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Genetics and Epigenetics in Personalized Nutrition:
Evidence, Expectations, and Experiences

Christina Holzapfel,* Melanie Waldenberger, Stefan Lorkowski, Hannelore Daniel, the
Working Group “Personalized Nutrition” of the German Nutrition Society

With the presentation of the blueprint of the first human genome in 2001 and
the advent of technologies for high-throughput genetic analysis, personalized
nutrition (PN) becomes a new scientific field and the first commercial
offerings of genotype-based nutrition advice emerge at the same time. Here,
the state of evidence for the effect of genetic and epigenetic factors in the
development of obesity, the metabolic syndrome, and resulting illnesses such
as non-insulin-dependent diabetes mellitus and cardiovascular diseases is
summarized. This study also critically value the concepts of PN that are built
around the new genetic avenue from both the academic and a commercial
perspective and their effectiveness in causing sustained changes in diet,
lifestyle, and for improving health. Despite almost 20 years of research and
commercial direct-to-consumer offerings, evidence for the success of
gene-based dietary recommendations is still generally lacking. This calls for
new concepts of future PN solutions that incorporate more phenotypic
measures and provide a panel of instruments (e.g., self- and bio-monitoring
tools, feedback systems, algorithms based on artificial intelligence) that
increases compliance based on the individual´s physical and social
environment and value system.

1. Introduction

The economic development and wealth of many nations are
accompanied by sedentary lifestyles and increasing intakes of
energy-dense food, which are key drivers of non-communicable
diseases (NCDs). The pathogenesis usually starts with obesity
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frequently followed by metabolic syn-
drome (MS) which in turn often re-
sults in the development of non-insulin-
dependent diabetes mellitus (NIDDM)
and cardiovascular disease (CVD). Al-
though driven by lifestyle, there is a
strong poly-genetic background in the
sequence of disease. Evidence for ge-
netic susceptibility is obtained from co-
hort studies in populations of differ-
ent ethnic backgrounds, genetically iso-
lated populations and from studies in
families, adoptees, or mono- and dizy-
gotic twins. The earliest evidence for sig-
nificantly genetic contributions to dis-
ease susceptibility was obtained in fam-
ily studies and by investigating disease
incidence in mono- and dizygotic twin
cohorts.[1] Whereas initial twin stud-
ies on NIDDM prevalence, for example,
overestimated heritability,[2] the largest
twin-study conducted so far with almost
35 000 twin pairs of The Discordant
Twin (DISCOTWIN) Consortium, esti-
mated a heritability of NIDDM of 72%

and argues thus for a strong genetic predisposition.[3] A similar
heritability index was obtained for obesity in twins.[4] As twins
usually grow up in the same environment and are exposed to
common exogenous risk factors, analysis of twin pairs reared
apart are of particular interest;[5] but even these studies—despite
a rather low number of available twin pairs—demonstrated a
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significant heritability for an obese phenotype. Bouchard et al.[6]

showed that overfeeding in monozygotic twins resulted in three
timesmore variance in body weight gain between twin pairs than
within twin pairs. Furthermore, a study with 540 adult Danish
adoptees revealed a statistically significant association between
body mass index (BMI) of adopted children and the BMI of their
biological parents, whereas there was no statistically significant
relation with BMI of their non-biological parents.[7] Studying the
underlying causes of obesity revealed also a major influence of
the intrauterine environment. In particular, fetal development
with a low weight at birth is a major risk factor for the develop-
ment of NIDDM and CVD in later stages of life.[2,8] In a Swedish
study it has been observed that the odds ratio for hypertension
in persons with a 500 g lower birth weight was 1.42 and this was
independent of genetic factors.[2,8] These studies added major ar-
guments to the concept that epigenetics may be also important
in the health-disease trajectory.
Most cases of NIDDM emerge from an obese phenotype with

an intermediate state characterized by insulin-resistance and
other metabolic impairments associated with an increased risk
for CVD and overall mortality.[9] Genetic variants associated with
an obese phenotype are consequently also identified as suscep-
tibility genes contributing to MS, NIDDM, and CVD in many
populations. However there are alsomajormodulators in the eth-
nic background as shown, for example, for Pacific Islanders,[10]

with a considerably higher incidence of NIDDM than found in
the USA or Europe. Also, certain isolated populations such as
the Inuit in Greenland carry NIDDM-associated gene variants
such as a nonsense p.Arg684Ter variant in the TBC1 domain
family member 4 (TBC1D4) gene not found in other geographic
regions.[11]

NIDDM and CVD are prototypical diseases for the expression
of a mismatch of an individual´s genome with its given environ-
ment to which social and behavioral factors as well contribute.
In contrast to rare monogenetic diseases that follow Mendelian
order with a distinct genotype–phenotype causality, such a cor-
relation cannot be found for the polygenic causes of obesity,
MS, and the diseases arising from them. It has to be men-
tioned, that the present work is focused on polygenetic NCDs and
not on mono-genetic metabolic disorders such as, for example,
phenylketonuria.
A key instrument for the analysis of the role of single nu-

cleotide polymorphisms (SNPs) in populations are genome-wide
associations studies (GWAS) based on the concept that a com-
mon disease has a common genetic portfolio as background. In
polygenic diseases, susceptibility alleles that associate with dis-
ease risk usually have a modest or very small effect size but are
generally more common in the population. The SNP rs9939609
in the fat mass and obesity associated (FTO) gene, for example, has
a minor allele frequency (MAF) of 40–45% but a modest BMI
effect of 0.35 kg m−2 per risk allele.[12] Here it becomes evident
that the larger the population under study, the more variants can
be found because the majority of variants possess very low odd
ratios ranging from 1.10 to 1.25 per allele.[13] However, large co-
horts also identify variants with strong effect sizes but of very low
frequency.[14] For instance, a GWAS with almost 800 000 individ-
uals identified genetic loci with a MAF of 1.6% and a BMI effect
size of 0.04 kg m−2 per risk allele.[15] Since most identified gene
variants have small effect sizes, carriers and non-carriers usually

also have only slightly lower or higher risks than the average pop-
ulationmaking it difficult to identify the causal genetic loci. Com-
bined effects of genetic variants (expressed, e.g., by polygenetic
risk scores) can also be identified via GWAS. Overall disease risks
thus depend on both, the number of risk variants of an individual
and the specific risk associated with each genotype. In the past
years, these approaches have been extended with whole genome
sequencing efforts and this will likely increase the density of ge-
netic information underlying the health-disease trajectory to un-
expected levels.[16] At the same time, biomedical science almost
daily reveals many more new genes and variants contributing to
metabolic dysregulation and highlights important (and often un-
expected) pathways that are involved in disease development or
progression.
In contrast to the large number of susceptibility genes iden-

tified, personalized nutrition (PN) approaches usually integrate
only a few selected genetic variants/genes into the intervention
programs for changes in dietary intake and lifestyle and for re-
duction of disease risk (Figure 1). We here provide the current
status of knowledge and value on the genetics underlying the
most common NCD´s and assess the success of PN approaches
providing genetic information.

1.1. Genetics of Obesity

In a meta-analysis based on GWAS, 941 genetic loci were iden-
tified or confirmed for their association with adiposity traits. As
mentioned above, the effect of a single SNP is rather small and
moreover, these SNPs in summary explain only around 6% of the
BMI variation.[15] When the top gene variants that together con-
fer a threefold increased risk for NIDDM are defined, they are as
strong in prediction as a BMI of >30 kg m−2 alone.[17] However,
they represent around 2.5% of the population whereas far more
individuals fall into the>30 kgm−2 BMI group. Despite the enor-
mous progress made on the genetic basis of obesity it has yet to
pay off in view of its diagnostic and public health value.
The most studied obesity locus is the FTO gene, which was

identified in 2007.[12] It has the strongest individual effect on
body weight and it has been shown that homozygous carriers of
the risk allele of SNP rs9939609 weigh up to 3 kg more than non-
risk allele carriers.[12] Claussnitzer et al.[18] showed that the FTO
SNP rs1421085 promotes the formation of white adipocytes over
beige adipocytes, indicating that weight gain may not necessar-
ily be the result of higher energy intake, but may be related to
a reduced proportion of brown-adipose tissue that utilizes more
energy than white fat cells. There is also evidence that the FTO
risk allele associates with different intake levels of macronutri-
ents and food energy.[19] In a study with 71 326 individuals of
European ancestry A allele carriers of the SNP rs10163409 in the
FTO gene showed a significantly positive association with carbo-
hydrate intake (𝛽 = 0.166) expressed as percent energy derived
from carbohydrates[20] and a meta-analysis revealed that persons
reported a lower total daily energy intake of 6.46 kcal per FTO risk
allele.[21] However, a weight loss study with 609 participants and
interventions with either a low fat or a low carbohydrate diet re-
vealed that there was no significant effect on weight loss after 12
months and this was also independent of the genetic variants in
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Figure 1. Approaches used to identify genetic variants, their effects on obesity, non-insulin dependent diabetesmellitus (NIDDM), cardiovascular disease
(CVD), and the limitations to translate the findings from genotyping into current concepts of personalized nutrition; the term “explained variance”
refers to the variance explained by genetic factors only; ANRIL, CDKN2B antisense RNA 1; FTO, fat mass and obesity associated; SNP, single nucleotide
polymorphism; TCF7L2, transcription factor 7-like 2.

three genes known to be involved in metabolic and body weight
control.[22]

1.2. Genetics of NIDDM

For NIDDM, ameta-analysis of 74 124 cases and 824 000 controls
of European ancestry identified over 240 loci.[23] Many of those
loci were also dominant in a large group of East Asian ancestry
with more than 77 000 individuals diagnosed with NIDDM. A
good correlation of the effect sizes across the loci and across the
populations was found. The correlation of per-allele effect sizes
between the two ancestries was 0.87 for 106 variants significantly
associated with NIDDM.[24] Together, these two studies identified
>300 loci associated with NIDDM. One striking gene is transcrip-
tion factor 7-like 2 (TCF7L1): it shows an odds ratio of 1.46 for
NIDDM.[25] The TCF7L2 gene encodes the transcription factor
7-like 2 protein that belongs to the high mobility group (HMG)
box protein family that influences several biological pathways and
plays a prominent role in Wnt signaling.[26] The SNP rs7903146
in the gene is themost significant genetic marker associated with
NIDDM and is found across all studied ethnic groups with sim-
ilar effect sizes.[27] The TCF7L2 risk variant is not only the most
prominent susceptibility allele for NIDDM, it also seems to con-
fer resistance to sulfonylurea therapy but not to metformin,[28]

whereas a lifestyle intervention with a low-calorie, low-fat diet,
and with physical activity of moderate intensity was as effective
in carriers as in non-carriers.[29] Despite the large number of loci
identified, they collectively still explain less than 25% of the over-
all variance of NIDDM. That also holds true for the genetic ba-
sis of fasting glucose levels.[30] Therefore, classic measures of
NIDDM risk such as family history, age, sex, BMI, and fasting
plasma glucose still outperform the diagnostic value of single
gene variants or polygenetic scores.[31,32] Moreover, risk models

did not improve if genetic information was added to the tradi-
tional phenotypic parameters assessed.[31]

1.3. Genetics of CVD

Dietary factors make the largest contribution to overall CVD
mortality.[33] Also obesity and NIDDM are risk factors for
CVD.[9,34] It is thus conceivable that loci that have been identi-
fied as being associated with obesity and NIDDM are also part of
the genetic landscape of CVD susceptibility. GWAS and related
approaches have enlarged the number of loci underlying CVD
markedly. For blood pressure, a recent analysis delivered more
than 1000 loci that together explain less than 6% of the overall
variance.[35] A closer look at the respective genes reveals that they
are spread across the whole genome with some enrichment in
expected pathways but also in numerous other pathways not at
all known for links to blood pressure control. For instance, com-
mon to most studies identified genes underlying calcium signal-
ing processes and hemostasis.[35] Despite the strong association
with many lifestyle factors, gene variants that link dietary intake
to hypertension or to the final stages of CVD are sparse.
Although a larger number of genetic loci has been found to be

associated with cardiovascular risk factors such as blood pressure
and plasma lipids, more than 200 genetic loci have thus far been
identified that influence the risk of myocardial infarction and
coronary artery disease.[36] The genetic susceptibility explains a
small fraction of the overall heritability for myocardial infarction
and coronary artery disease.
Next, not all patients with coronary atherosclerosis suffer from

myocardial infarction although most patients with a myocardial
infarction also have coronary atherosclerosis. In line with this,
recent studies indicate that at least some of the processes con-
tributing to the initiation or progression of atherosclerosis are
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distinct from those genetic factors that predispose more strongly
or specifically to plaque rupture and thrombosis.[36] One example
is the CDKN2B antisense RNA 1 (ANRIL/CDKN2BAS) locus
that is one of the most strongly associated loci for the severity
of coronary atherosclerosis but is not specifically associated with
myocardial infarction.[37,38] In contrast, the ABO blood group
system defining locus is associated with myocardial infarction
among individuals with coronary atherosclerosis but is not
necessarily associated with the presence of coronary artery
disease itself.[37] A recent study revealed eight loci for myocardial
infarction, of which six loci were more robustly associated with
myocardial infarction than with coronary atherosclerosis without
a cardiovascular event.[36] The locus encoding for the choline-
like transporter 3 (SLC44A3) was confirmed in independent
cohorts as associated with myocardial infarction in patients with
coronary atherosclerosis, but not with coronary artery disease
itself. Of note, no association of this locus was found with
cardiovascular risk factors or any other biomarkers.[36] These
examples illustrate the difficulties in deriving personalized
dietary recommendations for the prevention of cardiovascular
diseases and related complications.

1.4. Evidence for Epigenetic Effects

The term epigenetics refers to “heritable” phenotype changes
that do not involve changes in the deoxyribonucleic acid (DNA)
sequence.[39] Although epigenetic mechanisms, including mod-
ifications of DNA, histone proteins, and chromatin remodeling,
do not alter the nucleotide sequence, they have a fundamental im-
pact on genomic structure and function, including gene expres-
sion and cellular differentiation. Epigenetic modifications may
therefore account for a significant fraction of the missing heri-
tability in genetic studies. A main feature of epigenetic mecha-
nisms is that they are reversible, cell-specific, and reflect genetic
and environmental influences over the life course.[40]

The DNA methylation, a covalent addition of a methyl group
to the C-5 position of the cytosine ring of DNA in the context
of CG dinucleotides (CpG sites), is the most widely investigated
epigenetic modification due to technological advances that allow
its assessment at a large scale in epidemiologic studies.
An established link between diet and epigenetic mech-

anisms is the availability of the universal methyl donor
S-adenosylmethionine (SAM) generated in one-carbon
metabolism.[41] Enzymes such as methyltransferases require
SAM to methylate DNA or histones.[42] The activity of enzymes
within the one-carbon metabolism require folate, vitamin B12,
and vitamin B6 as cofactors while betaine, choline, ormethionine
deliver the methyl groups.[43]

A systematic review compiling studies that reported associ-
ations between maternal diet during pregnancy and epigenetic
changes (DNAmethylation, micro ribonucleic acid (microRNA))
in placenta and in the offspring addressed also the current lim-
itations like heterogeneity in response in samples (e.g., pla-
centa, cord blood), sample size effects, gestational period, expo-
sures (e.g., diet, exercise), or outcome measures.[44] Other stud-
ies demonstrated the role of dietary micronutrients during early
life in altering gene expression and influencing health or disease
later in life.[45,46]

In adults, large-scale analysis of DNA methylation in leuko-
cytes, for example, identified differentially methylated CpG sites
associated with folate or vitamin B12 intake.

[47] A study of ha-
bitual diet quality, including the Mediterranean diet score and
the Alternative Healthy Eating Index, reported an association
with differential leukocyte DNA methylation levels of 30 CpG
sites, most of which were also associated with adverse health
outcomes.[48] In general, intervention studies investigating the ef-
fect of epigenetic mechanisms are sparse and usually have small
sample sizes. For example, one study of 36 persons investigated
whether an intervention over 5 years with a Mediterranean diet
affected the methylome of peripheral blood cells, and identified
differential methylated positions in genes related to inflamma-
tory pathways.[49]

As shown in Figure 2, links between DNA methylation, obe-
sity, the MS, and related cardiometabolic diseases have been es-
tablished by several well-powered epigenome-wide association
studies (EWAS).[50] In the case of obesity, the largest study to
date, combining data from over 10 000 whole blood samples,
identified 187 CpG sites as significantly associated with BMI and
showed that obesity-associated DNA methylation sites predicted
future NIDDM development.[51] A large number of obesity-
associated CpG sites overlap with those identified in studies of
other metabolic phenotypes like blood lipids or NIDDM.
EWAS of DNA methylation data using adipose tissue sam-

ples identified multiple additional CpG sites associated with
obesity-related traits, including sites annotated to FTO.[52] Us-
ing data from 648 twins revealed that DNA methylation varia-
tion (34%) was highly heritable.[53] The CpG sites associated with
BMI and waist circumference were reported to explain 29% and
26% of trait heritability, respectively,[54] and 18% of the inter-
individual variation in BMI.[55] Using causal inference methods
like Mendelian randomization, the majority of these adiposity-
associated changes in DNA methylation were found to be conse-
quence rather than cause.[51]

Numerous studies have analyzed DNAmethylation in relation
to glycemic traits and NIDDM, including studies in whole blood,
adipose tissue, pancreatic islets, liver, and skeletal muscle.[56–61]

Several differentially methylated CpG sites were identified to ro-
bustly predict incident NIDDM, either alone or combined in
a methylation risk score.[62,63] EWAS conducted in studies us-
ing key tissues of NIDDM pathogenesis identified numerous
CpG sites, among them several well-known candidates such as
TCF7L2. These studies are typically small due to the limited sam-
ple availability, but of importance for a comprehensive insight
into disease mechanisms. Their results support a role of epige-
netics in the pathogenesis of NIDDM despite the modest effect
sizes of individual CpG sites. Comprehensive analysis of histone
modifications or chromatin structure in persons with NIDDM
still represent an under-researched topic.[61,64]

The majority of EWAS of CVD to date have been conducted
cross-sectional including retrospective events at a single time-
point.[65–68] While these studies provide molecular findings,
changes in DNA methylation may here as well be the conse-
quence of an acute event rather than the cause. Recent inves-
tigations have started to provide links between DNA methyla-
tion and incident CVD.[69,70] The largest study of incident events
to date investigated the association between 11 461 leukocyte
DNA methylation profiles and a variety of outcomes including
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Figure 2. Associations between deoxyribonucleic acid (DNA) methylation and obesity, the metabolic syndrome (MS), non-insulin dependent diabetes
mellitus (NIDDM), and cardiovascular disease (CVD) and the limitations to translate the findings from epigenome-wide association studies (EWAS)
into current concepts of personalized nutrition; the term “explained variance” refers to the variance explained by epigenetic factors only; ATP2B2, ATPase
plasmamembrane Ca2+ transporting 2; CPT1A, carnitine palmitoyltransferase 1A; HIF3A, hypoxia inducible factor 3 subunit alpha; PHGDH, phosphoglycerate
dehydrogenase; PHOSPHO1, phosphoethanolamine/phosphocholine phosphatase 1; SLC1A5, solute carrier family 1 member 5; SOCS3, suppressor of cytokine
signaling 3; SREBF1, sterol regulatory element binding transcription factor 1; TXNIP, thioredoxin interacting protein; TGFBR1, transforming growth factor beta
receptor 1; ZBTB12, zinc finger and BTB domain containing 12.

coronary insufficiency, angina, myocardial infarction, coronary
revascularization, and cardiovascular mortality with a mean
follow-up of 11.2 years.[71] The study identified 52 differentially
methylated CpG sites.[71] Taken together, the results of EWAS on
diet-dependent diseases are in an early stage and the effect sizes
of individual CpG sites identified are small.

1.5. Genotype-Based Personalized Nutrition

A variety of diet intervention studies investigating the effects of
common gene variants on diet–responses have been conducted
already in the 1990s and revealed significant effect sizes.[72–75]

One example is the effect of riboflavin intake in cardiovascular
disease patients homozygous for the common 677C→T polymor-
phism in the methylenetetrahydrofolate reductase (MTHRF) gene.
After 16 weeks of intervention with 1.6 mg riboflavin per day
or with placebo it was found, that riboflavin intake reduced the
mean blood pressure in persons homozygous for the studied
polymorphism.[76] Another showcase-study investigated the ef-
fect of eicosapentaenoic acid (EPA) and docosahexaenoic acid
(DHA) supplements on cardiometabolic factors dependent on
the apolipoprotein E (APOE) genotype. Significant sex-genotype-
treatment interactions were observed with the strongest effects
on blood triacylglycerol lowering in men with a specific APOE
genotype.[77]

In particular weight loss and the genetic variants that could
affect weight management received academic and commercial
interest.[78] Results from these kinds of studies provided the ba-
sis for most of the commercial offers that combine DNA analy-
sis with dietary recommendations and occasionally also for the
type of exercise that could help in weight loss. The first commer-

cial offering of a DNA-based advice system for individual health
management was by Sciona in 2003. What at that time caused
intense discussions in the academic as well as in the public do-
main, was the disclosure of genetic information to a commer-
cial company.[79] Meanwhile this is less often considered as prob-
lematic given the fact that genotyping, for example, to obtain in-
formation on ancestry is now more common practice. Numer-
ous companies offer genotyping and either personalized prod-
ucts such as supplements or premixed muesli or provide per-
sonalized recommendations for a healthy diet or for weight loss.
Similar to commercial tests of genetic variants, commercial offer-
ings for DNA methylation profiling have recently emerged. For
example, companies are offering the assessment of the individ-
ual´s biological age based on DNA methylation status at sets of
CpG sites as a basis for managing longevity or for “rejuvenating”
interventions.[80]

The largest academic human intervention study on PN to date
is the Food4me study. As a pan-European activity with seven
countries, applying the same methods and tools across centers,
around 1600 healthy participants representative of the European
population were recruited. The main goal was to assess whether
personalized dietary advice is superior over generic advice in
changing a person´s diet and lifestyle over a 6-month study
period.[81] Moreover, it was designed as a proof-of-concept study
with contact to the participants solely via internet and email, ex-
cept for the delivery of DNA samples and dry blood spots that
were collected by participants via defined procedures (per video
tutorials) and shipped in for analysis. Dry blood spots were an-
alyzed for some clinical chemistry markers but also for diet-
dependent measures such as vitamin D3 levels or the n6:n3
fatty acid ratio. From 30 preselected SNPs that related to BMI,
NIDDM, or dietary factors (e.g., MTHFR or fatty acid desaturase
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1/2 risk variants) only five were communicated back to the par-
ticipants in the context of the advice to change diet and lifestyle.
The outcome measures assessed at month 3 and month 6 were
changes in nutrient intakes, changes in the Healthy Eating In-
dex (HEI) and changes in body mass, and BMI, respectively. Ad-
ditionally, the Food4me study addressed other aspects such as
ethical issues or comparative participant compliance depending
on the country of origin.[79,82,83] Based on the HEI and other pa-
rameters reflecting a healthy diet, personalizationwas superior to
generic advice but inclusion of bloodmarkers and genetic risks in
the communication delivered no significant beneficial effects.[84]

That inclusion of genetic risks did not significantly affect changes
in diet or lifestyle behaviors is in line with similar findings in
other settings, although in smaller sized studies subtle positive
effects, for example, on salt intake were found.[85] A systematic
review of randomized controlled trials (RCTs) on effects of PN
and tailored advice based on diet, phenotype, or genetic informa-
tion revealed the same findings as in Food4me in that PN advice
results in a greater improvement of dietary intake compared to
generalized dietary advice.[86]

Other systematic reviews and meta-analyses consistently re-
port that communicating genetic risks, such as for NIDDMor for
CVDs alone neither increasesmotivation for lifestyle changes nor
translates into proper changes in dietary intake or physical activ-
ity level.[87,88] A behavioral science study investigated whether the
gained information on the individual genetic risk is associated
with changes in gene-related physiology, behavior, and subjective
experience. Most interestingly, genetic risk information changed,
for example, cardiorespiratory physiology, satiety, and perceived
fullness after food consumption. The authors concluded that ge-
netic risk information can change an individual´s physiology and
behavior without active intervention, which suggests placebo and
nocebo effects of the genetic information provided.[89]

2. Discussion

This manuscript provides the current evidence status on the
genetics underlaying the most common NCD´s and assess
the success of PN approaches providing genetic information.
The manuscript is focused on NCD‘s, where the evidence for
genotype-based dietary recommendations is scarce. However,
there is no doubt that genetically determinedmetabolic disorders
such as, for example, phenylketonurea require a personalized ap-
proach in dietary management of the disease but such cases are
not considered here.
Although PN does not require genetic testing as a mandatory

assessment tool, almost all commercial offers and related ser-
vices provide profiling of a limited number of gene variants. Iden-
tifying such variants from DNA samples isolated from saliva or
buccal cells and collected by the customer for analysis is nowa-
days very easy and is done at low cost. According to a repre-
sentative survey in Germany, 70% of participants thought that
a genotype-based dietary recommendation is a reasonable mea-
sure for weight loss. Furthermore, about half of the survey partic-
ipants believed that PN based on the genetic make-up of a person
is an effective concept in general.[90]

Scientific evidence that the genetic make-up is associated with
either distinct responses to diet or body weight or disease risk
is derived from many observational studies and is used as a

conceptual framework of almost all personalized genotype-based
dietary recommendations. Despite enormous progress in iden-
tifying new gene variants underlying the health-disease trajec-
tory, this is not yet reflected in PN approaches which are mainly
based on a few genetic variants. There are studies assessing
the association between genetic factors and the effect of dietary
intervention,[76,77] but larger-sized human intervention studies
with dietary recommendations based on a specific genotype of
participants are currently unavailable.
What is new is that both academic and commercial PN settings

now include microbiome data obtained via 16S RNA sequencing
from stool samples. In addition, more sophisticated algorithms
that take into account food intake data (information collected via
24 h dietary recall or via food frequency questionnaire), anthro-
pometric information, vital parameters (e.g., blood pressure) as
well as DNA and microbiome data have been developed. Some
commercial offers also include the option of online recordings
of interstitial glucose levels via blue-tooth-coupled sensors origi-
nally developed for diabetes management and used as a feedback
loop indicator of changes in glucose homeostasis upon dietary
changes. That real-time feedback may increase overall compli-
ance, in particular when a softening of the glucose-profiles be-
comes visible. Most commercial PN offers that include glucose
monitoring were generated based on findings reported by Zeevi
et al.,[91] which, in addition to basic information on the partici-
pants, also included microbiome data from stool samples and an
algorithm with predictive quality for the individual´s glycemic
response to provided food items. But, it should be kept in mind
that glycemic responses are not the ultimate measure of human
health. Moreover, whether recording of glucose profiles changes
food intake behavior in the long term remains to be shown.
A new quality of comprehensive phenotyping that led to new

concepts of PN are the studies by the Personalized Responses
to Dietary Composition Trial (PREDICT) consortium with thou-
sands of participants and combined analyses of genotype, mi-
crobiome, and blood chemistry and defined breakfast and lunch
challenges followed by recording of postprandial glucose and
triglyceride profiles.[92] These studies identified that genetics next
to meal composition was the most important determinant of glu-
cose responses, whereas for triglyceride responses genetics had
only a negligible influence. The wealth of data collected via these
approaches will also form the basis for new algorithms and ma-
chine learning approaches with better predictive quality, which
will be one of the pillars of future PN applications. For the time
being, blood or interstitial glucose are the most frequently used
continuously and easily measurable metabolic parameters in-
cluded in PN approaches.
It needs to be emphasized that at least from experience in aca-

demic PN test studies, study participants generally appear to be
more interested in diet and health than the average consumer
and they are also usually well-educated, have proper income and
show a high tech-affinity. They are thus likely not the group that
may need and benefit most from PN offers—whether commer-
cial or academic. Taken together, most, if not all PN concepts
available these days use selected gene variants as input parameter
in addition to anthropometric, physical activity, and food intake
data to derive individualized recommendations. However, stud-
ies that assessed whether inclusion of genetic information in the
recommendation had an effect on food choices, physical activity
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levels, or weight development, did not reveal a real benefit to par-
ticipants´ successes.[78]

3. Conclusion

Despite enormous efforts in research about gene–diet interac-
tion, the recent conclusion of the Academy of Nutrition and
Dietetics was “….. that there are still relatively few RCTs to inform
integration of genetic variation into the Nutrition Care Process.”[93]

This “non-clinical relevance” of genetic information for dietary
advice is mainly due to the fact that genetic evidence is derived
from epidemiological association studies and cannot be directly
transferred to clinical practice. A further bottleneck is, that larger
dietary intervention studies based on the genetic background
of an individual are missing. It is evident, that procedures need
to be developed and agreed upon in the scientific commu-
nity to identify clinically and practically relevant gene variants
among those hundreds of loci known to be associated with
obesity, NIDDM, or CVD. These could then be incorporated into
effective PN recommendations.
Based on the experience of the past 20 years it becomes ob-

vious that future PN concepts need improved input and out-
put variables. It is necessary to collect real world data on food
intake, physical and social behavior which the “digital environ-
ment” enables as never before. Furthermore, it needs more com-
prehensive phenotyping and improved algorithms based on arti-
ficial intelligence to predict the effect on an individual´s diet on
metabolic response and risk management. The research on PN
would benefit from better integrating data sciences andmultidis-
ciplinary cooperation.
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