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13 Purpose: Current systems of gastric cancer molecular classifi-
14 cation include genomic, molecular, and morphological features.
15 Gastric cancer classification based on tissue metabolomics remains
16 lacking. This study aimed to define metabolically distinct gastric
17 cancer subtypes and identify their clinicopathological and molec-
18 ular characteristics.
19 Experimental Design: Spatial metabolomics by high mass res-
20 olution imaging mass spectrometry was performed in 362 patients
21 with gastric cancer. K�means clustering was used to define tumor
22 and stroma-related subtypes based on tissue metabolites. The
23 identified subtypes were linked with clinicopathological character-
24 istics, molecular features, and metabolic signatures. Responses to
25 trastuzumab treatment were investigated across the subtypes by
26 introducing an independent patient cohort with HER2-positive
27 gastric cancer from a multicenter observational study.
28 Results: Three tumor- and three stroma-specific subtypes with
29 distinct tissue metabolite patterns were identified. Tumor-specific
30 subtype T1(HER2þMIBþCD3þ) positively correlated with HER2,

31 MIB1, DEFA-1, CD3, CD8, FOXP3, but negatively correlated
32 with MMR. Tumor-specific subtype T2(HER2�MIB�CD3�) neg-
33 atively correlated with HER2, MIB1, CD3, FOXP3, but positively
34 correlated with MMR. Tumor-specific subtype T3(pEGFRþ)
35 positively correlated with pEGFR. Patients with tumor sub-
36 type T1(HER2þMIBþCD3þ) had elevated nucleotide levels,
37 enhanced DNA metabolism, and a better prognosis than T2
38 (HER2�MIB�CD3�) and T3(pEGFRþ). An independent valida-
39 tion cohort confirmed that the T1 subtype benefited from
40 trastuzumab therapy. Stroma-specific subtypes had no associa-
41 tion with clinicopathological characteristics, however, linked to
42 distinct metabolic pathways and molecular features.
43 Conclusions: Patient subtypes derived by tissue-based spatial
44 metabolomics are a valuable addition to existing gastric cancer
45 molecular classification systems. Metabolic differences between the
46 subtypes and their associations with molecular features could
47 provide a valuable tool to aid in selecting specific treatment
48 approaches.

49 Introduction
50 Gastric cancer is a leading cause of cancer-related deaths with the
51 fourth highest mortality rate worldwide (1). Treatment responsiveness
52 of gastric cancer differs markedly among current therapeutic regi-
53 mens (2). To improve gastric cancer stratification for clinical practice,
54 research focuses on developing classification systems based on mul-
55 tiple molecular levels, such as genome, transcriptome, and proteome,

57to identify novel predictive biomarkers for personalized gastric cancer
58treatment (3, 4).
59Several recent studies have provided a molecular subtyping frame-
60work, including morphological, genomic, and proteomic features, to
61draw a roadmap for gastric cancer drug development and personalized
62therapy (5, 6). Two comprehensive, large-scale studies from theCancer
63Genome Atlas (TCGA) Research Network in 2014 and the Asian
64Cancer Research Group (ACRG) Network in 2015 are among these
65molecular classification systems. TCGA characterized the gastric
66cancer genome and proteome using complex bioinformatics analysis
67of array-based somatic copy number, whole-exome sequencing, array-
68based DNA methylation profiling, messenger ribonucleic acid
69sequencing, microRNA sequencing and reverse-phase protein array
70data. The TCGA study identified four genomic subtypes: Epstein–Barr
71virus–positive (EBVþ) tumors, microsatellite instable (MSI) tumors,
72genomically stable tumors, and tumors with chromosomal instability.
73Another large-scale study by the ACRG established four molecular
74subtypes using the gene expression, genome-wide copy-number
75microarray and targeted sequencing:MSS/EMT subtype,MSI subtype,
76MSS/TP53-active subtype, and MSS/TP53-inactive subtype (7, 8).
77Gastric cancer could be considered potentially immunogenic. Sev-
78eral other studies characterized gastric cancer with immunological
79features (9, 10). Li and colleagues (9) identified three subtypes using a
80newly proposed pathway-based gastric cancer classification method:
81Immune-derived subtype (ImD), stroma-enriched subtype, and
82immune-enriched subtype and Zeng and colleagues (10) defined three
83gastric cancer subtypes based on patterns of immune cell infiltration
84into the tumor microenvironment.
85The development of practical classification systems to predict
86treatment responses in patients with gastric cancer would be a valuable
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89 addition to clinic settings. For example, trastuzumab represents the
90 first option for approximately 20% of patients with HER2 overexpres-
91 sion (11). The MSS/TP53-inactive molecular subtype established
92 by the ACRG study has been reported to potentially benefit from
93 anti–HER2-directed therapy (8). The immunotherapeutic antibody,
94 pembrolizumab, selectively binds to programmed cell death protein 1
95 (PD-1; ref. 12) and several clinical studies have correlated EBV
96 infection and MSI status with PD1/PD-L1 blockade (13, 14). The
97 high response and benefit of microsatellite instability-high (MSI-H)
98 patient subtypes to PD-L1 blockade therapy is another example of how
99 personalized treatment can benefit specific patient subgroups based on
100 molecular features (15). Interestingly, the tendency to have a lym-
101 phocytic infiltrate, which is observed in MSI tumors, likely reflects
102 immune activation of T cells that are associated with MSI (16, 17).
103 Furthermore, one study extended to four surface markers of tumor-
104 infiltrating lymphocytes (TIL), including cluster of differentiation 8
105 (CD8), cluster of differentiation 4 (CD4), PD-1, and forkhead box P3
106 (FOXP3) in patients with gastric cancer (18). Thus, identification of
107 these multiple molecular markers, together with their molecular
108 classifications, opens novel perspectives to stratify patients who may
109 benefit from immune and targeted therapies.
110 Metabolism reprogramming is a hallmark of cancer. To meet the
111 growing energy demands required for cell proliferation, gastric cancer
112 cells have a unique metabolism comprising glucose, glutamine, fatty
113 acids, amino acids, and many other nutrients and metabolites, such as
114 glycolysis, repressed aerobic respiration, and de novo fatty acid
115 synthesis (19–21). The recent deep exploration of molecular changes
116 induced by rewired metabolism has led to the development of targeted
117 therapies (22, 23). Indeed, a previous study identified several metab-
118 olite-dependent subtypes among 33 cancer types (24).Metabolite-level
119 classification has not been comprehensively investigated in gastric
120 cancer; hence, we assessed the ability of metabolite profiles to stratify
121 patients with gastric cancer and explored the association with clinical
122 molecular features.
123 High mass resolution Matrix-assisted laser desorption-ionization
124 (MALDI) imagingmass spectrometry (IMS) directly enables detection
125 and localization of thousands of different molecules within a routinely
126 preserved tissue section, and thus greatly facilitates the application of
127 MALDI-IMS for tumor subtyping (25–27). Recently, a new compu-
128 tational multimodal workflow, Spatial Correlation Image Analysis
129 (SPACiAL), which designed to combine molecular imaging data with

131multiplex IHC, was developed for an objective analysis of high-
132throughput data from large-scale clinical cohort studies (28).
133This study aimed to derive a novel classification scheme to stratify
134patients with gastric cancer by their metabolic profiles, encompass
135clinicopathological characteristics and molecular feature correlation,
136and more importantly, assign clinical treatment relevance to patient
137subtypes. High mass resolution MALDI-IMS combined with
138K�means clustering analysis was applied to establish metabolic
139classification based on tumor- and stroma-specific tissue regions in
140patients with gastric cancer. The results were validated in an inde-
141pendent validation cohort to demonstrate the predictive metabolic
142constitution of the subtypes for the trastuzumab therapy. The met-
143abolic constitution in gastric cancer provided an alternative for patient
144stratification.

145Patients and Methods
146Collection of tissue samples and clinical characteristics data
147Primary resected gastric cancer samples were obtained from 362
148patients who had not received prior chemotherapy, trastuzumab
149therapy, or immunotherapy. Tissuemicroarrays (TMA)were analyzed
150in triplicates (three tissue cores from each patient; Table 1). All
151samples used in this studywere obtained frompatients who underwent
152gastrectomy between 1995 and 2005 at the Surgery Department at the
153TechnicalUniversityMunich. This studywas conducted in accordance
154with the Declaration of Helsinki, and approved by the local Ethics
155Committee of the Faculty ofMedicine at Technical UniversityMunich
156with informed written consent from all patients. Table 1 describes the
157clinical characteristics of the gastric cancer participants. Pathological
158TNM-staging was performed according to the Union Internationale
159Contre le Cancer (UICC) system 7th edition (29) and histopatholog-
160ical grading was classified in accordance to the World Health Orga-
161nization (30). Parameter variables were categorized as follows: Sex into
162female versus male; tumor node metastasis classification, pT1–pT4 for
163primary tumor, pN0–pN3 for primary lymph nodes, M0 and M1
164category for distant metastasis; UICC classification into stage I–stage
165IV; resection state into R0–R2; Lauren classification into diffuse,
166intestinal, and mixed type; and primary tumor grading into scores
167of G1–G3.

168Patients and tissue samples for the independent validation
169cohort (VARIANZ cohort)
170A previous publication established a metabolomic classifier to
171predict trastuzumab therapy response in patients with HER2-positive
172advanced gastric cancer (VARIANZ cohort; ref. 31). The VARIANZ
173cohort data were integrated here as a validation study for predicting
174trastuzumab therapy response of the metabolic subtypes. The
175VARIANZ cohort (n ¼ 42) was divided into therapy-resistant
176(n ¼ 17) and therapy-sensitive (n ¼ 25) patients (31). This study was
177conducted in accordance with the Declaration of Helsinki, and
178approved by the Ethics Committee of the Leipzig University Medical
179Faculty with informed written consent from all patients (32). The
180patients were centrally reviewed, and their HER2 status was fully
181characterized by the application of IHC staining and ISH. All patients
182included in this analysis belonged to UICC stage IV, were HER2-
183positive and underwent trastuzumab therapy and chemotherapy
184(platin-fluoropyrimidine; Supplementary Table S1).

185Sample acquisition and preparation
186Sample preparation was performed as previously described (26).
187Briefly, formalin-fixed paraffin-embedded sections (3 mm, Microm,

Translational Relevance

In recent years, several gastric cancer molecular classification
systems have been established. However, gastric cancer classifica-
tion based on metabolomics is still lacking. Here, we developed a
novel tumor- and stroma-specific classification model to stratify a
large series of patients with gastric cancer by applying tissue-based
spatialmetabolomics combinedwithK�means clustering analysis.
Using this model, all of tumor- and stroma-specific subtypes were
strongly associated with molecular features and distinctive metab-
olism pathways. Application of an independent validation cohort
revealed that two tumor-specific subtypes were predictive of
trastuzumab response. This is the first study to stratify patients
with gastric cancer based on tissue metabolomics. Metabolic
differences of the patient subtypes and their associations with
molecular features could improve the personalization of therapeu-
tic regimens.
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190 HM340E, Thermo Fisher Scientific) were mounted onto indium–
191 tin–oxide-coated glass slides (Bruker Daltonik) pretreated with
192 1:1 poly-L-lysine (Sigma-Aldrich) and 0.1% Nonidet P-40 (Sigma).
193 Deparaffinized tissue sections were spray-coated with 10 mg/mL
194 of 9-aminoacridine hydrochloride monohydrate matrix (Sigma-
195 Aldrich) in 70% methanol using a SunCollect sprayer (Sunchrom).
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High mass resolution MALDI-Fourier transforms ion cyclotron 
resonance IMS

High mass resolution MALDI-IMS was conducted as previously 
described (26). MALDI-IMS was performed in negative ion mode 
using a Bruker Solarix 7.0 T FT-ICR (Fourier transforms ion cyclotron 
resonance) MS (Bruker Daltonik) equipped with a dual ESI-MALDI 
source and a SmartBeam-II Nd: YAG (355 nm) laser. Data acquisition 
parameters were specified in ftmsControl software 2.2 and flexImaging 
(v. 5.0; Bruker Daltonik). Mass spectra were acquired covering m/z 
50–1100. The laser operated at a frequency of 1000 Hz, using 100 laser 
shots per pixel, and with a pixel resolution of 60 mm. Non-tissue 
regions were measured as a background control to differentiate 
between tissue and matrix-associated peaks. L-Arginine was used for 
external calibration in the ESI mode. After MALDI-IMS analysis, the 
matrix was removed with 70% ethanol, and the samples were stained 
with hematoxylin and eosin (H&E), coverslipped, and scanned with an 
AxioScan.Z1 digital slide scanner (Zeiss) equipped with a �20 mag-

nification objective.

Multiplex fluorescent IHC staining
TMAs were analyzed by double staining for pan-cytokeratin 

[monoclonal mouse pan-cytokeratin plus (AE1/AE3þ8/18; 1:75), 
catalog no. CM162, Biocare Medical, RRID: AB_10582491] and 
vimentin [recombinant anti-vimentin antibody (EPR3776; 1:500), 
catalog no. ab92547, Abcam, RRID: AB_10562134]. Signal was 
detected using fluorescence-labeled secondary antibodies [goat 
anti-rabbit IgG (H þ L)-cross-adsorbed secondary antibody-DyLight 
633 (1:200), catalog no. 35563; and goat anti-mouse IgG (H þ L)-cross-
adsorbed secondary antibody-Alexa Fluor 750 (1:100), catalog no. 
A-21037, RRID: AB_2535708, both Thermo Fisher Scientific]. Nuclei 
were identified with Hoechst 33342 in all stains. Fluorescence stains were 
scanned with an AxioScan.Z1 digital slide scanner (Zeiss) equipped with 
a �20 magnification objective and visualized with ZEN 2.3 blue edition 
software (Zeiss).

IHC and ISH
Protein expression of molecular features, including HER2, DNA 

mismatch repair (MMR), phospho-EGFR (pEGFR), E3 ubiquitin-
protein ligase (MIB1), cluster of differentiation 3 (CD3), CD8, 
FOXP3, and human alpha defensin 1  (DEFA-1),  HER2 ISH 
status  and Epstein–Barr virus (EBV) positivity, were performed as 
pre-viously described (33, 34). In short, IHC with anti-HER2/neu 
(A0785; 1:300, DAKO), anti-pEGFR (36-9700; 1:100, Invitrogen, 
RRID: AB_2533287), anti-CD3 (RM-9107-S; 1:200; Thermo Fisher 
Scientific, RRID: AB_149922), anti-CD8 (ab178089; 1:50, Abcam, 
RRID: AB_2756374), anti–DEFA-1 (T1034; 1:400, Dioanova), 
anti-FOXP3 (12653; 1:100, Cell Signaling Technology), and anti-
MIB1 (M7240; 1:100, DAKO, RRID: AB_2142367) were performed 
on consecutive 3-mm sections using an automated stainer (Ventana 
DISCOVERY XT System, Ventana Medical Systems, Inc.) accord-
ing to the manufacturer’s instructions. Antibodies mutL homolog 
1 (MLH1; clone ES05, Agilent Dako, RRID: AB_2631352) and 
mutS homolog 2 (MSH2; clone FE11, Biocare Medical) of the 
DNA MMR proteins were stained on consecutive 3-mm sections  
(BenchMark ULTRA System). An assay with fluorescence-labeled 
locus-specific DNA probes for HER2 and chromosome-17 (CEP17) 
centromeric a-satellite was hybridized onto TMAs for ISH analysis. 
The TMAs were incubated with an EBV-encoded small RNA probe 
(DAKO Cytomations) for EBV-encoded small RNA ISH analysis.

Table 1. Summary of patient characteristics.Q5

Characteristic Numbers

Number of patients 362
Age, y

Median 68
Range 17–100

Sex
Male 219
Female 123
NA 20

Survival time (mo)
Median 20
Range 0–344
NA 108

Lauren classification
Intestinal 178
Diffuse 146
Mixed 15
NA 23

Primary tumor extension
pT1 40
pT2 140
pT3 134
pT4 28
NA 20

Regional lymph nodes
pN0 93
pN1 100
pN2 107
pN3 35
NA 27

Distant metastasis
M0 193
M1 82
NA 87

UICC stage
Stage I 87
Stage II 71
Stage III 77
Stage IV 105
NA 22

Primary resection state
R0 203
R1 78
R2 29
NA 52

Grade
G1 2
G2 48
G3 285
NA 27

Note: Distant metastasis was defined as metastasis in any lymph node other
than regional. Samples with insufficient data to make a conclusion were set
to “NA.”

Spatial Metabolomics for Classification of Gastric Cancer
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257 Immunophenotype-guided IMS and data processing
258 In situ tissue cores were processed using the SPACiAL pipeline for
259 immunophenotype-guided MALDI-IMS analysis, which includes a
260 series of MALDI data and image-processing steps to automatically
261 annotate tumor and stroma regions as previously described (28). First,
262 H&E staining was removed by incubating tissue sections with 70%
263 ethanol for 5 minutes followed by IHC. Tumor and stroma regions
264 were distinguished by multiplex fluorescent IHC staining with epi-
265 thelial cell–specific cytokeratin antibody [(AE1/AE3þ8/18; 1:75), cat-
266 alog no. CM162, Biocare Medical, US, RRID: AB_10582491] and
267 stroma cell–specific vimentin antibody [recombinant anti-vimentin
268 antibody (EPR3776; 1:500), catalog no. ab92547, Abcam, UK, RRID:
269 AB_10562134] on the same tissue section. Immunostaining images
270 were then co-registered with the MALDI measurement region to
271 define 347 tumor region samples and 339 stroma region samples by
272 SPACiAL workflow. Specification of tumor and stroma regions and
273 exportation of each patient’s spectral data were finally managed using
274 the SPACiAL pipeline (28).

275 Consensus clustering
276 Consensus clustering was conducted using the “ConcensusCluster-
277 Plus” package in R to explore gastric cancer subtypes based on the
278 cancer patient sample matrix. The consensus matrix was used to check
279 cluster co-occurrence, find intrinsic groupings over variation in dif-
280 ferent numbers of clusters, and use K�means on the distance matrix.
281 The matrix is arranged so that samples belonging to the same cluster
282 are adjacent to each other.

283 Pathway enrichment analysis
284 Metabolites were annotated with the Kyoto Encyclopedia of Genes
285 and Genomes (KEGG, RRID: SCR_012773; www.genome.jp/kegg/),
286 allowing M�H, M�H2O, MþK�2H, MþNa�2H, and MþCl as
287 negative adducts with a mass tolerance of 4 ppm. Significance analysis
288 of tumor- or stroma-specific subtypes was performed by a Kruskal–
289 Wallis test with subsequent Benjamini–Hochberg correction
290 (P < 0.05). The enriched metabolites in each subtype were identified
291 by comparing with every other subtype using the Dunn’s test with a
292 cutoff P value of <0.05 and a fold change of >1 based on the significant
293 metabolites. The feature matrix of enriched metabolites was then
294 normalized by the 0–1 normalization method, which scaled the
295 minimum of each row to zero and maximum to one as visualized by
296 the abundance heatmap. Pathway enrichment analysis was performed
297 via theKEGGdatabase (RRID: SCR_012773) using theMetaboAnalyst
298 online tool (RRID: SCR_015539; www.metaboanalyst.ca; Fisher’s
299 exact test, q < 0.05 for FDR correction).

300 Statistical analysis
301 Correlations were calculated using pairwise Spearman’s rank-
302 order correlation and P values were adjusted with Benjamini–
303 Hochberg correction. The clinicopathological characteristics dif-
304 ferences among tumor- and stroma-specific subtypes was evaluated
305 by the x2 test or Fisher’s exact test, and P values in the pairwise
306 comparison between subtypes were adjusted with FDR correction.
307 To determine the intensity differences of representative metabo-
308 lites, the Kruskal–Wallis and post hoc Dunn’s multiple comparison
309 tests were used in conjunction with Benjamini–Hochberg correc-
310 tion. The Mann–Whitney U test was used for testing intensity
311 differences in the validation cohort. Further statistical differences
312 and comparison in patient survival were determined using the
313 Kaplan–Meier curve and the Log–Rank test. Multivariate survival
314 analysis was performed using Cox proportional hazard regression
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model. All statistical tests were conducted using R (R version 4.0.0, 
RRID: SCR_001905).

Data availability
The data generated in this study are available upon reasonable 

request from the corresponding author.

Results
Identification of gastric cancer patient subtype based on 
metabolite profiling

The study workflow is shown in Fig. 1. From a total of 362 patient 
samples, 347 could be automatically annotated with tumor regions and 
339 could be annotated with stroma regions using immuno-guided 
spatial metabolomics. The annotatable patient cases form the basis for 
our calculations. To determine whether tumor and stroma regions had 
significantly different metabolite compositions, we performed a tumor 
and stroma region-specific unsupervised K�means clustering analy-
sis. A total of 9,278 ion features were identified and selected as the basis 
of K�means clustering.

Consensus matrix heatmaps and cumulative distribution function 
(CDF) plots were drawn to determine the optimal number of K 
clusters. Optimal cluster numbers for tumor-specific and stroma-
specific data were both set to 3, which led to a lesser increase in CDF 
difference following the consensus index (Fig. 2A and B). Color-coded 
heatmaps corresponding to the consensus matrix were obtained by 
applying consensus clustering to tumor- and stroma-specific datasets 
(Fig. 2C and D). The selected blocks were almost disjointed in the 
heatmap, indicating that the three clusters could be distinguished on 
tumor-specific spectra. The three clusters also had relatively clean 
separation and displayed a well-defined three-block structure for 
stroma-specific data. The sharp and crisp boundaries further validated 
stable and robust clustering of the tumor- and stroma-specific dataset. 
Both datasets were subsequently processed by unsupervised K�means 
centroid clustering. Of the 347 tumor regions, 161 were assigned to 
subtype T1 (46%), 55 to T2 (16%), and 131 to T3 (38%), respectively. 
Furthermore, of the 339 stroma regions, 125 were assigned to subtype 
S1 (37%), 50 to subtype S2 (15%), and 164 to subtype S3 (48%).

To estimate the ability of MALDI-IMS data to distinguish gastric 
cancer subtypes and validate subtype assignments without referring to 
clustering, we additionally assessed the variance among molecular 
subtypes using a t-distributed stochastic neighbor embedding-based 
approach. Results showed that both tumor- and stroma-specific 
subtypes were clearly separated, indicating that they could be readily 
distinguished on the basis of metabolite levels (Fig. 2E and F).

Correlation of tumor- and stroma-specific subtypes with 
molecular features

To explore differences in tumor- and stroma-specific subtypes,  
we investigated their association with molecular features, including 
DNA MMR, HER2, pEGFR, E3 ubiquitin-protein ligase (MIB1), 
CD3, CD8, FOXP3, and human alpha defensin 1 (DEFA-1), HER2 
ISH status, and EBV positivity. All associations between molecular 
features and patient subtypes are shown in Fig. 2G–H and Sup-
plementary Tables S2 and S3. Among the three tumor-specific 
subtypes, gastric cancer molecular features, including HER2 
(P ¼ 0.00017), CD3 (P ¼ 0.005), CD8 (P ¼ 0.02), FOXP3 
(P ¼ 0.0011), MIB1 (P ¼ 0.0012), and DEFA-1 (P ¼ 0.014) 
positively correlated with tumor-specific subtype T1. Conversely, 
pEGFR (P ¼ 0.012) and MMR (P ¼ 0.0033) negatively correlated 
with T1. Tumor-specific subtype T2 negatively correlated with

Wang et al.
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392correlation, as T2(HER2�MIB�CD3�), and the remaining tumor
393subtype based on elevated pEGFR protein expression, as T3
394(pEGFRþ).
395Stroma-specific subtype S1 did not significantly correlate with
396HER2 (P ¼ 0.098), MMR (P ¼ 0.572), pEGFR (P ¼ 0.49), MIB1
397(P ¼ 0.21), DEFA-1 (P ¼ 0.20), CD3 (P ¼ 0.22), or CD8 (P¼ 0.51),
398and indeed had a negative correlation with FOXP3 (P ¼ 0.028).
399Stroma-specific subtype S2 was negatively associated with HER2
400(P ¼ 0.028), MIB1 (P ¼ 0.002), FOXP3 (P ¼ 0.002), and CD3
401(P ¼ 0.019). Meanwhile, S2 did not significantly correlate
402with MMR (P ¼ 0.0847), pEGFR (P ¼ 0.14), DEFA-1
403(P ¼ 0.47), or CD8 (P ¼ 0.22). Stroma-specific subtype S3 had
404a positive correlation with HER2 (P ¼ 0.0019), MIB1
405(P ¼ 0.00079), FOXP3 (P ¼ 0.000013), and CD3 (P ¼ 0.008),
406and had no significant correlation with MMR (P ¼ 0.5), pEGFR
407(P ¼ 0.11), DEFA-1 (P ¼ 0.082), and CD8 (P ¼ 0.14). Of the 14

Figure 1.

Spatial metabolomics pipeline scheme and subtype characterization process. The workflow begins with immunophenotype-guided spatial metabolomics, including
matrix application, immunophenotype-guided MALDI-IMS assessment, and data processing. For the immunophenotype-guided MALDI-IMS approach, tumor and
stroma cells were annotated using multiplex fluorescent IHC staining. Tumor and stroma region-specific mass spectra were then subjected to further the K�means
clustering and statistical analysis.Q6

Spatial Metabolomics for Classification of Gastric Cancer

HER2 (P ¼ 0.0076), CD3 (P ¼ 0.017), FOXP3 (P ¼ 0.0013), and 
MIB1 (P ¼ 0.00009). Meanwhile, T2 showed no significant cor-
relation with CD8 (P ¼ 0.13), DEFA-1 (P ¼ 0.080), and pEGFR (P 
¼ 0.89). Conversely, MMR (P ¼ 0.047) positively correlated with 
T2. Tumor-specific subtype T3 positively correlated with pEGFR 
(P ¼ 0.013) and showed no significant correlation with HER2 (P ¼ 
0.082), MMR (P ¼ 0.17), CD3 (P ¼ 0.23), CD8 (P ¼ 0.23), FOXP3 
(P ¼ 0.36), MIB1 (P ¼ 0.71), and DEFA-1 (P ¼ 0.26). The 
metabolic subtypes significantly correlated with HER2 IHC status, 
but showed no correlation with HER2 ISH status. As shown in 
Supplementary Table S4, EBV positivity was observed in 14 
patients. Of these, 9 and 5 EBV-positive tumors were the T1 and 
T2 subtype, whereas no EBV-positive tumor samples were the T2 
subtype. On the basis of these results, we categorized tumor-specific 
subtypes based on HER2, MIB1, and CD3-positive correlation as T1 
(HER2þMIBþCD3þ), those based on negative HER2, MIB1, and CD3

AACRJournals.org Clin Cancer Res; 2022 5



410 EBV-positive tumors, 3 and 11 EBV-positive tumors were the S1
411 and S3 subtype, whereas no EBV-positive tumor samples were the
412 S2 subtype (Supplementary Table S4). Hence, stroma-specific
413 subtypes were accordingly named S1(FOXP3–), S2(HER2–MIB–CD3–),

415and S3(HER2þMIBþCD3þFOXP3þ). The alluvial diagram shown
416in Fig. 2I indicated the distribution of patients between tumor- and
417stroma-specific subtypes. Subtype similarities were observed
418between T1(HER2þMIBþCD3þ) and S3(HER2þMIBþCD3þFOXP3þ),

Figure 2.

Tumor- and stroma-specific subtypes
identification and their association
with molecular features. The relative
change in the area under CDF curve of
(A) tumor and (B) stroma datasets.
The number of cluster K changed
from 2 to 8. K ¼ 3 led to a lesser
increase in CDF difference following
the consensus index and thus was
selected as the optimal number of
cluster. Consensus matrix heatmap of
the chosen optimal number of cluster
K ¼ 3 of (C) tumor and (D) stroma-
specific datasets. A color gradient of
0–1 is used, blue¼ consensus score of
1, meaning that patients were always
clustered together; white ¼ consen-
sus score of 0, meaning that patients
were never clustered together. Three-
dimensional t-SNE analysis suppor-
ted that patients could be stratified
into three subtypes in both tumor- (E)
and stroma-specific datasets. F,
Points represented samples colored
according to the metabolic patient
subtypes. Statistical association of
molecular features (HER2, MMR,
pEGFR, MIB1, CD3, CD8, FOXP3, and
DEFA-1) with tumor- (G) and stro-
ma-specific subtypes (H). E, Alluvial
diagram depicted the relationship
of tumor- and stroma-specific sub-
types. Detailed patient numbers in
each subtype were shown in the
table; � , P < 0.05; �� , P < 0.01; and
��� , P < 0.001.
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421 T2(HER2�MIB�CD3�) and S2(HER2–MIB–CD3–), and T3(pEGFRþ)
422 and S1(FOXP3–).

423 Tumor-specific subtypes have different clinicopathological
424 features
425 We next tested whether consensus clustering subtypes had striking
426 differences in the most common gastric cancer clinicopathological
427 characteristics. Our results showed that the proportion of samples in
428 pT (P ¼ 0.022), pN (P ¼ 0.0043), M (P ¼ 0.00017), and UICC stage
429 (P ¼ 0.00026) was significantly different in distinct tumor-specific
430 subtypes (Supplementary Fig. S1D–S1F and S1H). Particularly, T1
431 (HER2þMIBþCD3þ) subtype had a significantly different propor-
432 tion of samples in the “M stage” in comparison with the T2
433 (HER2�MIB�CD3�) and T3(pEGFRþ) subtypes. No associations of
434 tumor-specific subtypes with age, sex, grade, or Lauren classification
435 were found (Supplementary Fig. S1A, S1B, S1G, and S1I). Stroma-
436 specific subtypes were not significantly associated with clinicopatho-
437 logical characteristics (Supplementary Fig. S1).

438 Association between tumor-specific subtypes and patient
439 prognosis
440 Wenext compared potential differences in prognosis among tumor-
441 and stroma-specific subtypes. The Kaplan–Meier survival analysis
442 indicated better outcomes for subtype T1(HER2þMIBþCD3þ) than
443 T2(HER2�MIB�CD3�;P¼ 0.022;Fig. 3B). No statistically significant
444 differences were observed in other pairwise tumor-specific subtype
445 comparisons or overall, in three tumor-specific subtype comparisons
446 (Fig. 3A, C, and D). In stroma-specific subtypes, survival was not
447 statistically different in pairwise subtype comparisons or in an overall
448 comparison of the three subtypes (Fig. 3E–H). The T1
449 (HER2þMIBþCD3þ) and T2(HER2�MIB�CD3�) subtypes, which
450 have significant survival differences, were included in the multivariate
451 Cox regression analysis, and showed that tumor-specific subtypes do
452 not serve as independent prognostic subtypes with regard to the UICC
453 classification system [T1(HER2þMIBþCD3þ): P¼ 0.323; hazard ratio
454 (HR), 1.244; T2(HER2�MIB�CD3�): P ¼ 0.481; HR, 1.184; UICC
455 stage: P ¼ 5.38 � 10–12; HR, 1.970].

456 Gastric cancer patient subtypes with distinct metabolites and
457 related metabolism pathways
458 To gain a deeper insight into the underlying metabolism differences
459 among tumor- and stroma-specific subtypes, a differential analysis
460 was conducted on 277 annotated metabolites, and significant
461 enriched metabolites for each of tumor- and stroma-specific subtypes
462 were identified. Enriched metabolites for each subtype were visualized
463 by a heatmap as shown in Fig. 4A and Supplementary Fig. S2A. Figure
464 4B–D and Supplementary Fig. S2B–S2D separately demonstrated
465 distinct subtype-specific pathway patterns of tumor and stroma. T1
466 (HER2þMIBþCD3þ) had 45 significantly upregulatedmetabolic path-
467 ways, 13 ofwhichwere related to carbohydratemetabolism, as opposed
468 to 10 that were related to amino acid metabolism (Fig. 4B). Notably,
469 nucleotide metabolism and ascorbate and aldarate metabolism were
470 upregulated exclusively in T1(HER2þMIBþCD3þ). At the same time,
471 T2(HER2�MIB�CD3�) had 17 significantly upregulated metabolic
472 pathways, 7 of which were related to carbohydrate metabolism and 4
473 were related to amino acid metabolism, respectively (Fig. 4C). T3
474 (pEGFRþ) was found to be related to biotin metabolism and the
475 cytosolic DNA-sensing pathway (Fig. 4D). Concerning stroma-
476 specific subtypes, S3(HER2þMIBþCD3þFOXP3þ) had 32 specific
477 upregulated metabolism pathways, in comparison with 2 and 17 in
478 S1(FOXP3–) and S2(HER2–MIB–CD3–), respectively (Supplementary

480Fig. S2B–S2D). S1(FOXP3–) was related to the pentose phosphate
481pathway and cysteine and methionine metabolism (Supplementary
482Fig. S2B). Furthermore, some amino acid-related pathways
483were elevated in S3(HER2þMIBþCD3þFOXP3þ; Supplementary
484Fig. S2D). Figure 4E and Supplementary Fig. S2E showed the
485spatial distribution of one representative metabolite selected from
486each tumor- and stroma subtype-specific pathway. The above
487results demonstrate that tumor- and stroma-specific subtypes were
488enriched with diverse metabolites and metabolism pathways.

489T1(HER2þMIBþCD3þ) and T2(HER2�MIB�CD3�) subtypes
490correlate with trastuzumab therapy efficiency in an
491independent validation cohort (VARIANZ cohort)
492Response to trastuzumab therapy in gastric cancer has been linked
493to a metabolomic classifier in our recent study (Fig. 5A and B; ref. 31).
494This metabolomic classifier was established by applying spatial meta-
495bolomics and machine learning. The metabolomic classifier could
496stratify patients diagnosed with HER2-positive gastric cancer into
497trastuzumab-sensitive and trastuzumab-resistant, and thus predict
498those patients’ response to trastuzumab. HER2-positive tumor
499patients from the study were used as an independent validation
500cohort (VARIANZ cohort), and the metabolomic classifier was
501applied to predict trastuzumab responses in T1(HER2þMIBþCD3þ)
502and T2(HER2�MIB�CD3�) subtypes, due to their specific correlation
503with HER2 protein expression. As shown in Fig. 5C and D, the
504metabolomic classifier can distinguish T1(HER2þMIBþCD3þ)
505and T2(HER2�MIB�CD3�) subtypes in our discovery cohort.
506In the VARIANZ cohort (n ¼ 42), patients treated with trastu-
507zumab therapy were classified into the T1(HER2þMIBþCD3þ)
508and T2(HER2�MIB�CD3�) subtypes, which significantly corre-
509lated with a response to trastuzumab (Fig. 5E). The percentage
510of trastuzumab-sensitive patients was significantly higher in
511the T1(HER2þMIBþCD3þ) subtype (82%) than in the T2
512(HER2�MIB�CD3�) subtype (44%; Fig. 5F). In addition, trastu-
513zumab-treated patients in the T1(HER2þMIBþCD3þ) subtype also
514had a better prognosis than patients in the T2(HER2�MIB�CD3�)
515subtype (Fig. 5G). Spearman correlation analysis revealed no
516correlation between patient subtypes T1(HER2þMIBþCD3þ) and
517T2(HER2�MIB�CD3�) with HER2 IHC status or ISH gene ampli-
518fication rate (Supplementary Table S5). Overall, these analyses
519demonstrate the correlation of these tumor-specific subtypes with
520survival and reveal their potential as a biomarker across trastu-
521zumab therapy. Particularly, Spearman correlation analysis showed
522no correlation between any of these metabolites and HER2 protein
523(Supplementary Table S6). Moreover, multivariate analysis showed
524that HER2 did not show an independent prognostic value of either
525the T1(HER2þMIBþCD3þ) subtype [P ¼ 0.26; HR, 0.68; 95%
526confidence interval (CI), 0.34–1.34] or the T2(HER2�MIB�CD3�)
527subtype (P ¼ 0.26; HR, 1.48; 95% CI, 0.75–2.93; Supplementary
528Table S7), further confirming that patient response to trastuzumab
529depends on tumor-specific subtype variables irrespective of HER2
530expression.

531Discussion
532This study describes a novel tumor- and stroma-specific classifi-
533cation model in a large series of patients with gastric cancer based on
534metabolites. We defined three distinct tumor-specific subtypes: T1
535(HER2þMIBþCD3þ), T2(HER2�MIB�CD3�), and T3(pEGFRþ),
536and three stroma-specific subtypes: S1(FOXP3–), S2(HER2–-

537MIB–CD3–) and S3(HER2þMIBþCD3þFOXP3þ). The characteristics
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Figure 3.

Metabolic patient subtypes and their prognosis.
Survival analysis of (A) three tumor-specific sub-
types and (B–D) pairwise subtype comparison
in Kaplan–Meier curves. Survival analysis of (E)
three stroma-specific subtypes and (F–H) pairwise
subtype comparison. The x-axis represented the
survival time, and the y-axis represented the prob-
ability of survival. The log-rank test was used to
assess the statistical significance of the prognostic
differences among the subtypes; � , P < 0.05.
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540 of tumor-specific subtypes are summarized in Fig. 6. T1
541 (HER2þMIBþCD3þ) was characterized by high immune cell infiltra-
542 tion, presence of EBV, MSI-H, earlier UICC stage, nucleotide metab-
543 olism, and good prognosis. By contrast, T2(HER2�MIB�CD3�) was
544 characterized by low immune cell infiltration, absence of EBV, low
545 MSI, later UICC stage and poor prognosis; Finally, T3(pEGFRþ) was
546 characterized by high pEGFR. Stroma-specific subtypes were linked to
547 distinct metabolic pathways and molecular features. An independent
548 validation cohort confirmed that the T1(HER2þMIBþCD3þ) subtype
549 had predictive power for a trastuzumab benefit. Identification of these

551tumor- and stroma-specific subtypes would be a valuable addition to
552current molecular classification by maximizing the use of established
553therapy in proper patient populations and reducing the use of costly
554drugs.
555In recent years, molecular methods, such as next-generation
556sequencing, including deoxyribonucleic acid sequencing, ribonucleic
557acid sequencing, whole-exome sequencing, copy-number variation
558analysis, and DNA methylation arrays, have been used for the clas-
559sification of gastric cancer into molecular subtypes (7–10, 35). Our
560subtype classification drew from these stratification approaches and

Figure 4.

TumorQ7 subtype-specificmetabolite characteristics andpathways enrichment.A,Upregulatedmetabolites of each tumor-specific subtype. Each row represented one
metabolite. Colored bars at the top indicated tumor-specific subtypes. B–D, Pathways enriched in each tumor-specific subtype were represented by scatter plots.
The x-axis indicated the pathway impact factor, and the y-axis indicated the pathway term. Dot color indicated the q value. Dot size indicated the counts of
metabolites. E, Representative upregulated metabolite distribution and its intensities in the tumor-specific subtypes. Deoxyadenosine monophosphate (dAMP), a
nucleotide metabolism member; D-Fructose 6-phosphate, carbohydrate metabolism member; Biotin, biotin metabolism member. The statistic differences were
evaluated with the Kruskal–Wallis test; ��� , P < 0.001.
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563 supplemented them using tissuemetabolomics to stratify patients with
564 gastric cancer. The T1(HER2þMIBþCD3þ) subtype shared similarity
565 to the EBVþ and MSI subtypes established by TCGA study (7) for the
566 presence of EBV and high MSI. The T2(HER2�MIB�CD3�) subtype
567 was similar to the ImD in immune cell absence and showed consis-
568 tently poor survival (9). Good prognosis in T1(HER2þMIBþCD3þ)
569 and poor prognosis in T2(HER2�MIB�CD3�) subtypesmay be due to
570 the combined effects of high CD3, CD8, and FOXP3 expression.

572Previous studies support our observation that high T-cell density was
573associated with improved gastric cancer clinical outcomes (14, 36).
574Only a subset of patients benefit from trastuzumab therapy (32).
575However, effective prediction of treatment response to trastuzumab
576could dramatically enhance this benefit ratio while preventing over-
577treatment. Several response predictors have been proposed. However,
578at present, neither HER2 IHC (11) nor HER2 ISH (37) provides a
579robust prediction of trastuzumab therapy benefit in patients with

Figure 5.

Association with trastuzumab therapy response in HER2-associated tumor-specific subtypes T1(HER2þMIBþCD3þ) and T2(HER2�MIB�CD3�). A, Importance plot,
including the most significant metabolites, which represented an unequal distribution of trastuzumab-sensitive and -resistant patients in the metabolomic classifier
from the VARIANZ cohort.B,Abundance difference ofmetabolites in trastuzumab-sensitive and trastuzumab-resistant patientswith gastric cancer using theMann–
WhitneyU test.C,The abundancedifference ofmetabolites in T1(HER2þMIBþCD3þ) andT2(HER2�MIB�CD3�) subtypes using theMann–WhitneyU test.D,Heatmap
illustrating the abundance ofmetabolites showed tumor-specific subtype classification in our discovery cohort. E,Heatmap of the abundance ofmetabolites showed
tumor-specific subtype classification in the VARIANZ cohort. F, Numbers of trastuzumab-sensitive and trastuzumab-resistant patients in T1(HER2þMIBþCD3þ) and
T2(HER2�MIB�CD3�) subtypes. The P value was calculated by using the Fisher’s exact test. G, Survival difference of patients with T1(HER2þMIBþCD3þ) and T2
(HER2�MIB�CD3�) subtypes treated with trastuzumab therapy using the log-rank test; � , P < 0.05.
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582 gastric cancer. Therefore, a priori identification of responders is
583 critically needed as it would improve treatment outcomes. A meta-
584 bolomic classifier involving DNA metabolism molecules was built in
585 our previous study, and could predict trastuzumab response in patients
586 with HER2-positive gastric cancer (31). Patients with HER2-positive
587 tumor from this recent study were used as the validation cohort, and
588 the same metabolomic classifier was applied in the current study. We
589 successfully confirmed that our tumor-specific subtypes can further
590 stratify HER2-positive patient responses to trastuzumab therapy, with
591 patients with gastric cancer possessing T1(HER2þMIBþCD3þ)
592 experiencing better outcomes to trastuzumab therapy than T2
593 (HER2�MIB�CD3�) patients. Strikingly, nucleotides were elevated
594 in sensitive patients, and DNA metabolism in gastric cancer tumor
595 cells has been reported as a crucial factor that affects the response to
596 trastuzumab therapy in our previous study (31). The current study
597 consistently showed a higher abundance of nucleotides and DNA
598 metabolism in the T1 (HER2þMIBþCD3þ) subtype. Together, this
599 evidence suggests that the T1(HER2þMIBþCD3þ) subtype assign-
600 ment predicts a benefit when initiating trastuzumab therapy.
601 In addition, response to trastuzumab therapy has been reported to
602 improve when combined with bifunctional HER2/CD3 CART-like
603 human T-cell treatment (38). Significant inhibition in drug-resistant
604 solid tumors has been exhibited in other HER2-targeted bispecific
605 antibodies undergoing clinical investigation, including ertumaxomab-
606 targeting HER2 and CD3 on T cells and activated T-cell armed with
607 HER2-targeted bispecific antibody (HER2Bi-aATC; ref. 39). In our
608 study, HER2 and CD3 protein expressions were found to be positively

610correlated with the T1(HER2þMIBþCD3þ) subtype. Hence, we expect
611the T1(HER2þMIBþCD3þ) subtype to be predisposed with the tras-
612tuzumab therapy combined with HER2-targeted bispecific antibodies.
613Pioneering studies in this field revealed a close correlation between
614TILs and PD-L1 overexpression in gastric cancer (16, 40). The
615expression of PD-1 is found not only on CD8þ-infiltrated cells but
616also on FOXP3þ Treg cells (18). Tumors with elevated immune
617infiltration often have a more active response to immunotherapy (41).
618Patients with these characteristics had better clinical outcomes in
619response to immune checkpoint therapy. Thus, TILs can be considered
620a potentially important predictive marker in a broad variety of gastric
621cancer and other tumor types (14, 42). Some previous studies have
622demonstrated that PD-1 blockade could be effective in patients with
623elevated CD8þ TILs, even with low PD-L1 expression (43–45). In
624addition, several recent studies found a close relationship of immune
625checkpoints with EBV-positive and MSI-high gastric cancer (14, 15).
626Thus, we expect T1(HER2þMIBþCD3þ) to be predisposed with
627immune checkpoint inhibitors, such as PD-1 blockade, because of its
628higher frequency of EBV positivity, MSI and positive correlation with
629CD8þ T-cell infiltration and FOXP3-positive Treg cells.
630Immunotherapy has also been successfully added to HER2-directed
631therapy. The phase 3KEYNOTE-811 trial recently showed that adding
632pembrolizumab to trastuzumab and chemotherapy markedly reduced
633tumor size, induced complete responses in some participants, and
634significantly improved objective response rate chemotherapy in
635HER2-positive, metastatic gastroesophageal adenocarcinoma (46).
636Notably, there was an impressive 74.4% response rate, which was

Figure 6.

Summary of clinicopathological and molecular characteristics of three tumor-specific gastric cancer patient subtypes. The three tumor-specific subtypes displayed
significantly distinctmetabolites andmolecular features. Human Epidermal Growth Factor Receptor 2, HER2; tumor-infiltrating lymphocytes, TIL; Epstein–Barr Virus,
EBV; Microsatellite Instability, MSI; phospho-Epidermal Growth Factor Receptor, pEGFR.
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639 significantly higher than the 47% response rate achieved with che-
640 motherapy plus trastuzumab, suggesting that T1(HER2þMIBþCD3þ)
641 treatment responsiveness may be increased by combining checkpoint
642 blockade with standard trastuzumab plus chemotherapy.
643 The distinct metabolite networks and biochemical processes in
644 tumor- and stroma-specific subtypes revealed by enriched pathway
645 analysis were consistent with previously known features of gastric
646 cancer. For instance, previous studies suggested that metabolic
647 alteration was typically characterized by repression of the Warburg
648 effect aerobic respiration and increased glycolysis for glucose
649 metabolism (19, 47, 48). The association between glucose metab-
650 olism and gastric cancer has been confirmed and discussed in several
651 studies (19, 48). One proposed explanation why the Warburg
652 effect is advantageous for tumor growth is that through increased
653 glycolysis, glycolytic intermediates can funnel into anabolic
654 side pathways to support de novo synthesis of nucleotides,
655 lipids, and amino acids needed to support cell proliferation (47, 49).
656 This evidence robustly supports our observation that carbohydr-
657 ate metabolism and amino acid metabolism pathways are
658 enriched among T1(HER2þMIBþCD3þ), T2(HER2�MIB�CD3�),
659 S2(HER2–MIB–CD3–), and S3(HER2þMIBþCD3þFOXP3þ) sub-
660 types. Apart from commonly enriched metabolism, T1
661 (HER2þMIBþCD3þ) and S3(HER2þMIBþCD3þFOXP3þ) specif-
662 ically exhibited upregulation of nucleotide metabolism. Accumu-
663 lation of nucleotide metabolism end products is also found in
664 patients with gastric cancer (50).
665 Molecular expression profiles of tumor tissues may influence
666 their assignment to specific molecular categories, creating inter-
667 pretative challenges. Novel, distinctive, stroma-based signatures
668 have been proposed for predominant cancer phenotypes (35). In
669 this study, we successfully performed the classification of tumor
670 epithelial cells and stromal cells, whereas no well-established large-
671 scale classification research has considered the influence of active,
672 nonmalignant stromal cells. As we found, T1(HER2þMIBþCD3þ)
673 and S3(HER2þMIBþCD3þFOXP3þ) share similar metabolic path-
674 ways but different correlations with pathological parameters and
675 molecular features. This result shows that tumor- and stroma-
676 specific metabolite patterns from the same patient may convey
677 different information, and the same patient cohort may have
678 different subtype patterns in tumor- and stroma-specific regions.

680Thus, identification of subtypes must be more precise to individual
681tumor or stroma regions rather than mixed tissue regions.
682In conclusion, our results increase the understanding of the met-
683abolic subtypes of gastric cancer. With the further development of
684image mass spectrometry tools, the metabolic classification of gastric
685cancer will become more precise. If confirmed and extended in future
686studies, the association between metabolic subtypes reported here and
687therapy responses might refine patient selection for personalized
688therapy.
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