
ARTICLE

Variational autoencoders learn transferrable
representations of metabolomics data
Daniel P. Gomari1,2,3,10, Annalise Schweickart4,10, Leandro Cerchietti 5, Elisabeth Paietta6, Hugo Fernandez7,

Hassen Al-Amin 8, Karsten Suhre 9 & Jan Krumsiek 4✉

Dimensionality reduction approaches are commonly used for the deconvolution of high-

dimensional metabolomics datasets into underlying core metabolic processes. However,

current state-of-the-art methods are widely incapable of detecting nonlinearities in meta-

bolomics data. Variational Autoencoders (VAEs) are a deep learning method designed to

learn nonlinear latent representations which generalize to unseen data. Here, we trained a

VAE on a large-scale metabolomics population cohort of human blood samples consisting of

over 4500 individuals. We analyzed the pathway composition of the latent space using a

global feature importance score, which demonstrated that latent dimensions represent dis-

tinct cellular processes. To demonstrate model generalizability, we generated latent repre-

sentations of unseen metabolomics datasets on type 2 diabetes, acute myeloid leukemia, and

schizophrenia and found significant correlations with clinical patient groups. Notably, the VAE

representations showed stronger effects than latent dimensions derived by linear and non-

linear principal component analysis. Taken together, we demonstrate that the VAE is a

powerful method that learns biologically meaningful, nonlinear, and transferrable latent

representations of metabolomics data.

https://doi.org/10.1038/s42003-022-03579-3 OPEN

1 Institute of Computational Biology, Helmholtz Center Munich—German Research Center for Environmental Health, 85764 Neuherberg, Germany.
2 Technical University of Munich—School of Life Sciences, 85354 Freising, Germany. 3 Department of Genetics, Stanford University School of Medicine,
Stanford, CA, USA. 4Department of Physiology and Biophysics, Weill Cornell Medicine, Institute for Computational Biomedicine, Englander Institute for
Precision Medicine, New York, NY 10021, USA. 5Department of Medicine, Hematology and Oncology Division, Weill Cornell Medicine, New York 10065 NY,
USA. 6 Albert Einstein College of Medicine-Montefiore Medical Center, Bronx, NY, USA. 7Moffitt Malignant Hematology & Cellular Therapy at Memorial
Healthcare System, Pembroke Pines, FL, USA. 8Department of Psychiatry, Weill Cornell Medicine—Qatar, Education City, P.O. Box 24144 Doha, Qatar.
9 Department of Physiology and Biophysics, Weill Cornell Medical College—Qatar Education City, Doha, Qatar. 10These authors contributed equally: Daniel P.
Gomari, Annalise Schweickart. ✉email: jak2043@med.cornell.edu

COMMUNICATIONS BIOLOGY |           (2022) 5:645 | https://doi.org/10.1038/s42003-022-03579-3 | www.nature.com/commsbio 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03579-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03579-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03579-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03579-3&domain=pdf
http://orcid.org/0000-0003-0608-1350
http://orcid.org/0000-0003-0608-1350
http://orcid.org/0000-0003-0608-1350
http://orcid.org/0000-0003-0608-1350
http://orcid.org/0000-0003-0608-1350
http://orcid.org/0000-0001-6358-1541
http://orcid.org/0000-0001-6358-1541
http://orcid.org/0000-0001-6358-1541
http://orcid.org/0000-0001-6358-1541
http://orcid.org/0000-0001-6358-1541
http://orcid.org/0000-0001-9638-3912
http://orcid.org/0000-0001-9638-3912
http://orcid.org/0000-0001-9638-3912
http://orcid.org/0000-0001-9638-3912
http://orcid.org/0000-0001-9638-3912
http://orcid.org/0000-0003-4734-3791
http://orcid.org/0000-0003-4734-3791
http://orcid.org/0000-0003-4734-3791
http://orcid.org/0000-0003-4734-3791
http://orcid.org/0000-0003-4734-3791
mailto:jak2043@med.cornell.edu
www.nature.com/commsbio
www.nature.com/commsbio


Modern metabolomics experiments yield high-
dimensional datasets with hundreds to thousands of
measured metabolites in large human studies with

thousands of participants1. Such datasets are routinely generated
to profile the molecular phenotype of disease and identify the
underlying pathological mechanisms of action2–5. Extracting
systemic effects from high-dimensional datasets requires dimen-
sionality reduction approaches to untangle the high number of
metabolites into the processes in which they participate. To this
end, linear dimensionality reduction methods, such as principal
component analysis (PCA) and independent component analysis
(ICA), have been extensively applied to high-dimensional biolo-
gical data6–10. However, metabolic systems, like most complex
biological processes, contain non-linear effects which arise due to
high-order enzyme kinetics and upstream gene regulatory
processes11,12. For example, metabolite ratios are an intuitive and
widely used approach to detect non-linear effects in metabo-
lomics data, approximating the steady state between reactants and
products of metabolic reactions13,14. Extending this concept,
systematic methods that take nonlinearities into account are
required to correctly recover the functional interplay between
metabolites in an unbiased fashion.

Autoencoders (AEs) are a type of neural network architecture
developed as an unsupervised dimensionality reduction method
that can capture non-linear effects15. AEs reduce high-
dimensional data into latent variables through an encoding/
decoding process which recreates the input data after passing
through a lower dimensional space. Once the model is fitted, the
latent variables represent a compact, often easier-to-interpret
version of the original data. While AEs have been successfully
used for prediction tasks on biological datasets16, they tend to
learn latent spaces specifically fitted to the input dataset and are
therefore not generalizable to biological phenomena absent from
the training data17. To address this, Variational Autoencoders
(VAEs) were introduced as a probabilistic extension of the AE
architecture that constrains the latent variables to follow a pre-
defined distribution18. With this extension, the VAE not only
reconstructs the input data, but infers the generative process
behind the data, leading to high generalizability across datasets.
The VAE architecture has, for example, proven effective for
predicting cell-level response to infection from transcriptomic
data in cell types not used during training, and predicting drug
response from gene expression data where drug response infor-
mation was sparse17,19,20. In addition, latent dimensions of VAE
models trained on gene expression data have been shown to
strongly associate with clinical parameters21 and have out-
performed other common low-dimensional representation
methods (PCA and k-means clustering) in capturing biologically
meaningful pathways22.

The application of deep learning architectures to metabolomics
datasets has considerably lagged behind most other omics23 due
to the unavailability of large metabolomics cohorts. One previous
study used (non-variational) AEs on a small set of metabolomics
samples (n= 271), demonstrating superior predictability of ER
status in breast cancer patients using the latent representations of
the model over common machine learning methods24. By
applying VAE architectures to large-scale metabolomics data, we
have the potential to learn more accurate latent dimension
representations that systematically account for non-linear effects.
In addition, the probabilistic structure of VAEs will learn latent
dimensions that are generalizable across multiple datasets.

In this paper, we trained a VAE model on 217 metabolite
measurements in 4644 blood samples from the TwinsUK study25

and evaluated our model performance in comparison to linear
and non-linear PCA models (Fig. 1a). To investigate the biolo-
gical relevance of the learned VAE and PCA latent dimensions,

we employed the Shapley Additive Global Importance (SAGE)
method26, which determines the contribution of each input to
each latent dimension. We calculated SAGE values at different
granularities, i.e., metabolites, sub-pathways, and super-pathways
(Fig. 1b). We then applied the models on three additional blood
metabolomics datasets to test their ability to recover disease
phenotypes in unseen datasets: Type 2 Diabetes diagnosis in The
Qatar Metabolomics Study on Diabetes (QMDiab, n= 358),
therapy response in an acute myeloid leukemia dataset (AML,
n= 85), and schizophrenia diagnosis in a third validation dataset
(n= 201) (Fig. 1c).

Results
VAE model construction and fitting. Our VAE architecture
consisted of an input/output layer, an intermediate layer and a
latent layer. We split the TwinsUK cohort into an 85% training
and a 15% test set, and the training set was used to optimize the
hyperparameters in the VAE model. Keras Tuner27 identified the
following optimal hyperparameters: Intermediate layer dimen-
sionality= 200, learning rate= 0.001, and Kullback-Leibler (KL)
divergence weight= 0.01 (see Methods). With these parameters
fixed, we optimized the dimensionality d of the latent layer z by
calculating the reconstruction MSE of the correlation matrix
(CM-MSE) of metabolites (Fig. 2a, b). We observed that the CM-
MSE curve plateaus after d= 18, indicating that increasing the
latent dimensionality beyond this value only marginally improved
the models. The final architecture of the model consisted of a 217-
dimensional input/output layer (the number of metabolites in our
datasets), a 200-dimensional intermediate layer, and an 18-
dimensional latent layer (Fig. 2c).

We used principal component analysis (PCA) as a baseline
model to compare the VAE to a linear latent variable embedding
method. To this end, we fitted a PCA on the TwinsUK train data
and extracted the first d= 18 dimensions, i.e., principal
components. To further compare our VAE results to a non-
linear latent variable method, we used the same fit and extraction
procedures using kernel (K)PCA models with cosine similarity,
sigmoid, RBF, and polynomial kernel transformations. On
training data, neither PCA nor VAE outperformed KPCA data
matrix reconstruction. On testing data, however, both PCA and
VAE outperformed the KPCA models, with PCA showing better
reconstruction accuracy of the data matrix than the VAE
(Supplementary Figs 1 and 2). All non-linear models, KPCA
and VAE, outperformed PCA in correlation matrix reconstruc-
tion via CM-MSE in both the TwinsUK train and test set (Fig. 2d,
Supplementary Fig. 3).

This difference between the MSE on the correlation matrix and
the more commonly used sample-wise MSE18 outlines ambi-
guities in the methods to assess reconstruction performances.
Notably, other authors have shown previously that sample
reconstruction performance does not necessarily imply better
model performance19,20, as evidenced by the large discrepancy of
KPCA sample reconstruction between training and test sets.
However, our results suggest that while the non-linear methods
do not reconstruct the original data matrix precisely, they are
superior to PCA at preserving metabolite correlations.

Interpretation of VAE latent space dimensions in the context
of metabolites and pathways. We evaluated the composition of
all latent dimensions in the context of metabolic pathways. For
each metabolite in our dataset, a “sub-pathway” and “super-
pathway” annotation was available (see Methods). Sub-pathways
refer to biochemical processes such as “TCA Cycle” and
“Sphingolipid Metabolism”, while super-pathways are broad
groups such as “Lipid” and “Amino acid”. To provide insights
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into the processes represented by different VAE dimensions, we
computed SAGE scores26, a measure of model feature relevance,
at the level of metabolites, sub-pathways and super-pathways
(Fig. 3 and Supplementary Fig. 4). PCA and KPCA results can be
found in Supplementary Figs 5–9.

The VAE sub-pathway heatmap (Fig. 3a) shows that nearly all
dimensions have major contributions by lipid and amino acid
super-pathways. The prevalence of the two super-pathways can
be attributed to the fact that those groups contain the largest
number of metabolites in the dataset. Note that we deliberately
omitted the “Unknown” molecule group, which refers to
unidentified metabolites that could originate from any pathway.

Inspecting the SAGE values in the other direction, almost all
sub-pathways are predominantly represented by a single VAE
dimension that captures the respective pathway the most
(Fig. 3b, red square marks). For instance, “glycolysis, gluco-
neogenesis and pyruvate metabolism” is functionally related to
the sub-pathway pathway “Alanine and Aspartate Metabolism”
through the glucose-alanine cycle28, and both were represented
by VAE dimension 12. Another interesting example is VAE
dimension 14, which captured essential catabolic processes,
such as ketone bodies, fatty acid metabolism, and the TCA
cycle. Taken together, these results show that VAE latent
dimensions capture a complex mix of functionally related sub-
pathways, thus capturing major metabolic processes in the
dataset.

In contrast, PCA and KPCA dimensions 1 to 5, which by
construction represent the highest variations in the data,
nonspecifically captured various sub-pathways. Most other PCA
and KPCA dimensions also primarily contained unrelated sub-
pathways (Supplementary Figs 5–9).

VAE latent space captures signals in unseen diabetes, schizo-
phrenia, and cancer metabolomics datasets. We investigated
whether VAE latent dimensions learned on the TwinsUK data
contained information that is generalizable to other datasets. To
this end, we encoded metabolomics data from three clinical
datasets, type 2 diabetes, acute myeloid leukemia (AML), and
schizophrenia using the VAE, PCA, and KPCA encoders trained
on the TwinsUK dataset. For each VAE, PCA, and KPCA latent
dimension, we performed a two-sided t-test between diabetic vs.
non-diabetic individuals, full vs. no response in an AML clinical
trial, and schizophrenic vs. non-schizophrenic individuals,
respectively. Across all datasets, the best performing VAE
dimensions associated substantially stronger with the patient
groups than any of the PCA or KPCA dimensions (Fig. 4a–f). The
strength of associations between VAE dimensions and disease
parameters were comparable to single metabolite associations
(Supplementary Data 1 and 2). However, unlike the VAE
dimensions, these univariate associations do not represent
system-level mechanisms related to the diseases. Notably, results
did not differ substantially for different dimensionalities than
d= 18 (Supplementary Fig. 15).

To obtain a better understanding of the driving factors of the
VAE associations, we ranked pathways and metabolites by their
calculated SAGE values (Fig. 4g–i):

Type 2 diabetes. VAE latent dimension 12 showed the highest
association with type 2 diabetes, with a considerably stronger
signal than the second highest association by PCA dimension 16
(p= 1.6 × 10−22 vs. p= 2.1 × 10−20, respectively; Fig. 4d). The
top sub-pathways were “glycolysis, gluconeogenesis, and pyruvate
metabolism”, “Lysolipid”, and “Glycine, Serine, and Threonine
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Fig. 1 Overview of our approach. a VAE, linear PCA, and non-linear kernel (K)PCA models were trained using training and test sets in the TwinsUK dataset
(n= 4644 samples, p= 217 metabolites). Model performance was then evaluated using Mean Squared Error (MSE) of metabolite correlation matrix
reconstruction. b The SAGE method was applied to calculate the contribution of individual metabolites, sub-pathways and super-pathways to each latent
dimension. c QMDiab (n= 358), AML (n= 85), and Schizophrenia (n= 201) datasets were encoded using VAE and PCA models trained on the TwinsUK
data. Latent dimensions of each model were then associated with disease phenotypes.
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metabolism”. The top-ranking metabolite in dimension 12 was
glucose, which is a main factor directly affected by the disease,
and thus served as a positive control. Other high-ranking meta-
bolites included serine, mannose, and glycine (Fig. 4g). Reduced
levels of the glucogenic amino acids serine and glycine have
repeatedly been reported in Type 2 Diabetes cases as impaired
glucose uptake in insulin-resistant cells triggers hepatic gluco-
neogenesis, consuming these amino acids29–31. Furthermore,
plasma levels of mannose have also been found to associate with
type 2 diabetes diagnosis32. We then correlated dimension 12
with clinical lab measurements from the QMDiab study and
found a strong association between this dimension and HbA1c, a
widely used diabetes biomarker33,34 (p= 6.2 × 10−45 compared to
PCA p= 1.1 × 10−30, and the strongest associated KPCA
dimension p= 6.0 × 10−38, Supplementary Figs 10–12). This
finding demonstrates how a quantitative disease biomarker can
carry more information than a crude disease yes/no classification,
and further highlights the higher information content in the VAE
latent dimensions compared to PCA.

Acute myeloid leukemia (AML). AML response groups associated
an order of magnitude stronger with VAE dimension 12 than
with RBF KPCA dimension 10 (p= 0.027 vs. p= 0.12, respec-
tively; Fig. 4f). Note that the p-value would not withstand mul-
tiple testing correction (Supplementary Data 1); the detected
signal is thus merely suggestive and requires replication in future
studies. In addition to the glycolytic signals described above,
dimension 12 was also driven largely by the “Lipid” super-path-
way, with the “Lysolipid” sub-pathway ranking highly for this
dimension. The lysolipid sub-pathway has prominent contribu-
tions from the metabolite 1-palmitoleyolglycerophosphocholine,
belonging to the glycerophosphocholine (GPC) family, which are

products of cellular membrane breakdown35. In the clinical trial
from which the AML data was taken, the clinical arms were given
varying doses of the drug daunorubicin, an anthracycline anti-
biotic whose mechanism of action includes targeting the cell
membrane36–39. In fact, the localization of daunorubicin in cel-
lular membranes depends on the daunorubicin/lipid ratio, and
therefore differential lipid concentrations between patients could
affect drug response40,41. In addition, the sub-pathway “Poly-
unsaturated Fatty Acid (n3 and n6)” was another lipid-related
driver of dimension 12. The upregulation of polyunsaturated fatty
acids (PUFA) is a trait of anthracyclin treatment42, indicating that
differential abundance of PUFA may reflect treatment efficacy
and thus response in the clinical trial arms. We furthermore
investigated correlations of the latent dimensions with 21 major
AML-related mutations; the analysis revealed only one significant
result, with the NPM1 mutation associating significantly with
polynomial KPCA model dimension 11 (t-test, p < 0.05, Supple-
mentary Figs 13 and 14). However, this genetic association did
not translate to the clinical association with drug response.

Schizophrenia. VAE dimension 11 had a stronger association
with schizophrenia than the second-ranked RBF KPCA dimen-
sion 2 (p= 3.0 × 10−6 vs. p= 3.6 × 10−6, respectively; Fig. 4e).
The top scoring super-pathway for this dimension (Fig. 4h) was
amino acids, with the Phenylalanine and Tyrosine metabolism
sub-pathway and its associated metabolites 3-(4-hydroxyphenyl)
lactate, phenyllactate (PLA), and tyrosine being highly ranked in
this dimension. Phenylalanine and tyrosine are the amino acid
precursors for the synthesis of the main neurotransmitter
implicated in the neurobiology of schizophrenia, dopamine43.
Many studies have shown altered transport of tyrosine across the
blood-brain barrier as a prominent mechanism in schizophrenic

Fig. 2 VAE and PCA model construction on the TwinsUK dataset. a Training and b test set metabolite correlation matrix reconstruction for a range of
latent dimensionality values d. The slope of the VAE curve plateaued after d= 18. Error bars correspond to one standard deviation from bootstrapping
(n= 1000 iterations). c Final VAE architecture, where μ is the mean vector and σ is the standard deviation vector that generates the latent space z.
d Reconstruction MSE for latent dimensionality d= 18 on training and test sets. The box represents the interquartile range (IQR), whiskers are up to 1.5x
IQR, and plotted points are outliers. The VAE preserved feature correlations substantially better than PCA. Kernel PCA-based results can be found in
Supplementary Figs 3 and 4.
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patients44–46. In addition, inflammation, increasingly implicated
in schizophrenic patients, reduces the activity of the enzyme
responsible for converting phenylalanine to tyrosine, such that
phenylalanine is instead converted to phenylpyruvic acid, a
precursor metabolite to PLA43,47. Finally, dimension 11 was
strongly driven by the amino acid creatine. Studies have shown
that schizophrenia patients have significantly reduced brain
levels of creatine compared with healthy controls48, and creatine-
producing enzymes in serum have long been implicated in
schizophrenic psychosis49,50.

Taken together, these results suggest that our VAE has learned
representations of metabolic processes that are essential in unseen
clinical outcomes.

Discussion
In this study, we trained a VAE on metabolomics data from the
TwinsUK population cohort and applied the learned latent
representations on unseen data. Notably, non-linear dimension-
ality reduction methods, including kernel PCA and our VAE
model, outperformed the linear PCA model in metabolite cor-
relation matrix reconstruction, underlining the importance of
non-linear relationships in metabolomics data. Interpretation of
VAE latent dimensions at the metabolite, sub-pathway, and
super-pathway level revealed that these dimensions represent
functionally related and distinct cellular processes. Moreover,
VAE latent dimensions showed substantially stronger disease
associations than PCA and even the non-linear KPCA models in
unseen Type 2 Diabetes, AML, and schizophrenia datasets. This
demonstrates that the VAE learned a latent representation of
metabolomics data that is biologically informative and transfer-
able across different cohorts.

The generalizability of the VAE across different datasets is
especially remarkable given the vastly different underlying
populations of the datasets analyzed here. The VAE was trained
on the TwinsUK population cohort, a European-ancestry popu-
lation cohort consisting predominantly of British women (~92%),
while the validation datasets are mixed-gender and multi-ethnic
cohorts from the US and Qatar. Despite the existence of these
variations in our datasets, our VAE learned a generalized repre-
sentation of metabolomics data which was able to identify
disease-related differences.

The main limitation of our study is the size of the TwinsUK
training dataset with n= 4644. This is a general issue with human
subject metabolomics studies, where even the largest cohorts
reach only about n= 15,00051. Deep learning models are cur-
rently more popular in larger datasets of n= 60,000 samples or
more, such as single cell transcriptomic52–55, image56–58, and text
sources59. Learning the variation in such large datasets allows
these models to significantly outperform their linear counterparts.
Large metabolomics datasets, such as that of the UK BioBank
with a sample size of up to n= 500,00060, will be available in the
near future, and will enable the creation of more expressive and
deeper VAE models.

To the best of our knowledge, this is the first study to construct
a universal latent representation of large-scale metabolomics data
using VAEs. Our results show that VAEs are well-suited for
metabolomics data analysis and can potentially replace dimen-
sionality reduction approaches, such as PCA, in creating a uni-
versal, systems-level understanding of metabolism.

Methods
Datasets. The TwinsUK registry is a population-based study of around 12,000
volunteer twins from all over the United Kingdom. The participants have been
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recruited since 1992 and are predominantly female, ranging in age from 18 to 103
years old25. For our study, we included data from 4644 twins (4256 females, 388
males), the subset of TwinsUK for which plasma metabolomics measurements were
available. Ethical approval was granted by the St Thomas’ Hospital ethics com-
mittee and all participants provided informed written consent.

The QMDiab study was conducted between February and June of 2012 at the
Dermatology Department of Hamad Medical Corporation (HMC) in Doha, Qatar.
The study population was between the ages of 23 and 71, predominantly of Arab,
South Asian, and Filipino descent61. For this study, we included plasma data of
358 subjects (176 females, 182 males; 188 diabetic, 177 non-diabetic). The study
was approved by the Institutional Review Boards of HMC and Weill Cornell
Medicine-Qatar (WCM-Q). Written informed consent was obtained from all
participants.

The cohort of patients with acute myeloid leukemia (AML) comes from the
ECOG-ACRIN Cancer Research Group phase 3 trial NCT00049517. This study was
conducted between December 2002 and November 2008, recruiting 657 patients with
AML between the ages of 17 and 60. A subset of these patients had follow-up profiling
to determine their response to therapy. For this study, we included the serum
metabolomics measurements of 85 subjects of which 43 responded to therapy and 42
did not (34 females, 51 males). The study was approved by the institutional review
board at the National Cancer Institute and each of the study centers, and written
informed consent was provided by all patients.

For the schizophrenia analysis, metabolomics samples were taken from an
antipsychotics study conducted in Qatar between December 2012 and June 201462.
A total of 226 participants between the ages of 18 and 65 years of age were
recruited, predominantly of Arab descent. For our study, we included plasma
metabolomics measurements from 201 subjects (76 females, 125 males;
97 schizophrenic, 104 non-schizophrenic). Approval for the study was obtained

from the HMC and WCM-Q Institutional Review Boards, and all participants
provided written informed consent.

Metabolomics measurements and metabolite annotations. Metabolic profiling
for all four cohorts was performed using non-targeted ultrahigh-performance
liquid chromatography and gas chromatography separation, coupled with mass
spectrometry on the Metabolon Inc. platform as previously described63. Notably,
the AML dataset was based on serum samples, while TwinsUK, QMDiab, and
schizophrenia metabolomics were run on plasma samples. However, previous
studies have shown that these two sample types are comparable, as shown by high
correlations and good reproducibility between plasma and serum measurements in
the same blood sample64.

For each metabolite measured on the Metabolon platform, a super-pathway and
sub-pathway annotation was provided. For super-pathways, we have nine
annotations referring to broad biochemical classes, namely “Amino acid”,
“Carbohydrate”, “Cofactors and vitamins”, “Energy”, “Lipid”, “Nucleotide”,
“Peptide”, “Xenobiotics”, and “Unknown”. Note that “Unknown” is assigned to
unidentified metabolites. Furthermore, we have 54 sub-pathway which represent
more functional metabolic processes, such as “Carnitine metabolism”, “TCA
Cycle”, and “Phenylalanine and Tyrosine Metabolism”.

Data processing and normalization across datasets. For each dataset, meta-
bolite levels were scaled by their cohort medians, quotient normalized58 and then
log-transformed. Samples with more than 30% missing metabolites and metabolites
with more than 10% missing samples were removed. Missing values were imputed
using a k-nearest neighbors imputation method65. Datasets with BMI measure-
ments (Schizophrenia, QMDiab, and Twins) were corrected for that confounder
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and then mean-scaled. 217 metabolites were overlapping between the 4 datasets
and were kept for further analysis.

Semi-quantitative, non-targeted metabolomics measurements are inherently
challenging to compare across datasets due to heterogeneity between studies. This
prevents any machine learning model from being directly transferable from one
study to the other. Thus, to ensure comparability, datasets were normalized using a
uniform group of participants as a reference set. This group was selected as follows:
Male, within a 20-year age range (30–50 for TwinsUK, QMDiab, and
schizophrenia, 40–60 for AML due to low sample size of younger participants),
BMI between 25 and 30 (not available for AML data, thus not filtered for that
dataset), and in the respective control group. Each metabolite in each dataset was
then scaled by the mean and standard deviation of their respective uniform sample
groups. The assumption of this approach is that the uniform group of reference
participants has the same distributions of metabolite concentrations.

Variational autoencoder fitting. To train our VAE model, we first split the
TwinsUK data into 85% training and 15% test sets. We then fixed our VAE
architecture to be composed of an input/output layer, an intermediate layer which
contains non-linear activation functions, and a d-dimensional latent layer. The
latent layer consists of a mean vector μ and a standard deviation vector σ, both of
length d, which parametrize each latent dimension as a Gaussian probability dis-
tribution. This latent space, denoted by z, is constructed by the simultaneous
learning of the μ and σ encoder through the use of a reparameterization trick that
enables back propagation during training18. The d x d covariance matrix ∑ of the
underlying multivariate Gaussian is assumed to be diagonal (i.e., no correlation
across latent dimensions), allowing the covariance matrix to be represented by a
single vector σ of length d.

For the parameter fitting procedures, all weights were initialized using Keras’
default model weight initialization, i.e., Glorot uniform66. Leaky rectified linear
units (ReLUs)67 were used for non-linear activation functions. The VAE models
were trained for 1000 epochs using MSE loss for sample reconstruction and a batch
size of 32.

To select the latent dimensionality d of our VAE model, we initially fixed this
value to d= 50. We then optimized the model hyperparameters using Keras
Tuner27 and the TwinsUK training set with MSE as the objective metric to
minimize. We identified the following optimized values: Intermediate layer
dimensionality= 200, learning rate= 0.001, and Kullback-Leibler (KL) divergence
weight= 0.01. Note that despite our hyperparameter choices, other optimal
hyperparameters exist and could be chosen through Keras Tuner. Using these
hyperparameters, we then optimized d by calculating the reconstruction MSE of
the correlation matrix (CM-MSE) of metabolites for d= 5, 10, 15, 18, 20, 30, 40, 60,
80, 100, 120, 160, and 200 on the TwinsUK test set. Our final model consisted of a
217-dimensional input/output layer (the number of metabolites in our datasets), a
200-dimensional intermediate layer, and an 18-dimensional latent layer. For all
sample encodings in the study, we used their respective μ values.

We further performed sensitivity analysis to determine the effect of the choice
of d on clinical parameter association. We trained 100 models using the
architecture above, varying the latent layer dimensionality for d= 10, 13, 15, 16, 17,
18, and 20. For each model, we extracted the p-value of the highest associated latent
dimension, creating a p-value distribution for each d, which was then compared to
the PCA and KPCA associations (Supplementary Fig. 15).

All models were computed on a deep learning-specific virtual machine running
on Google Compute Engine with two NVIDIA Tesla K80 GPU dies and 10
virtual CPUs.

PCA and kernel PCA embedding and reconstructions. We used PCA with d= 18
latent dimensions as a baseline model. On the mean-centered TwinsUK training set
data matrix with n= 3947 samples (rows) and k= 217 metabolites (columns), we
calculated the rotation matrix Q, a k x k matrix of eigenvectors ordered by decreasing
magnitudes of eigenvalues. To embed a new m x k dataset X with m samples into the
m x d PCA latent space A, we first calculated XQ=A and subsetted to the first d
columns, denoted by A∗, d. To simulate the process of encoding and decoding in PCA
for dataset X, we calculated the reconstructed dataset as

X̂ ¼ A*; dQ
�1

d;* ð1Þ
We used kernel PCA with d= 18 latent dimensions as comparative non-linear

models. Using the Scikit-learn python package68, we applied the four available non-
linear kernels to the mean-centered TwinsUK training set data matrix: cosine
similarity, sigmoid, radial basis function (RBF), an d polynomial transformations.
KPCA hyperparameters were chosen for each individual kernel using the grid
search method based on their ability to minimize model MSE. Once transformed,
the decomposition, embedding, and encoding/decoding processes were performed
identically to those of linear PCA.

Model assessments. We assessed our KPCA, PCA and VAE models using sample
reconstruction mean squared error (MSE) and metabolite-wise correlation matrix
MSE (CM-MSE). We calculated CM-MSE by first computing the metabolite-wise
correlation matrix of an input dataset and reconstructed input dataset. Afterwards,
we calculated the MSE between the upper triangular matrix of the two symmetric
correlation matrices.

To calculate a confidence interval for both MSE and CM-MSE between our
input and reconstructed data, we randomly sampled the same samples with
replacement from the two datasets and then calculated MSE and CM-MSE. We
performed this for 1000 iterations.

Model interpretation. In order to interpret each latent dimension for our VAE,
PCA, and KPCA models, we calculated Shapley Additive Global Importance
(SAGE) values26 for metabolites, sub-pathways, and super-pathways. As con-
tributions of metabolites, sub-pathways, and super-pathways to latent dimensions
can vary between multiple trained VAE models, this analysis was performed on a
VAE model with average performance from the clinical association analysis.
Briefly, SAGE is a model-agnostic method that quantifies the predictive power of
each feature in a model while accounting for interactions between features. This is
achieved by quantifying the decrease in model performance when combinations of
model variables are removed. Since there are exponentially many combinations of
variables, a common approach is to sample the feature combination space suffi-
ciently. For each of the tested combinations, a loss function, such as MSE, is used to
quantify the decrease in performance compared to the model output (here each
VAE, PCA, and KPCA latent dimension) computed using the full model. Then, the
mean of all MSEs is calculated, which represents the contribution of the model
variables to a latent dimension. To calculate pathway-level SAGE values, meta-
bolites were grouped into pathways and each pathway was treated as a single
variable. For each of our VAE, PCA, and KPCA models, we ran SAGE using our
TwinsUK test set with default parameters, e.g., marginal sampling size of 512, as
suggested by Covert, et al. 26. We used the SAGE code from https://github.com/
iancovert/sage.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Type 2 diabetes (QMDiab), acute myeloid leukemia (AML), and schizophrenia datasets
used in this study are deposited at (https://figshare.com/s/6716415ce4b4e8295f5b). The
TwinsUK dataset can be accessed via https://twinsuk.ac.uk/resources-for-researchers/
access-our-data/ upon request.

Code availability
Codes used in this study are available at the GitHub repository https://github.com/
krumsieklab/mtVAE and https://doi.org/10.5281/zenodo.653307869.
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