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Highlights
Near ubiquitous organelles such as
centrosomes differ structurally and
functionally in mammalian stem cells
and their progeny, expanding the con-
cept of universal cellular functions.

Cell type-specific spatiotemporal local-
ization of proteins and RNAs control
heterogeneity of centrosomes and
other organelles.

Differential centrosomal microtubule or-
Stem cells are at the source of creating cellular diversity. Multiple mechanisms,
including basic cell biological processes, regulate their fate. The centrosome is
at the core of many stem cell functions and recent work highlights the associa-
tion of distinct proteins at the centrosome in stem cell differentiation. As show-
cased by a novel centrosome protein regulating neural stem cell differentiation,
it is timely to review the heterogeneity of the centrosome at protein and RNA
levels and how this impacts their function in stem and progenitor cells. Together
with evidence for heterogeneity of other organelles so far considered as similar
between cells, we call for exploring the cell type-specific composition of
organelles as a way to expand protein function in development with relevance
to regenerative medicine.
ganizing center (MTOC) activity controls
stem cell behavior, adding a layer of reg-
ulation to diversify cell types during ontol-
ogy and phylogeny.

Understanding cell type-specific compo-
sition and function of organelles (e.g., the
centrosome) opens new approaches
to target specific cells in disease, such
as metastasis or neurodevelopmental
disorders.
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Timeliness to review centrosome heterogeneity in stem cell function
Stem cells generate all organs in our body and, typically, their progeny, the transit-amplifying pro-
genitors (TAPs), both amplify and diversify the cell types in a given tissue. Stem cells can generate
this diversity indirectly by generating distinct TAPs that produce different progeny and allow their
amplification, such as in the hematopoietic system. Stem cells also generate cell diversity directly
(e.g., by asymmetric cell division) in a temporal order giving rise to different cell types in a sequen-
tial manner [e.g., neural stem cells (NSCs)] generating different types of neurons first and then glia
[1]. However, also in the nervous system, TAPs becamemore frequent and diverse in phylogeny
(see Glossary), culminating in the large zone of basal progenitors (BPs) [the outer subventricular
zone (SVZ)] in the human cerebral cortex (Box 1) [2]. Thus, the regulation of stem cell behaviors
and the mechanisms governing the production of distinct progeny and diverse TAPs bring about
organ size and cellular diversity.

Centrosomes have been considered a homogeneous organelle and mainly contextualized
with cell division, migration, and polarization. Recent work showed that centrosomes contain
different components that impact stem cell behavior. One such example is the protein AKNA,
which is only in the differentiating subset of NSCs that leave the stem cell niche [3]. This is the
case in interphase, that is, without effects on the mode of cell division, but with profound
effects on the generation of TAPs, as will be discussed later. These new findings and new
technology, such as single-cell approaches and more refined proteomics techniques allowing
deeper insights into cellular and organellar heterogeneity, call for a short review on organellar
heterogeneity in governing cell function. Here, we will discuss how centrosome heterogeneity
regulates stem cell behaviors, focusing largely on the nervous system because these pro-
cesses are particularly well examined and understood in neurogenesis. This will bring us to
elaborate on differences in protein composition at centrosomes affecting microtubule orga-
nizing center (MTOC) activity and stem cell differentiation before discussing centrosomal
RNAs (cenRNAs) as a possible source of centrosome heterogeneity that could impact stem
cells behaviors. As an outlook, we close by linking centrosome heterogeneity to disease
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Glossary
Cerebral cortex: the dorsal region of
the telencephalon that expanded
particularly in mammalian phylogeny. It
can be smooth (e.g., in mice) or folded/
gyrified (e.g., in ferrets and human).
Microtubules (MTs): protein polymers
of alpha- and beta-tubulin that serve as a
platform over which many complexes
move within the cell. MTs also separate
chromosomes during cell division. MT
dynamics refers, broadly speaking, to
the growing and shrinking behavior of
MTs.
Neuronal ectopia: foci of misplaced
neurons within the cerebral cortex. The
ectopia arise during brain development
and are partly caused by mutations in
genes controlling cell delamination and
migration.
Nucleoli: the largest substructure of the
nucleus, where, among other pro-
cesses, ribosomal RNA synthesis takes
place.
Ontogeny: the developmental history of
an organism.
Organelles: specialized subunits within
a cell. They can be spatially segregated
by membranes or by different liquid
phases. Examples are the mitochondria,
the Golgi apparatus, the endoplasmic
reticulum, centrosomes, phagosomes,
etc.
Phylogeny: the evolutionary history of
an organism and the relationship among
or within species.
Polysome: a group of ribosomes
bound to a molecule of mRNA, which
then can cotranslate polypeptides out of
the same molecule in tandem.
Proteome: the entire set of proteins
present in a cell or tissue. The proteome
of an organelle indicates correspond-
ingly all proteins in that organelle.
Radial glia cells: the neural stem cells
of the developing brain and spinal cord.
They are a specialized type of epithelial
cells.
Subventricular zone (SVZ): the region
in the developing brain directly above the
ventricular zone (where RGCs reside)
and below the intermediate zone and
cortical plate (where neurons are
located). The SVZ is the niche of basal
progenitors.
Taxanes, eribulin, and vinca
alkaloids: antimitotic drugs usually
used in chemotherapeutic approaches
to eliminate cancer cells. Taxanes like
paclitaxel/Taxol and docetaxel/Taxotere
prevent MT depolymerization by
stabilizing GDP-bound tubulin in MTs.
etiology and call for consideration of organellar heterogeneity as a general principle to amplify and
diversify protein function, highlighting the need for more comprehensive organellar proteomics in a
cell type-specific manner.

Centrosome differences in vertebrate (stem) cells
The centrosome is made of a linked pair of centrioles surrounded by pericentriolar material (PCM)
(Figure 1A and Box 2). Centrosomes nucleate and organize microtubules (MTs) in most not-
terminally differentiated cells alone or with other organelles like the Golgi apparatus [4] and also
act as the basal body of primary and motile cilia. The centriole’s substructures require a specific
set of proteins to fulfill their duties (Figure 1A and Table 1) with both centrioles exhibiting structural
and functional differences (discussed in [101]), which causes a first level of heterogeneity when
cells divide.

Centrosomes are affected by mitotic kinases prior to and during cell division [5] and the path-
ways are conserved in evolution. These commonalities may have led us to oversee potential cell
and context-dependent differences and think of it as an organelle with homogeneous compo-
sition. When a cell initiates cell division, the PCM grows and increases MT nucleation, while
centriole cohesion factors are disassembled to separate sister centrosomes. ‘Mobile’ distal
appendage (DA) components regulating centriole docking to the cell membrane are also
released before cell division to facilitate cilia disassembly [6]. As for DAs, subdistal appendage
(SDA) ‘mobile’ factors are also disassembled during mitosis, as shown by the disappearance of
proteins required for MT anchoring, such as AKNA, NINEIN, and CEP170, among others [3,7].
It is not clear why this is the case, but it may be to avoid having mitotic spindles with asymmetric
MT organization. Of notice, mobile appendage components are farthest to the centriolar wall.
DA and SDA ‘core components’ (e.g., CEP83 and ODF2, respectively) are detectable at mitotic
centrosomes [6], are nearest to the centriole wall, and have scaffolding functions. Thus,
fractions, but not the whole appendage structure, are removed from centrioles in mitosis.
This plays a key role in rebuilding DAs and reforming a primary cilium soon after division in
the cell inheriting the older centrosome [6,8]. In murine NSCs, the mother centrosome is kept
more often by the future NSC, while the differentiating progeny inherits the daughter centriole
[9]. Intriguingly, the future NSC forms a primary cilium sooner than its differentiating sister [8],
eventually resulting in asymmetric ciliary signaling. Not completely removing SDAs in mitosis
suggests that the cell inheriting the older centrosomes could organize centrosomal MTs sooner
than its counterpart does, with implications in downstream cellular processes associated with
MT organization and cell fate specification, like polarization, delamination, and migration.
Asymmetrically dividing Drosophila neuroblasts get the daughter centriole-containing centro-
some, which has intrinsically stronger MTOC activity [10]. The daughter centriole-containing
centrosome is attached early to the neuroblasts’ apical cell cortex, which could regulate asym-
metric segregation of fate determinants and niche allocation (reviewed in [11]). It remains to be
directly demonstrated if the asymmetric inheritance of centrosomes also leads to asymmetric
MTOC activity. However, spindle size asymmetry is a key component of asymmetric cell
division in mammalian NSCs, with the daughter cell originating from the larger spindle giving
rise to a neuron, while the cell with smaller spindle will generate a progenitor [12]. Thus,
asymmetry in mother and daughter centriole inheritance and spindle size are a first layer of
centrosome heterogeneity in a cell’s life, regulating its behavior and fate. However, recent
work also unraveled differences between self-renewing and differentiating NSCs in centro-
some composition in interphase [3], underlining the fact that different (yet related) cells have
different needs for this organelle. Notably, interphase centrosome composition can differ in
proteins that mediate its MTOC activity, thereby influencing movement [3,13,14]. This essential
function will be discussed in the following section.
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Eribulin/Halaven blocks MT
polymerization by binding sites at the
plus ends of existing microtubules. Vinca
alkaloids, such as vincristine und
vinblastine, prevent MT polymerization
by binding and blocking tubulin hetero-
dimers.
Centrosome MTOC activity affects stem cell differentiation
Centrosomes participate in MT dynamics and organization in mammalian progenitor cells and are
the main MTOCs in most stem cells [3,15–18]. Importantly, centrosomes also incorporate
specific proteins to regulate their MT nucleating capacity according to cell type and cell cycle
phase [3]. Changes in centrosome MTOC activity in different cells are well known (reviewed in
[19,20]), including the decrease in the ability of the centrosome to organize and nucleate MTs
during differentiation [3,15–18,21,22]. This is the case for gut and muscle progenitors as well
as skin stem cells [16,18,22]. Notably, some epithelial-type stem cells, such as NSCs, first
upregulate centrosomal MTOC activity to promote delamination and differentiation and only
subsequently reduce it as they further mature [3]. However, the direct role of centrosomal
MTOC activity per se in fate determination and the underlying mechanisms is just starting to be
elucidated [3,14,16,17].
Box 1. Neural progenitors define the architecture of the forebrain

The basic principles governing the formation of the mammalian forebrain, particularly the cerebral cortex, are conserved in phylogeny (Figure I) [2]. Radial glial cells
(RGCs), the neural stem cells, line the ventricular zone (VZ) and directly contact the ventricle through their apical process containing the primary cilium and the centro-
some. RGCs are bound to each other via cell junctions at apical processes, thereby forming a polarized epithelium. RGCs divide in the VZ to self-renew or give rise to
differentiating progeny during the neurogenic period. This progeny can be a neuron that will immediately move out of the VZ to the cortical plate (CP) where they mature,
using the basal process of the RGC as a guide and support. Alternatively, RGCs give rise to intermediate transient-amplifying basal progenitors (BPs), which will sit di-
rectly above the VZ to make one or more rounds of division, thereby forming a new layer termed the subventricular zone (SVZ). The multipolar BPs then transform into
bipolar neurons that leave the SVZ and head towards the CP to differentiate further andmature. The repolarization process is essential to control the time that BPs spend
within the SVZ [3,92], which supports cell expansion and, ultimately, neuronal output. At the peak of cortical neurogenesis, most neurons are produced via BPs. In spe-
cies with folded brains, such as primates, these become even more frequent and diverse, culminating in additional and larger SVZs (inner and outer SVZ) (Figure I).

Moreover, in this period, a least in rodents, nine in ten RGC divisions are symmetric (i.e., giving rise to two RGCs). Hours later, one or both daughter cells (now called
differentiating RGCs) delaminate towards the SVZ and transform into BPs [93]. Daughter cells that do not differentiate but divide are known as proliferating RGCs.
Proliferating and differentiating RGCs can be identified by the expression of BTG2/TIS21 [94] and, as more recently shown, by the expression of centrosomal proteins
and the dynamics of microtubules [3].
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Figure I. A comparison of the developing cerebral cortex in mice and primates. The overall architecture of the developing cortex in species with smooth
(mouse) and folded (primates) brains and the basic cellular and molecular mechanisms regulating its formation are conserved. Folded brains, however, possess
additional subventricular zones (SVZs) with specialized progenitor cell types that support the gyrification process. Abbreviations: CP, cortical plate; (i/o)SVZ, inner/
outer subventricular zone; IZ, intermediate zone; VZ, ventricular zone.
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Figure 1. The composition and structure of interphase centrosomes. (A) Mammalian interphase centrosomes consist of two centrioles surrounded by
pericentriolar material (PCM). The PCM comprises proteins organized in a hierarchical manner and RNA [4,86,87]. Nine hyper-stable microtubule (MT) triplets or
doublets form the centrioles, which are coupled at their proximal ends by cohesion factors through protein fibers. The older (mother) centriole has distal appendages
(DAs) and subdistal appendages (SDAs), with a hierarchical protein organization [41,88]. DAs connect centrioles to the cell membrane and facilitate the primary cilium
formation [30] and the immunological synapse [100]. Each DA sits directly on the surface of one centriole triplet; hence, they are always nine. SDAs are conical-shaped
stems, apparently ending in a rounded head that anchors MTs to the centriole and eventually contribute to MT nucleation (Box 2). They also sit on the surface of
centrioles but can associate with several MT triplets; hence, they can be nine or fewer (see, e.g., [88]). Daughter centrioles can nucleate MTs and regulate cilium
formation by controlling the levels of negative ciliogenesis regulators at the mother centriole [89]. (B) The number of SDAs can differ in cell types [88,90]. Cells with
intense centrosomal MT organization, such as lymphocytes (e.g., KE37 cells) [91], tend to have more SDAs than epithelial cells (RPE-1 cells, pig oviduct cells),
indicating a relationship between SDA numbers and centrosomal microtubule organizing center (MTOC) activity. In CEP83 knockout (KO) cells (DA elimination), SDAs
can grow at other, more proximal regions.

Trends in Cell Biology
Inactivation of centrosomal MTOC activity is achieved mainly in three ways: (i) by downregulating
the expression of centrosomal MT organizers (in the PCM or at SDAs) [3,16,23]; (ii) by
relocalization of MT organizers and nucleators to alternative noncentrosomal MT organizing
Box 2. Can SDAs contribute to MT nucleation and growth?

SDAs look like conical-shaped stems ending in a rounded head in electron microscopy photographs, which some
scientists think may contain MT nucleators. Gamma-tubulin has been shown convincingly at SDAs at least by five studies
[88,95–98]. Schweizer and colleagues show MTs emanating from the distal part of centrioles in MT regrowth assays (see
Figure 1B arrowheads in [95]). Furthermore, SLAIN2 interacts with core SDA components NINEIN, ODF2, CEP170,
CEP128, CNTRL, and EB1/MAPRE1 [99]. EB1 is an SDA protein but also a MT plus-end tracking (+TIP) factor like SLAIN2
involved in MT growth and stabilization via interactions with the MT polymerase ch-TOG/CKAP5, cytoplasmic linker
proteins (CLIPs), and CLIP-associated proteins (CLASPs). Thus, SDAs could potentially attract MT nucleation and growth
machineries.
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Table 1. Centrosome associated proteins discussed in this reviewa

Protein Localization Functions

CDK5RAP2 PCM PCM scaffold protein, centrosomal γ-tubulin localization, MT nucleation

CEP152 PCM PCM scaffold protein

CEP192 PCM PCM scaffold protein

NEDD1 PCM MT organization/anchoring and nucleation, centrosomal γ-tubulin localization

PCNT PCM PCM scaffold protein

TUBG PCM MT nucleation, MT minus-end capping

CEP135 PE Centriole–centriole cohesion

C-NAP1 PE Centriole–centriole cohesion

CEP68 Linker fibers Centriole–centriole cohesion

CEP250 Linker fibers Centriole–centriole cohesion

ROOTLETIN Linker fibers Centriole–centriole cohesion

CEP83 DA Dock MC to cell membrane, role in primary cilia formation

CEP89 DA Role in primary cilia formation

CEP164 DA Dock MC to cell membrane, role in primary cilia formation

LRRC45 DA + PE Role in primary cilia formation, centriole–centriole cohesion

SCLT1 DA Role in primary cilia formation

AKNA SDA + PE + MTs MT organization/anchoring, nucleation, polymerization

CCDC68 SDA+ PE MT organization/anchoring

CCDC120 SDA + PE MT organization/anchoring

CEP128 SDA MT organization/anchoring

CEP170 SDA, MTs MT organization/anchoring

CEP350/CAP350 SDA and DC MT organization/anchoring

CNTRL SDA MT organization/anchoring

DCTN1 SDA + PE + MTs MT organization/anchoring

NINEIN SDA + PE + MTs MT organization/anchoring and nucleation

ODF2 SDA MT organization/anchoring and nucleation and role in primary cilia formation

EB1 SDA + MTs MT organization/anchoring, role in primary cilia formation, MT growth and
stabilization

CEP120 DC + PCM Regulation of PCM assembly

CTROB DC Regulation of centriole duplication

CAMSAP MTs + PCM MT minus-end capping, MT organization/anchoring and nucleation

aAbbreviations: DA, distal appendages; DC, daughter centriole; MC, mother centriole; MTs, microtubules; PCM,
pericentriolar material; SDA, subdistal appendages.

Trends in Cell Biology
centers [14,17,18,24]; and (iii) by completely removing centrosomes as in oocytes [25]. Removing
whole centrosomes is an extreme case, as most differentiated cells conserve them. Therefore,
centrosomes must serve other functions besides organizing MTs, such as cilia formation. As
reducing MTOC activity is a prominent functional change of centrosomes during differentiation, the
question arises if this is solely an accompanying process or if it directly modulates stem cell fate.
Cellular processes essential for stem and progenitor cell homeostasis such as motility, adhesion,
division, and cell signaling (many essential signalingmolecules bindMTs) are MT-dependent. Altering
centrosomal MTOC activity could thus directly regulate stem cell fate and behaviors, but in most
cases it is not clear how. We next review recent key discoveries in mammalian NSCs and encourage
readers to consult these studies [15–17,26,27] for other stem and progenitor cell systems.
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During embryonic neurogenesis, centrosomal MTOC activity controls NSC delamination and
differentiation, BP polarity, and neuronal migration. Centrosomes of the epithelial-like NSCs are
located in the apical process and nucleate MTs in apical and basal directions [3,28]. Apical
MTs form a ring around the junctions of the cell soma or process to stabilize them [29,30]. Similar
to other epithelial cells [24,31], some of these MTs may be re-anchored to adherens junction by
CAMSAP-family of proteins [32] and their interactors. Perturbation of SDA and DA proteins
affects the organization of apical MTs, leading to ectopic delamination and abnormal differentia-
tion [3,9,14,30]. Thus, centrosomal MTOC activity is essential to maintain NSCs physically in their
niche (the ventricular zone) and control cell fate. Impairment of centrosomal MTOC activity stiffens
the apical membrane, thereby activating the YAP pathway, which induces cell proliferation and a
higher number of BPs [30]. RHOA signaling is another candidate that is likely affected by MTOC
activity by altering the activation status of MT-bound effectors such as GEF-H1 [33,34]. Indeed,
similar to NINEIN loss-of-function, RHOA loss disrupt cell junctions and leads to NSC delamination
[35,36]. Thus, centrosomal MTOC activity is present in NSCs and also maintains their NSC identity
by retaining them in the niche and regulating specific signaling pathways, directly or indirectly.

MTs are organized in varicosities of the basal process of NSCs by the minus-end MT stabilizing
proteins CAMSAP [32]. That means NSC centrosomes are not the only organizing center in
these cells. However, this changes once NSCs decide to differentiate, as they increase
centrosomal MTOC activity [29]. NSCs do so by upregulating the expression of AKNA, a new
centrosomal protein, which strongly organizes MTs at SDAs [3]. Similar to other canonical MT
anchoring factors, such as NINEIN and CEP170, AKNA also localizes at the proximal ends
(PEs), where it could contribute to MT nucleation. Indeed, AKNA overexpression increases MT
nucleation in vitro and in vivo by recruiting the nucleation machinery [3]. The increase in AKNA
protein levels leading to more potent centrosomal MTOC activity and MT nucleation induces
cell junction weakening (e.g., by recruiting CAMSAP proteins to the centrosome), retraction of
the apical processes, and delamination [3,29] (Figure 2A). This shows that, besides maintaining
NSC integrity, changes in centrosomal MTOC activity and MT nucleation also regulate early
(possibly the first) steps of NSC differentiation. AKNA levels are highest in BPs, indicating
that BPs have intense centrosomal MTOC activity and MT nucleation. This needs to be down-
regulated for cells to repolarize and move to the cortical plate (CP), thereby regulating the
duration that BPs spend in the SVZ [3]. As mentioned earlier, neurons inactivate centrosomes
as they mature and reorganize MTs in noncentrosomal locations [21,23]. This seems to happen
gradually, concomitantly to the downregulation of AKNA, as centrosomal MTOC is still required
to a certain extent in migrating neurons to couple the nucleus to the centrosomes and allow
nuclear translocation during migration (reviewed in [37,38]). Blocking centrosomal MTOC
inactivation in neurons by keeping AKNA expression blocks BPs from leaving their niche [3].
Thus, as in NSCs, the rate of centrosomal MTOC activity controls BP and neuronal differentiation
and behavior.

Centrosome protein heterogeneity regulates MTOC activity in stem cells
Not all centrosomes are equal, in particular regarding the protein composition. Initial proteomics
studies of purified centrosomes established a defined set of core centrosomal proteins [39,40].
This pool of proteins expanded since researchers analyzed other types of cells and it seems
clear that different cells can: (i) express different centrosome factors, or (ii) localize them to
noncentrosomal locations, often to fulfill other roles. AKNA is one of many good examples
[41–43], as it is highly expressed in lymphoid cells and neural progenitors, but not in fibroblasts
(our own observation) or very lowly in epithelial cells [3]. Hence, it is paramount to investigate
centrosomal proteins in the correct biological context to understand their cellular and molecular
functions correctly.
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Figure 2. Centrosome heterogeneity and microtubule (MT) dynamics regulate differentiation. (A) In the developing cerebral cortex, differentiating radial glia
cells (RGCs) in the ventricular zone (VZ) express the subdistal appendage (SDA)-protein AKNA, which intensifies centrosomal microtubule organizing center (MTOC)
activity and MT nucleation. This depletes MT organizing factors like CAMSAP3 from cell junctions, allowing the abscission of the apical process and inducing
delamination towards the subventricular zone (SVZ). RGCs turn into multipolar basal progenitors (BPs) in the SVZ, where they spend some time to amplify. The time in
the SVZ is controlled by MTOC activity mediated by AKNA [3]. Young neurons moving towards the cortical plate (CP) downregulate AKNA, hence their centrosomes
are inactivated and lose MTOC activity. MTs are then organized at noncentrosomal locations. These changes are essential for seeding of neurons in the CP [3].
Schematic drawing, with modifications, from [3]. (B) Schematic representation of the changes in SDA proteins and centrosomal MTOC activity during neuronal
differentiation. (C) A similar process happens in the epidermal stem cell system: epidermal stem and progenitor cells (ESPCs) have largely centrosomal-based MT
organization, which is critical for cell division and delamination of the basal cell layer. Upon differentiation, centrosomal MTOC activity is gradually reduced and MTs are
stabilized and organized at cell junctions. Here, also, manipulating MT dynamics and organization have direct impact on stem cell behavior [16,17]. Abbreviations:
Cent., centrosomal; GLC, granular layer cell; IZ, intermediate zone; SC, stratum corneum; SLC, spinous layer cell.

Trends in Cell Biology
In embryonic NSCs, the protein composition of SDAs can differ if they self-renew or differentiate
(Figure 2B). Self-renewing or proliferating NSCs decorate SDAswith NINEIN, and loss-of-function
experiments indicate that MT anchoring at SDAs by NINEIN is necessary for stem cell mainte-
nance [9,13,44]. In contrast, differentiating NSCs decorate SDAs with AKNA, and perturbation
indicates that intense MT organization at SDAs drives stem cell delamination and differentiation
[3]. Intense centrosomal MTOC activity is required to retract the apical process and reposition
the centrosome towards nonapical locations [3]. Therefore, centrosomes with SDAs containing
different proteins differ in their cellular function (Figure 2B). NINEIN changes localization from cen-
trosomes to MTs upon NSC differentiation via alternative splicing [14]. DCTN1/p150Glued is an-
other SDA-associated protein that is alternatively spliced [14], which could also change its MT
Trends in Cell Biology, Month 2022, Vol. xx, No. xx 7
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anchoring properties. These data suggest amodel in which AKNAmay take over the role of NINEIN
inMT anchoring at SDAs in differentiating NSCs and BPs, while NINEIN coordinates the initial steps
in gradually reorganizing MTs to noncentrosomal places in neurons.

Notably, the delaminationmechanisms from an epithelial layer are not nervous system-specific, but
also apply to other epithelial cells undergoing epithelial–mesenchymal transition (EMT). In these
cells, AKNA localizes to the centrosome and recruits CAMSAP3 from cell junctions to the centro-
some, thereby weakening the junctional complexes while promoting centrosomal MT nucleation
and anchoring [3]. Reducing AKNA levels during EMT retains CAMSAP3 at junctional complexes
and retains epithelial junctions. Thus, the cell type-specific composition of SDAs, with or without
AKNA, potently influences centrosome functions and stem cell behavior. Notably, skin stem cells
also delaminate, in this case from the basement membrane, to move towards suprabasal layers
where they further differentiate [22,45] (Figure 2C). However, the molecular regulators of this are
unknown. Gut and muscle progenitor cells switch from centrosomal to noncentrosomal MT orga-
nization as they differentiate or mature [15,19]. However, these cells do not undergo a delamination
process and the molecular regulators for this switch are also largely unknown. Therefore, changes
in centrosomal MTOC activity happen in cell differentiation, even if delamination is not involved.

The expression of NINEIN and AKNA in NSCs is regulated by the transcription factors PAX6 [13,46]
and SOX4 [47] (and our own observations), respectively. In PAX6mutant NSCs, NINEIN expression
is downregulated, while AKNA levels are elevated, and cells show precocious delamination due, in
part, to aberrant cell adhesion at the apical surface. SOX4 promotes NSC differentiation to BPs
[48]; knock-down of SOX4 reduces AKNA levels while overexpression increases them. Thus,
stem cell-specific centrosomal proteins controlling MTOC activity are regulated at the expression
level by context-dependent genetic programs and are not a passive differentiation effect.

The examples mentioned earlier in NSCs and other cells, such as epidermal, epithelial, and muscle
stem/progenitor cells [15,16,18], highlight the key theme of the review, namely that the changes in
centrosome protein composition occurring during differentiation are an active coordinated process
required for controlling stem cell fates and behavior. Beyond protein specificity, there may be
another layer of regulation and diversity at the RNA level, which we discuss next.

RNA contribution to centrosomal functions and differences
The presence of mRNA at or near centrosomes was observed in the mid-1960s [49,50]. First
examples of specific mRNAs and mRNA-binding proteins were detected two to three decades
ago [51–53] and since then have been validated in several model organisms, including immortal-
ized mammalian cell lines. However, in primary stem cells this phenomenon has just started to be
explored [54]. Nevertheless, high-throughput identification of cenRNAs and their partners, as well
as the characterization of their dynamics in living cells at a quantitative level, remained a challenge.
This has been overcome, at least for individual RNAs, thanks to single-molecule fluorescent in situ
hybridization, transgenesis, live imaging, and machine learning for automatic quantification of cel-
lular features [55,56], and has allowed investigation of the role of specific RNAs in more detail. Re-
cent work showed that centrosomal mRNAs are moved to the centrosome by active polysome
transport [57] andmay be translated at centrosomes or while moving towards them. Notably, dis-
tribution analyses of RNAs have revealed that centrosomes contain highly specific RNAs (e.g.,
amongst 602 genes encoding for centrosomal proteins screened only six had mRNAs concen-
trated at the centrosome in HeLa cells) and in low copy numbers [56–58]. This high degree of
specificity [57] implies precise functional roles and argues against a purely structural role contrib-
uting to the formation of the membraneless centrosome compartment aided by RNA concentra-
tion [56,59].
8 Trends in Cell Biology, Month 2022, Vol. xx, No. xx
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Indeed, despite their low quantities, they are essential for the proper function of the organelle, as
demonstrated by RNA digestion, RNA interference, or translation inhibition [54,60]. The mRNAs
so far detected at centrosomes mostly encode centrosome- and MT-associated proteins with
scaffolding roles (e.g., Plp/Pcnt) [56,61], MT organizing activity (e.g., Ninein, Cep350) [54,57],
or MT nucleating and polymerizing functions (e.g., Aspm, Cyclin-b, Cen/CDR2/CDR2L)
[54–56,61,62]. Importantly, the centrosome localization of Cen RNA has been shown to be
functionally relevant, as mitotic aberrations occur in its absence [56]. Also, ribosomal RNAs
have been observed at centrosomes and may help maintain spindle integrity and MT nucleation
in coordination with RNA-binding proteins like RAE1, MASKIN, FUBP2, and FMRP [56,60,63].
Importantly, RNAs are found in interphase centrosomes or mitotic spindles, indicating specific
roles during the cell cycle. For example, PcntmRNA accumulates and is translated in early mitotic
spindles to enhance centrosome maturation [61], while NineinmRNA is found at centrosomes in
interphase, when SDAs are built to anchor MTs [54] (Figure 3A,B). It has been observed that
RNAs are loaded on polysomes or kept inactive in P-bodies, exon-junction protein complexes,
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Figure 3. Centrosomal RNA roles in interphase and mitosis. Accumulation of (modified) mRNAs at centrosomes can boost local translation of proteins such as
NINEIN in interphase, for example, when increased microtubule (MT) anchoring at subdistal appendages (SDAs) is needed (A), or local translation of proteins
associated with MT nucleation and centrosome maturation during mitosis (B). Notably, also during mitosis, rRNAs have been detected at spindles [63], but their role is
yet unknown [pericentriolar material (PCM) stabilization? Ribosome assembly?]. Importantly, unequal localization of RNAs encoding MT-regulators (and thus of their
proteins) to one daughter cell during mitosis could support the asymmetric delivery of fate determinant to one cell (C). Local translation at centrosomes could also
hinder proteins to be post-translationally modified at other organelles (e.g., Golgi apparatus and endoplasmic reticulum), providing them with different or specialized
features. Abbreviations: DA, distal appendage; DC, daughter centriole; MC, mother centriole, mRNA, messenger RNA; PE, proximal end; rRNA, ribosomal RNA.
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Outstanding questions
Can we modify the composition of
organelles to control their behavior
and thereby instruct (stem) cells to
produce a desired cell type for use
(e.g., in regenerative therapies)?

Which factors (e.g., proteins, RNAs)
regulate organellar heterogeneity, in
which quantities, and at what time
points?

Are there other yet-uncovered pro-
cesses related to or coordinated by
RNAs taking place at centrosomes,
such as RNA metabolism, RNA inhibi-
tion, assembly of ribonucleoproteins,
or even splicing itself?

How large is centrosome diversity in
cancer and metastasis?
and RNA export-factors until they reach the organelle and are translated there [54,60,64]. Yet,
since there is no comprehensive RNA-seq data from the interphase centrosome, we do not yet
know how diverse the RNA at the centrosome may be in different cell types and which other
RNAs beyond those encoding for centrosomal proteins may be at the centrosome.

Could RNA contribute to specializing or diversifying centrosomes? One possibility could be
enriching transcripts around one centriole or part of this to set it apart from the other centriole
(Figure 3C). This has been observed by Ryder and colleagues in fruit fly embryos [56] for
Centrocortin, the Drosophila melanogaster homolog of mammalian CDR2 and CDR2L proteins
[65], which is biased to the mother centrosome. Notably, the mother centrosome is richer in
PCM andMT-nucleators PCNT/PLP and CDK5RAP2/Cnn [66,67]. This suggests that themother
centriole could nucleate more MTs during or after mitosis in these cells and, as in neuroblasts,
could segregate molecules asymmetrically to the daughter cells (Figure 3C). Another possibility
would be delivering RNAswith specificmodifications in the polyadenylation format or the splice pattern
[51,54,57,62]. First, this could help mark and sort proteins from a bigger pool to be delivered precisely
to the centrosome, such as cycling proteins or kinases. Second, differentially spliced transcripts could
promote loading centrosomes with variations of a protein once translated there to regulate its activity.
This could be the case for NINEIN, DCNT1, AKAP9, DYNC1I2, KIF2A in NSCs and neurons [14] and
the brain-specific MT-associated protein kinase SAD-A (see 'Note added in proof' section). The
centrosomes containing one or the other splice variant may thus behave differently. Finally, proteins
translated at centrosomes may not be subject to the same post-transcriptional modification as in
the endoplasmic reticulum and Golgi. As with splice variants, a different post-translational modification
could also affect protein function and, in turn, centrosomal behavior in different cell types.

Sequencing cenRNAs in different (stem) cell types will substantially help understand the exciting
and emerging field of RNA localization and function at the centrosomes. Hassine and colleagues
have taken the first steps by performing transcriptomic analysis of purified mitotic spindles in one
cell line, showing that thousands of RNAs of different classes are enriched there and STAUFEN1
regulates the localization of many of them [68]. It is worth noting that using crude preparations
of purified centrosomes requires a large number of cells and can be contaminated with
noncentrosomal proteins and nucleic acids, making it difficult to adapt this approach for stem
cells, in particular those with low cell numbers, which calls for other methods. These could be
APEX-mediated biotinylation, which allows the monitoring of RNAs at many organellar sites
[69], or pulling downRNA-binding proteins in cellular fractions to at least minimize contaminations
from other sites. Possibly, a combination of ultrastructural sections combined with sequencing
approaches may also be a promising approach [70].

Concluding remarks
Here, we discussed centrosome heterogeneity as a regulator of stem cell function during mitosis
and in interphase. This is particularly relevant as these processes affect cellular and functional
diversity in ontogeny and phylogeny. Protein and RNA composition of centrosomes can differ
between cell cycle stages without major changes in cell identity, as in amplifying NSCs early in
development and in commonly used cell lines. However, currently, we lack information in any
primary stem and progenitor cells (with the exception of [16]). The aforementioned considerations
should motivate comprehensive studies of the centrosome proteome and transcriptome in
primary (stem) cells, as we now learn about the key roles of differentially regulated centrosomal
factors, to then combine with functional assays using cell type-specific fluorescent reporters [17].

Learning about organelle heterogeneity is important to answer relevant questions in developmental
biology (see Outstanding questions) and to comprehend diseases better. Metastasis formation is
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one of the greatest challenges in treating cancer and the centrosome and cytoskeleton play key
roles. Their distinct composition in different cancers may shed some light on their metastasis
mechanisms. Furthermore, localization of a ubiquitous protein in a specific organelle in one tissue
or cell type may help prioritize gene variants found in patients with a specific disease phenotype.
Some ubiquitous splicing proteins are found specifically at the centrosome [71] in NSCs (A. O'Neill
et al., unpublished), allowing prioritization of mutations in patients with neuronal ectopias, that
derive from cells failing to delaminate and/or migrate towards their correct positions. Given the
insights into delamination mechanisms and specific types of migration in the developing cortex,
one may envision manipulating MT and centrosome dynamics to counteract those defects. It is
encouraging that at least in one pioneering example, ectopic neurons could be instructed to
resume migration by doublecortin overexpression [72]. Excitingly, such approaches could now also
be tested in human models of heterotopia [73], possibly using small molecules already used in ther-
apies in humans (e.g., taxanes, eribulin, and vinca alkaloids), which, at specific doses, can fine
tune MT dynamics. Thus, exploring and understanding centrosome heterogeneity allows targeted
manipulation towards novel, highly specific, therapeutic approaches.

Outlook: call for comprehensive analysis of organellar composition in cell
type-specific manner
We have seen that the centrosome composition matters profoundly for stem cell behavior. Could
this be the case also for other organelles, and could it be a general principle tomultiply and specify
functions of proteins to generate large cellular diversity in ontogeny and phylogeny?

Themitochondria of glia and neurons differ by about a fifth of their proteome in vivo and in vitro [74,75]
and this accounts for differences in fatty acid metabolism, calcium buffering, and protection against
damage by reactive oxygen species directly affecting cell fate (e.g., in glia-to-neuron reprogramming
[75] and neurogenesis [76,77]). Recent work showed that self-renewing NSCs have high levels of
the nuclear factor Trnp1 [78] that regulates the size and function of nucleoli, another organelle
with functions in most cells. This promotes proliferation, self-renewal, and protein synthesis in
self-renewingNSCs [79] as opposed to differentiatingNSCs that lose Trnp1 [78], and ultimately affects
brain size and folding [78,80]. Also the cytoskeleton shows enormous protein diversity. MTs, for exam-
ple, aremadeof alpha and beta tubulin dimers, forwhich there are up to nine isoforms each in humans.
The combination of isoforms, which is highly cell type-specific, together with different post-translational
modifications, potently regulates MT dynamics [81], which in turn influences differentiation, migration,
and delamination of stem and progenitor cells [3,17,26,82–84]. These considerations call for unbiased
proteome analysis of organelles in a cell type-specific manner, for example, using fractionation of the
proteome, enriching different organelles in distinct fractions [85]. This is now possible due to much-
increased sensitivity in mass spectrometry and the unprecedented access to the entire diversity of
human cell types from induced pluripotent stem cells. Thus, the future looks bright for cell biology to
unravel the cell type-specific functions of organelles beyond their typical roles.

Note added in proof
While this review was in proof stage, A. O'Neill et al. (unpublished) showed a high degree of
centrosome proteome differences between cell types and during neural stem cell to neuron differenti-
ationwith a striking abundance of distinct RNA-binding proteinswith relevance to neurodevelopmental
disease.
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