) as the sum of four
different subscores: diet, physical activity (PA), alcohol
consumption and smoking.10 To calculate the scores, we
included data from four self-reported questionnaires: (1) a
German version of the Food Frequency Questionnaire,11
(2) the Short-Form International Physical Activity
Questionnaire,12 (3) a questionnaire about smoking status
and quantity, and (4) a questionnaire about daily alcohol
consumption and frequency. The final LS ranged from 3 to
66 (mean ± SD: 27.19 ± 11.2), with low and high LS values

representing a healthy and an unhealthy lifestyle, respec-
tively. All subscores showed an inter-item correlation, as
demonstrated by Cronbach’s alpha statistic (α = 0.64).
A detailed description of the individual scoring and an
explanation of each subscore can be found in Supporting
Information and Table S1. Subjects with any missing
questionnaire items were completely excluded from fur-
ther analyses to avoid potential effects caused by general
noncompliance of those subjects. Similarly, participants
with pre-existing diabetic conditions (HbA1c ≥ 6.5%)13 or
missing BMI measures were also excluded from subse-
quent analyses. A total of 4107 subjects passed all criteria
(Table 1).

2.3 Subset for genome-wide
methylation and validation measurements

Based on the LS calculation, we stratified the cohort into
two groups reporting the most healthy and unhealthy
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lifestyles by selecting the lowest and highest 5% (5th per-
centile LS ≤ 11; 95th percentile LS ≥ 48). Within these
groups (N = 234), we found 140 subjects with and 94 sub-
jects without obesity according to BMI criteria.14 Based
on this and an equal age range (Figure S1B), we further
selected 25 subjects without (BMI < 25 kg/m2) and 25 sub-
jects with obesity (BMI > 30 kg/m2) among each sub-
group (5th vs. 95th percentile) (total N = 100) for the
genome-wide methylation discovery cohort and included
all (with andwithout obesity) subjectswith sufficient avail-
able DNA (N = 213) for validation analysis. Thus, both
groups overlap in N = 100 samples and are therefore not
independent.

2.4 Sample preparation

All samples were isolated, stored and maintained at the
Leipzig Medical Biobank15 according to standard proto-
cols. Briefly, blood samples were taken after an overnight
fast (mean fasting duration 12.7 ± 1.7 h) during the indi-
viduals’ study visit and stored at 4◦C–8◦C until DNA isola-
tion (within 48 h after blood withdrawal) on the Autopure
LS platform (Qiagen, Germany) using chemistry by Qia-
gen and Stratec Molecular (Stratec, Germany). Genomic
DNA samples were stored at -80◦C prior to integrity con-
trol using gel electrophoresis and concentration measure-
ments of double-stranded DNA using Quant-iT PicoGreen
dsDNA (Invitrogen, ThermoFisher Scientific, Germany)
and Quantus (Promega, Germany) technologies.

2.5 Genome-wide DNAmethylation
analysis

Five hundred nanograms of genomic DNA was taken
for bisulphite conversion using an EZ DNA Methyla-
tion Gold Kit (Zymo Research, Netherlands). After qual-
ity control (QC), amplification and hybridisation on Illu-
mina HumanMethylation850 Bead Chips (Illumina, Inc.,
San Diego, CA, USA), the Illumina iScan array scanner
was used to quantify genome-wide DNA methylation lev-
els at 850K CpG sites per sample at single-nucleotide
resolution.
Raw data were first quality controlled using the QC

report of the minfi R package (version 1.38.0).16,17 Two
samples that did not pass the badSampleCutoff of 10.5
were excluded during normalisation steps. Beta densi-
ties and control probes were within predicted specifi-
cations. Probes that did not pass the detection p-value
(pdetect = .01) in more than 1% of all 98 samples were
excluded from the analysis (17 375 probes). Cross-reactive
probes (38 924 probes)18 and probes containing known

single-nucleotide polymorphisms (SNPs) (29 383 probes)
at the CpG site (DNA region where a cytosine nucleotide
is followed by a guanine nucleotide) were also filtered out
by applying the maxprobes (version 0.0.2) and minfi R
packages, respectively. In addition, probes on sex chro-
mosomes were removed from the analysis subset (19 627
probes), as sex represents a larger source of variation in
our methylation data. In total, 760 550 probes remained
for the analysis. β-Value generation and quantile normal-
isation were computed using the minfi R package16,17 and
adjusted for sex-specific batch effects (see Figure S1A). Fur-
thermore, we analysed the cell type composition using
the Houseman approach19–21 adapted to EPIC arrays by
Salas et al.21 Possible differences in cell type composi-
tion were (see Figure S2) analysed using Wilcoxon tests
in R. We corrected β-values for cell type composition in
an attempt to reduce noise,21 although none of the cell
type populations differed strongly between the subgroups
(low and high LS) (Figure S2A) and the low and high
LS subgroups in individuals without and with obesity
(Figure S2B).
Differential methylation analyses were performed

between subjects with extremely healthy and unhealthy
lifestyles (low vs. high LS/5th vs. 95th percentile) as well as
between participants without (BMI < 25 kg/m2) and with
obesity (BMI > 30 kg/m2) within each lifestyle subgroup.
The established R package limma (version 3.48.3) was
used to identify differentially methylated CpG sites.22
Data assignment to technical and biological information
by principal component analysis using the R package
SWAMP (version 1.5.1)23 showed that array slides were the
primary batch for which we adjusted accordingly (Figure
S3). Differentially methylated positions (DMPs) describe
differences in methylation levels of single CpG positions
with an adj. p-value <.05. Differentially methylated
regions (DMRs) were extracted by applying DMRcate
(version 2.6.0),24 which uses Gaussian kernel smoothing
to find patterns of differential methylation independent of
genomic annotation. Only DMRswithmore than two CpG
sites were reported. DMRs with a minimum smoothed
FDR<5%were defined as differentially methylated. DMRs
with a mean methylation difference >±2% were further
annotated to CpG islands (CpG shores, CpG shelves
and inter-CpG islands (CGIs)) and gene context-related
regions (promoters, 5ʹ untranslated regions (UTRs),
exons, introns, 3ʹUTRs and intergenic regions). Genomic
annotation was performed using the annotatr R package
(version 1.18.1)25 with respect to multiple annotations.
To elucidate putative drivers of blood DNA methylation,
separate analyses with individual covariates (smok-
ing, diet, PA, alcohol, BMI and age) were performed.
Intersection analysis for covariate-specific effects on
lifestyle DMRs was performed using the UpsetR (version
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1.4.0) package.26 EPIC raw data are available at the
Leipzig Health Atlas under https://www.health-atlas.de/
studies/57.

2.6 Methylation age and telomere
length clocks

DNA methylation age (DNAmAge), corresponding DNA-
mAge acceleration differences according to Horvath’s
clock (I and II), Levine’s clock and the telomere length
clock were estimated using the R package methylclock
(version 0.7.5).27

2.7 KEGG pathway overrepresentation

Candidate genes identified by significant DMRs (mini-
mum smoothed FDR<5%) characterising lifestyle-specific
methylation differences (healthy vs. unhealthy living sub-
jects) and differences between subjects without and with
obesity were taken forward for a KEGG pathway overrep-
resentation test using clusterProfiler::enrichKEGG (ver-
sion 3.18.1).28 Enrichment p-values were adjusted using
Benjamini–Hochberg correction, and FDR <5% was con-
sidered statistically significant.

2.8 Validation of candidate CpGs

Weselected two top candidateDMPs (Tables 2 and S8) from
our discovery cohort (high LS vs. low LS) for additional
validation using bisulphite sequencing. Briefly, 300 ng of
genomic DNA was bisulphite converted using the EpiTect
Fast DNA Bisulfite Kit (Qiagen). After a whole genomic
amplification using the EpiTect Whole Bisulfitome Kit
(Qiagen), candidate regionswere amplified and sequenced
using the PyroMark Q24 platform and self-designed assays
for retinoic acid receptor alpha (RARA) and F2R like throm-
bin or trypsin receptor 3 (F2RL3) candidate DMPs (Qiagen).
Primer sequences are shown in Table S3. All analyses were
performed in duplicate, including two non-template con-
trols per sequence run.

2.9 Transcriptome data

Transcriptome data were available from Illumina HT-
12 v4 Expression Bead Chips (Illumina) using whole
blood RNA samples from the LIFE-Adult cohort as
described elsewhere.8,29 Data processing was performed
using R/Bioconductor after extraction of all 47 231 gene-
expression probes using Illumina GenomeStudio without

background correction. Furthermore, expression values
were log2 transformed and quantile normalised,30,31 and
batch effect correction was performed using an empirical
Bayes method.32 Probes were excluded when expressed in
less than 5% of the (subgroup-specific) samples (detected
by Illumina GenomeStudio), still being associated with
batch effects after Bonferroni correction or not mapping to
a gene accordingly33 (accessed on 4 April 2019). Addition-
ally, gene probes without available annotation and genes
on the X and Y chromosomes were removed to deter-
mine the effects introduced by sex. In summary, 20 114
valid gene-expression probes were identified correspond-
ing to 14 687 single genes in the human genome (hg19).
A three-step procedure was used to remove poor quality
samples: (1) first, the number of detected gene-expression
probes of a sample was required to be within±3 interquar-
tile ranges (IQR) from the median, (2) the Mahalanobis
distance of several quality characteristics of each sample
(signal of AmbionTM ERCC spike-in control probes, sig-
nal of biotin-control probes, signal of low-concentration
control probes, signal of medium-concentration control
probes, signal of mismatch control probes, signal of neg-
ative control probes and signal of perfect-match control
probes)34 had to be within median +3 × IQR, and (3)
Euclidean distances of expression values as described31
had to be within 4 × IQR from the median. Overall, of the
3526 assayed samples, 107 samples were excluded for qual-
ity reasons. Raw transcriptome data are available at the
Leipzig Health Atlas under https://www.health-atlas.de/
studies/57.

2.10 Genotype data

For genotypes, 7838 LIFE-Adult participants were geno-
typed using the genome-wide SNP array Affymetrix Axiom
CEU1 and the software Affymetrix Power Tools (version
1.20.6). QC of the genotyped data was performed fol-
lowing Affymetrix’s data analysis guide35 as previously
described.36 QC according to Affymetrix’s data analysis
guide included dish-QC (<0.82), sample call rate (<97%),
sex mismatch, ambiguous relatedness (e.g., sample mix-
up) and abnormalities of XY intensity plots (e.g., XXY
samples filtered for gonosomal analyses). Genetic hetero-
geneity was evaluated with principal component analy-
ses, and outliers (>6 SD in any of the first 10 principal
components) were removed. The criteria call rate, param-
eters of cluster plot irregularities according to Affymetrix’s
recommendations, violation of Hardy–Weinberg equilib-
rium (p-value < 10-6) in an exact test for autosomes (p-
value < 10-4), for chromosome X with females only37 and
batch association (p-value < 10-7) were considered during
SNP QC. Subsequently, 7669 samples and 532 676 SNPs

https://www.health-atlas.de/studies/57
https://www.health-atlas.de/studies/57
https://www.health-atlas.de/studies/57
https://www.health-atlas.de/studies/57
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were imputed on the reference 1000 Genomes Phase 3,38
applying SHAPEIT39 v2r900 (prephasing) and IMPUTE2
(version 2.3.2)39,40 for genotype estimation. A specific
genotype was assigned to a SNP if its corresponding geno-
type estimation featured a probability of ≥.8.41 In 2.5% of
the cases, none of the genotypes exceeded that threshold,
and the respective SNPwas labelled ‘missing’ for that sam-
ple. SNPs whose ‘missing’ count over all samples exceeded
the upper quartile +1.5 × IQR were removed, resulting in
a total of 2830 SNPs.

2.11 matrixEQTL analysis

Among samples with significant DMP data (from DMRs
healthy vs. unhealthy), additional gene-expression and
SNP data were available for 48 samples. The R pack-
age matrixEQTL (version 2.3)42 was employed on all
three pairs of datasets to identify cis effects (within a
range of ±1 kb) between methylation and expression
(eQTMs), methylation and SNPs (meQTLs) and expres-
sion and SNPs (eQTLs). All three comparisons were per-
formed on the complete data (N = 48) and both sub-
groups with high LS (N = 23) and low LS (N = 25) sep-
arately. Since sex batch effects have been adjusted for in
both expression and methylation data, small batch effects
remained only for age and BMI. However, including both
age and BMI as covariates into the matrixEQTL analysis
did not change the overall result, which is why the final
matrixEQTL analysis was run without considering any
covariances.

2.12 Statistics

All statistical analyses were performed using R software
(version 4.0.4).43 After checking for normal distribution,
Mann–Whitney U-test or Welch’s t-test was applied to test
for differences between the 5th and 95th percentiles as well
as between lean and obese subgroups for the following
phenotypes: BMI, age, HbA1c, waist-to-hip ratio (WHR),
fasting plasma glucose and insulin, low-density lipopro-
tein (LDL), high-density lipoprotein (HDL), apolipopro-
tein A1 (Apo A1) and triglyceride serum levels. Welch’s
t-test was used to compare methylation differences mea-
sured as normalised β-values between low LS versus high
LS for each top DMP, respectively. Using the Shapiro–
Wilk test to prove the normal distribution of the bisulphite
sequencing data, an independent Mann–Whitney U-test
was applied to comparemethylation differences within the
validation cohort. Methylation levels between BMI cate-
gorieswere compared by applying two-way analysis of vari-

ance (ANOVA). Correlation analysis was performed using
Spearman’s correlation. All respective analyses were ade-
quately corrected for multiple testing.

3 RESULTS

3.1 Self-reported lifestyle reflects
obesity-specific phenotypes

We correlated the LS with BMI and WHR in 4107 LIFE-
Adult participants (mean ± SD: age = 56 ± 13 years,
BMI = 27.0 ± 4.7 kg/m2, LS = 27.19 ± 11.02) (Table 1).
LS was related to the obesogenic environment (Figure
S4A,B) (all p-value < 1 × 10-3) with significantly higher
values in subjects with obesity (Figure S4C). We fur-
ther demonstrated that all individual scores (diet, PA,
smoking, alcohol and total LS) were mutually dependent
(Figure 1A), which was particularly marked in the extreme
subgroups (5th and 95th percentile, Figure 1B). Finally, our
score showed simultaneous negative correlations (all p-
value < 1 × 10-15) to the protective lipid parameters HDL
cholesterol and Apo A1, which were higher in healthy liv-
ing subjects (Figure S5A,B).
The discovery cohort comprised 44males and 56 females

with a mean BMI of 28.6 ± 6.5 kg/m2. The valida-
tion cohort (N = 213; 5th/95th percentile = 100/113;
lean/obese = 131/82) included 84 males and 129 females
with a mean BMI of 27.1 ± 6.2 kg/m2 (Table S2).
When comparing healthy versus unhealthy subgroups
(5th vs. 95th percentile LS, healthy LS: N = 216,
unhealthy LS: N = 207), nominal differences were
observed regarding BMI distribution (Figure S5, Table 1) (N
lean/overweight/obese: healthy LS—73/95/48, unhealthy
LS—67/93/46; p = .051). Although HbA1c, fasting plasma
glucose, fasting plasma insulin and LDL serum levels
did not differ between the two groups (all p-value > .05,
Table 1), strong differences were found for waist circum-
ference (p-value < 3 × 10-6), age, Apo A1 and triglyc-
eride serum levels (all p-value < 1 × 10-9) and espe-
cially HDL levels (p-value < 1 × 10-15) and WHR (p-
value < 2.2 × 10-16). Subjects living an extremely healthy
lifestyle were older (mean age difference = 6 years) with
lower WHR (mean WHR difference = 0.08) and promi-
nently lower lipid serum levels. However, as expected, all
phenotypes differed significantly between subjects with
and without obesity within healthy and unhealthy sub-
groups (all p-value < 2 × 10-2), respectively, except for fast-
ing plasma LDL. Regarding sex distribution, it is notice-
able that females are overrepresented in the healthy sub-
group, whereas males (Table 1) dominate the unhealthy
subgroup.



8 of 16 Klemp et al.

(A) (B)

F IGURE 1 Lifestyle (sub)score correlations. Correlation analysis is shown between lifestyle scores (including subscores). Lifestyle score
(LS) and anthropometric measurements are presented as a correlation matrix. The colour and size of the dots represent Spearman’s
correlation coefficient r; p-values are indicated with ***p < .001, **p < .01, *p < .05. (A) Total cohort (N = 4107) and (B) significant correlations
within the subscores in the validation cohort consisting of the extreme lifestyle edges (N = 213).

3.2 DNAmethylation signatures are
related to individual’s lifestyle

By comparing genome-wide blood DNA methylation pat-
terns in subjects with healthy versus unhealthy lifestyles,
we identified 4682 significant DMRs annotated to 4426
genes with a minimum smoothed FDR <5%, which
included 220 DMRs with FDR <1 × 10-4 (Table S4,
Figure 2A).Among the significantDMRs, themeanmethy-
lation level differences ranged from -6.9% to 5.5%.
Given the rather subtle methylation changes for the

majority of the DMRs, we introduced a mean methyla-
tion threshold of >2% to further narrow down the poten-
tial causal candidate DMRs. Among the 340 DMRs reach-
ing this cut-off, 164 DMRs were hypermethylated (mean
methylation difference ± SD: 2.6 ± 0.6%), whereas 176
DMRs were hypomethylated (mean methylation differ-
ence ± SD: -2.8 ± 0.8%) in healthy compared to unhealthy
living individuals (Figure 2A, Table S4). Taking into
account that a DMR can have more than one annota-
tion, most DMRs (46%; counts relative to the number
of DMRs) were located in CpG islands, followed by 45%
located in CpG shores. In relation to gene regions, most
DMRs are located in introns (59%), followed by exons (39%)
(Figure 2B).
The top 15 hypomethylated and hypermethylated sig-

nificant DMRs according to their mean methylation

difference are presented in Table 3 with a DMR anno-
tated to the glutamine-fructose-6-phosphate transaminase
2 (GFPT2) gene locus showing the strongest hypomethyla-
tion (mean methylation difference DMR = -6.9%). A DMR
annotated to the glutamate rich 1 (ERICH1) gene showed
the strongest hypermethylation (mean methylation differ-
enceDMR= 5.4%). Finally, usingKEGGpathway analyses,
we identified glutamatergic synapses as the most enriched
pathway (adj. p-value < .01) followed by axon guidance,
another brain-related pathway (adj. p-value < .05). Most
of the nine enriched pathways (Table S5, Figure 2C) are
related to various cancer types.
As demonstrated by the intersection plot (Figure 2D,

Table S6), themajority of the DMRs (N= 1952) were driven
by all four lifestyle subscores together (diet, PA, smoking
and alcohol), followed by a combination of them together
with BMI and age (N= 743). Obviously, BMI and age alone
do not explain any of the identified DMRs. Although this
did not indicate a prominent role of smoking (Figure 2D),
given the nature of the LS, a comparison between par-
ticipants with very healthy and very unhealthy lifestyles
mirrors differences between nonsmokers and smokers.We
therefore further adjusted the complete analyses for smok-
ing as a covariate, which resulted in 629 identified DMRs
with a minimum smoothed FDR <5%. Among them, the
most significant DMR is located within a CpG island of the
ring finger protein 39 (RNF39) locus (Table S7).
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F IGURE 2 Lifestyle-specific differentially methylated regions (DMRs) in the discovery cohort. (A) Volcano plot representing the
significant DMRs (minimum smoothed FDR <5%) based on the healthy versus unhealthy lifestyle comparison. Positive mean methylation
differences ≥|2|% represent hypermethylated DMRs (red dots), and negative methylation differences ≥|2|% represent hypomethylated DMRs
(blue dots) in the healthy subgroup. (B) The location of the DMRs in relation to CpG islands (top) and the location of the DMRs in relation to
gene regions (bottom). Both plots are presented as the number of counts, including multiple annotations. Hyper: hypermethylation; hypo:
hypomethylation. (C) KEGG pathway enrichment analysis presented as the percentage of annotated genes relative to all genes involved in the
respective pathway (hits in %) for all enriched pathways with an FDR <5%. (D) Intersection plot illustrating the frequency of significant DMRs
driven by any of the included lifestyle aspects (diet, physical activity, smoking and alcohol) and the potential confounders age and body mass
index (BMI). The majority of the DMRs are driven by an interaction between all four lifestyle aspects



10 of 16 Klemp et al.

TABLE 3 Top lifestyle-specific differentially methylated regions (DMRs)

Chromosome Start End
Number
CpGs

Minimum
smoothed
FDR

Maximum
difference

Mean
difference

UCSC RefGene
name

Top hypomethylated DMRs
chr5 179740743 179741120 4 0.029977938 −0.115525323 −0.069213857 GFPT2
chr3 53700141 53700263 3 0.000280372 −0.058166831 −0.052935571 CACNA1D
chr10 130726406 130726701 3 0.000287833 −0.066141442 −0.052150296 NA
chr16 55866757 55867072 4 0.009779257 −0.084082934 −0.050156174 CES1
chr20 55835831 55836676 4 4.50739E-07 −0.063006443 −0.048500957 BMP7
chr4 169770092 169770406 3 0.024472101 −0.051377777 −0.04809308 PALLD
chr1 58898552 58898793 3 0.002601555 −0.062311841 −0.047451925 DAB1
chr10 128810484 128810904 3 0.013077709 −0.057183472 −0.046745655 DOCK1
chr20 61590751 61591066 3 0.03067276 −0.048455427 −0.045342149 SLC17A9
chr3 29377160 29377980 3 2.4182E-05 −0.072396235 −0.044645175 RBMS3
Top hypermethylated DMRs
chr8 637468 637909 3 0.040227828 0.096584379 0.054484963 ERICH1
chr10 90984672 90985062 3 1.55E-05 0.056039743 0.049841417 LIPA
chr6 29648161 29649084 21 1.27008E-08 0.070683917 0.046436136 ZFP57
chr5 373378 374252 4 5.36E-21 0.193803612 0.045739382 AHRR
chr2 113992694 113994035 9 8.42E-04 0.061941445 0.045375298 PAX8;PAX8-AS1
chr6 291687 292823 9 0.011323863 0.053011157 0.042649384 DUSP22
chr10 3282585 3282783 3 0.018194186 0.042427159 0.041105344 NA
chr11 6592066 6592585 4 0.035060323 0.04489839 0.039528971 DNHD1
chr17 45949677 45949878 5 4.08384E-07 0.050310751 0.037408698 NA
chr20 17595355 17595472 3 0.010978827 0.058269466 0.037403949 RRBP1

Note: Included are the top 15 significantly hypermethylated and hypomethylated DMRs (minimum smoothed FDR <5%) between healthy and unhealthy living
subjects.

3.3 Lifestyle-derived DMPs correlate
with metabolic traits related to obesity

DMP-specific analysis comparing subjects with healthy
and unhealthy lifestyles identified 145 significant DMPs
(adj. p-value < 5%) (Figure 3A, Table S8). A total of 26
DMPs passed ameanmethylation change |(log fold change
FC])| ≥5%, 14 of which were hypermethylated log FC ≥5%
(0.07 ± 0.04), while 12 showed hypomethylation log FC ≤-
5% (-0.06 ± 0.01). Of these, 19 DMPs were clearly assigned
to a specific gene. However, when considering signifi-
cance levels (adj. p-value < .05) as well as a mean methy-
lation change ≥5%, the strongest effects were observed
for aryl hydrocarbon receptor repressor (AHRR), F2RL3,
RARA and serine protease 23 (PRSS23) (Figure 3B, all p-
value < 1 × 10-11, Table S8), all of which were hypomethy-
lated under unhealthy conditions. Correlation analysis
between the identified DMPs and obesity-related pheno-
types (HbA1c, LDL, HDL, blood glucose, insulin, Apo A1,
triglycerides, BMI, waist circumference, WHR and age) as
well as the LS and its subscores can be found in Table S9.

Two of the 20 included DMPs showed a significant correla-
tion withWHR even after Bonferroni correction, although
no SNPs within the genomic region have been shown
to be associated with BMI-adjusted WHR in a previous
GWAS44 (GWAS catalogue, accessed June 2021). Among
the identified DMPs, the strongest correlation with WHR
was found for vasohibin 1 (VASH1) (p-value = 4.2 × 10-5,
r = -0.4), which is in line with an association with HbA1c
(%) (p-value = .03, r = -0.21), triglycerides (mmol/L) (p-
value = .046, r = -0.2) and waist circumference (cm) (p-
value = .04, r = -0.2), although only the association with
WHR was sustained after correction for multiple testing.
Finally, two DMPs of F2RL3, one of our selected top hits,
showed marginal correlations to LDL serum levels (all p-
value < .03, r = -0.22) and triglycerides (mmol/L) (all p-
value < .07, r = -0.27) and one DMP in addition to HbA1c
(%) (p-value < .01, r = -0.3). The selected top DMPs for
F2RL3 showed additional correlations to HDL (mmol/L)
(p-value = .03, r = 0.23) and Apo A1 (g/L) (p-value = .03,
r = 0.23), albeit not withstanding corrections for multiple
testing.
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F IGURE 3 Differentially methylated positions (DMPs) comparing healthy versus unhealthy lifestyle in the discovery (A and B) and
validation cohorts (C and D): (A) volcano plot representing the significant DMPs (minimum smoothed FDR <5%) based on the healthy versus
unhealthy lifestyle comparison. Positive mean methylation differences ≥|5|% represent hypermethylated DMPs (red dots) and negative
methylation differences ≥|5|% represent hypomethylated DMPs (blue dots) in the healthy subgroup. (B) Box plots representing the mean
methylation ± standard deviation (SD) for the top four identified genes: retinoic acid receptor alpha (RARA) (cg17739917); F2R like thrombin or
trypsin receptor 3 (F2RL3) (cg03636183); aryl hydrocarbon receptor repressor (AHRR) (cg05575921); serine protease 23 (PRSS23) (cg14391737)
comparing healthy (low lifestyle score [LS]) versus unhealthy (high LS) living subjects; the 95% confidence interval is represented by notches.
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In summary, 13 of the 20 selected DMPs showed
marginal correlations with triglycerides (all p-value <

.046), eight with HDL (all p-value < .047) and seven with
LDL (all p-value < .033) serum levels (Table S9).

3.4 Bisulphite sequencing within RARA
and F2RL3 loci supports findings from the
discovery stage

Based on these findings and further supported by
previously reported data,45–47 we selected two DMPs
(F2RL3:cg03636183 and RARA:cg17739917) for validation
(N = 213) using bisulphite sequencing and demonstrated
directionally consistent differences between subjects
with healthy versus unhealthy lifestyles (Figure 3C,D;
both p-value < .001, mean methylation difference: RARA
CpG = 8.37%, F2RL3 CpG2 = 13.87%). Furthermore, the
surrounding CpG position confirmed this effect, with all
p-value <.01 and a mean methylation difference of >5.59%
(mean methylation difference: RARA CpG2 = 11.99%,
RARA CpG3 = 12.58%, F2RL3 CpG1 = 5.59%, F2RL2
CpG3 = 13.2%) (Figure 3C,D). The validation cohort used
here did not differ significantly from the discovery cohort
regarding age, BMI and sex distribution (Table 1). Spear-
man’s correlation analysis showed a significant correlation
between the methylation levels observed in the genome-
wide methylation analysis and bisulphite sequencing
(RARA: Spearman’s r = 0.45, F2RL3: Spearman’s r = 0.53,
both p < 7.9 × 10-5) (Figure S5C,D).

3.5 Obesity-specific methylation marks

Driven by the comparable distribution of subjects with and
without obesity between the very healthy and unhealthy
lifestyle groups, we aimed to identify lifestyle-independent
obesity-related methylation marks. Therefore, the blood
methylation patterns of subjects with obesity (N = 25)
were compared with those of subjects without obesity
(N = 25) within each lifestyle group separately. Interest-
ingly, whereas approximately 1572 DMRs annotated to 1599
different genes were identified in healthy subjects, only
85 DMRs annotated to 101 genes were detected in sub-
jects living an unhealthy lifestyle (Tables S10 and S11) with

a minimum smoothed FDR <5%. This further included
10 identical annotations among the PAX6 and HOXA9-10
gene clusters, already known candidates regarding obe-
sity and related comorbidities. However, at CpG levels, no
DMPs were sustained after correction for multiple test-
ing (data not shown). Nevertheless, KEGG pathway anal-
ysis for the healthy subgroup indicated eight enriched
pathways, among them GABAergic synapse, dilated car-
diomyopathy and calcium signalling (Figure 4, Table S12),
whereas for the unhealthy subgroup, only antigen process-
ing and presentation were enriched (not shown).

3.6 Methylation age

We observed the strongest association (p-value < 1 × 10-10,
R2 = 0.37, Figure 3E) between mAge and subjects’ chrono-
logical age within the discovery cohort for Horvath’s clock
II, which was compared to Horvath’s clock I, which was
additionally trained on 850K EPIC arrays (Figure S6A–C).
Only marginal (p-value = .01) differences in DNAmAge
acceleration were observed when comparing individuals
with healthy versus unhealthy lifestyles, which was sim-
ilar to comparing never smokers with previous or cur-
rent smokers (Figure S6D,F). No difference was observed
between subjects with and without obesity (Figure S6E).
We further observed a strong negative association between
the telomere length clock and chronological age (p-
value < 1 × 10-8, R2 = -0.32, Figure 3E). Interestingly,
both clocks showed an additional linear association with
WHR within our discovery cohort (all p-value < 1 × 10-4,
Figure 3E).

3.7 Underlying genetic predispositions
and effects on mRNA levels in blood

Driven by the small overlapping sample size (N = 48) and
only marginal genetic variation in close proximity (±1 kb)
to the identified target DMRs (healthy vs. unhealthy
lifestyle), we could not identify any meQTLs or eQTLs.
However, we found associations between the methylation
levels of eight DMPs with target mRNA expression levels
(Table S13) in the combined discovery group (all individ-
uals with healthy and unhealthy lifestyles). Among them,

p-Values indicate statistically significant differences detected using Welch’s t-test. (C and D) Box plots are given as the mean
methylation ± SD, and the 95% confidence interval is represented by notches for the two validated DMPs (C) RARA and (D) F2RL3 and their
surrounding CpGs. p-Values indicate statistical significance between healthy (low LS) and unhealthy (high LS) subjects detected using
analysis of variance (ANOVA). p-Values are indicated as *p < .05, **p < .01 and ***p < .001. (E) Linear regression analysis between methyl age
(methAge) for the Horvath II, telomere length, chronological age and waist-to-hip ratio (WHR) measurements presented as a scatter plot. The
light grey area represents the 95% confidence interval, and R2 represents the coefficient of determination



Klemp et al. 13 of 16

F IGURE 4 KEGG pathway enrichment analysis of the healthy subgroup. Body mass index (BMI)-related (nonobese vs. obese) KEGG
pathway enrichment in the low lifestyle score (LS) subgroup is presented as hits in percent for all pathways with an FDR <0.05.

only two eQTMs annotated to the alanyl aminopeptidase
(ANPEP) locus were sustained after correction for multi-
ple testing (matrix FDR = 0.03; Table S13, Figure S7). Four
eQTMs were detected in subjects with healthy lifestyle
and eight with unhealthy lifestyle; among them, one of
our candidate DMP of F2RL3 was also detected in healthy
subjects; however, none maintained after correction for
multiple testing.

4 DISCUSSION

Epigenetic markers are known to reflect environmental
conditions and thereby are affected not only by genetic
predisposition but also most strongly by our daily lifestyle.
Although this is widely acknowledged by the scientific
community, the majority of epigenetic studies in regard
to obesity, most of them conducted cross-sectionally, still
lack the inclusion of relevant lifestyle drivers.48 There-
fore, to the best of our knowledge, this is one of the few
studies investigating the potential effects of lifestyle on the
respective blood DNA methylation signatures.49 Here, we
calculated LS scores based on each individual’s diet, PA,
smoking and alcohol consumption within the LIFE-Adult
study from Germany. Genome-wide DNA methylation
analysis in blood samples of 100 subjects representing
healthy and unhealthy lifestyle extremes demonstrated
that daily lifestyle is most likely superior to the obesity
state itself in associations with blood DNA methylation
patterns, as supported by association studies between
neonatal blood methylation and the risk of developing
obesity later in life.50 The study showed that the distri-
bution of obesity categories in extreme lifestyle groups
was comparable and that potentially obesity-associated

methylation marks were more frequent in subjects with
healthy lifestyles. However, this could also be driven by
the general exclusion of subjects suffering from diabetes,
which may have inadvertently excluded subjects with
unhealthy metabolic obesity. Furthermore, mAge and
estimated telomere length showed strong correlations
with chronological age and WHR, with observed smaller
DNAmAge acceleration distances in healthy subjects.
Finally, two DMPs for ANPEP also showed the strongest
eQTM in blood within the subgroup of 48 subjects.
With this study, we took several lifestyle aspects into

account to explore relations between long-term lifestyle
habits and differences in human blood methylation pat-
terns. Our findings imply that dietary habits, PA, smok-
ing habits and alcohol consumption influence epigenetic
patterns together, whereas only neglectable effects are
attributed to age and BMI alone. This suggests that rather
than simply representing the consequence of obesity, dif-
ferences in blood-derived methylation marks may be pri-
marily driven by long-term lifestyle habits. This is fur-
ther supported by the observed smaller DNAmAge accel-
eration in the healthy lifestyle group compared to the
unhealthy lifestyle group, whereas no significant differ-
ence could be observed between subjects with and without
obesity.
We identified several candidate genes differentially

methylated according to the LS and successfully validated
RARA and F2RL3, already known from previous studies
to be influenced by lifestyle aspects and acknowledged
for their role in metabolic diseases.45,47,51 Both genes were
hypermethylated within extremely healthy compared to
unhealthy living individuals, which is in line with previ-
ously published data.41,45,52 In particular, hypomethylation
of the DMP within the F2RL3 locus appears to increase
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the risk for cardiovascular as well as overall mortality.45,52
Translated to our results, this might indicate an increasing
mortality risk of an unhealthy lifestyle accompanied
by associated diseases, such as obesity, type 2 diabetes,
cardiovascular diseases or cancer. Previous studies further
showed a hypomethylating effect of smoking on the
F2RL3 DMP identified here.51 Moreover, very recently, a
strong associationwith coffee consumption in a large-scale
epigenome-wide association study (EWAS)was reported.53
Consistent with published data on smoking, subjects with
unhealthy lifestyle in our study showed a mean methyla-
tion of 67% compared to 81% in the healthy lifestyle group,
with the majority of subjects within the unhealthy group
being actual smokers (validation cohort). In line with this,
we further observed a marginal (p-value = .04) positive
correlation between this methylation of DMP and F2RL3
mRNA levels in the healthy lifestyle subgroup.
We found significant methylation differences between

the healthy and unhealthy lifestyles for RARA, which is
known for its role in adipogenesis.54 It is noteworthy,
however, that based on the findings of the present study,
an increase in the RARA methylation pattern might be
related to higher HDL cholesterol and lower triglyceride
serum levels, indicating a link between RARA and lipid
metabolism.
Although the observed differences in DNA methylation

in RARA could also be driven by smoking as previously
described46 and supported by the strong correlation with
smoking found here, there is still a prominent influence
of other environmental conditions, such as diet and PA,
as shown by our present data. Nevertheless, it needs to
be acknowledged that in line with our study, the major-
ity of methylation studies on smoking, although lacking
any information on diet or activity, identified a similar
set of top candidates, especially F2RL3, RARA and AHRR,
in human blood cells.41,45,47,52 It is also worth mention-
ing that smoking effects on F2RL3methylation were previ-
ously also observed in adipose tissue.47 Since we included
smoking as a lifestyle factor, it is possible that some of the
identified genes are indeed related to lung cancer.55,56 Con-
sequently, narrowing down our list of potential lifestyle
discriminating candidate regions by including an addi-
tional adjustment for smoking resulted in the identifica-
tion of a top DMR on chromosome 6 annotated to the
RNF39. This DMR overlapped with a larger region very
recently described to successfully discriminate responders
from nonresponders to a lifestyle intervention based on
either a Mediterranean/low-carbohydrate or low-fat diet
with or without PA.7
There are a few key limitations to our study. First,

we used a scoring system based on self-reported ques-
tionnaires, which might lead to euphemistic information,
including over- or underestimation of the real status.57

However, our study design is supported and strengthened
by findings, which are in line with previously reported
data, for example, on lifestyle factors such as smoking.45,47
Furthermore, although we excluded individuals suffering
from diabetes, we cannot fully exclude effects driven by
other non-diabetes-relatedmedications. Finally, the obser-
vational and cross-sectional nature of the study does not
allow testing the direction of causality at least between
methylation and metabolic phenotypes and limits our
ability to rule out confounding (e.g., sex), even though
it seems unlikely that methylation marks affect lifestyle
habits.
Although the identification of reliable and reproducible

epigenetic marks for obesity in human blood remains
challenging, our study clearly indicates the importance
of considering as many lifestyle aspects as possible when
analysing epigenetic data with regard to complex dis-
eases such as obesity. We successfully demonstrated that
the majority of CpG methylation marks are much more
strongly influenced by our daily lifestyle than the obesity
state itself.
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