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Methods Mustard (Sinapis alba), phacelia (Phace-
lia tanacetifolia) and buckwheat (Fagopyrum escu-
lentum) were grown as cover crops before soybean 
(Glycine max) in an on-farm experiment on a soil 
low in available P in southwest Germany. The 
cycling of P through the cover crop biomass and 
the enzyme-availability of organic P  (Porg) pools 
in the cover crop rhizosheath were characterised. 
The soil microbial community (PLFA), activity 
(acid and alkaline phosphomonoesterase, as well as 
phosphodiesterase), and microbial P were assessed. 
The abundance of 16S-rRNA and phoD, coding for 

Abstract 
Background and aims The characterisation of 
plant-available phosphorus (P) pools and the 
assessment of the microbial community in the 
rhizosheath of cover crops can improve our under-
standing of plant–microbe interactions and P 
availability.
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alkaline phosphomonoesterase in bacteria, were 
quantified using real-time qPCR.
Results Mustard contained the greatest amount of 
P in its large biomass. In the rhizosheath of all cover 
crops, the concentration of enzyme-labile  Porg was 
higher than that in the control bulk soil, along with 
substantial increases of microbial abundance and 
activity. There were little differences among cover 
crop species, few changes in the bulk soil and only a 
limited carryover effect to soybean, except for fungi.
Conclusions Turnover of microbial biomass, espe-
cially saprotrophic fungi, increased by rhizodeposi-
tion of cover crop roots; this was likely responsible 
for the observed increases in enzyme-available  Porg. 
Microbial function was correlated linearly with 
microbial biomass, and the data of enzyme activity 
and phoD did not suggest a difference of their specific 
activity between bulk and rhizosheath soil.

Keywords Plant–microbe interactions · 
Rhizosphere · P mobilisation · Enzyme Addition 
Assay · PLFA · Nutrient management

Introduction

Conventional agricultural management requires a re-
thinking to cope with externalities including environ-
mental pollution, soil degradation, biodiversity loss 
and the exhaustion of mineable reserves of fertilisers 
(IAASTD 2009). Of great concern is the transgres-
sion of the planetary boundaries of nutrient cycles, 
with phosphorus (P) being one of the most prominent 
issues (Campbell et al. 2017). Agricultural production 
is the main driver of the global P cycle, and overap-
plication of P fertilisers led in rich countries to the 
accumulation of legacy P in many agricultural soils 
(Nesme and Withers 2016).

Soil P is present in different inorganic  (Pi) and 
organic  (Porg) P pools of varying degrees of avail-
ability; therefore, the needed solutions are complex 
and require fundamental changes of the agricultural 
system. The adoption of agroecological farming tech-
niques such as cover cropping provides an oppor-
tunity of a step in the right direction (Altieri 2018). 
Cover crops have potential for P management, reduc-
ing environmental hazards in systems with high P 
loads, and improving crop P nutrition in soils with 

low P availability (Oberson et al. 2006; Simpson et al. 
2011).

The use of cover crops can potentially alter soil P 
dynamics and the main crop may benefit by differ-
ent mechanisms. These include uptake, storage and 
subsequent mineralisation of P from cover crop litter 
(plant biomass pathway), mobilisation of otherwise 
unavailable soil P pools via biochemical modifica-
tion of the rhizosphere (biochemical pathway), and an 
increased capacity of the soil microbial community 
to cycle P (microbial pathway) (Hallama et al. 2019; 
Soltangheisi et  al. 2020; Boselli et  al. 2020). Espe-
cially the soil–plant-microbe feedback is complex 
and heavily influenced by several site-specific factors 
including soil type and climate as well as agricultural 
management, for example, cropping sequence and 
fertilization regimes. In addition, in the case of cover 
crops, the plant species used, their root architecture 
and biomass (Kim et  al. 2020). Root exudates and 
–deposits are quickly used by microbes as C-source, 
increasing microbial abundance, and they shape the 
composition of the microbial community in the rhizo-
sphere (rhizobiome). The enhanced microbial activ-
ity, together with accumulation of P in living micro-
bial biomass or dead cells (necromass) (Hinsinger 
et  al. 2011) increases microbial nutrient cycling and 
can therefore be considered as a major trigger for soil 
– plant – microbe feedbacks (Jacoby et al. 2017).

Cover crop species differ in their P uptake and 
effect on the soil (micro-)biology and chemistry, and 
therefore in their potential to contribute to a P ben-
efit to the main crop. Some plants, for example, buck-
wheat (Fagopyrum esculentum), mobilise poorly-
mobile  Pi pools (Schelfhout et  al. 2018). Mustard 
(Sinapis alba), a member of the Brassicaceae family, 
produces a large biomass with a high P concentration; 
a high rhizosheath phosphatase activity is thought 
to be part of its P-acquisition strategy (Hunter et  al. 
2014). Other species such as phacelia (Phacelia tan-
acetifolia), form mycorrhizas and their very fine root 
system is expected to interact strongly with the soil 
microbial community (Eichler-Löbermann et  al. 
2009).

Since plant P nutrition depends not only on their 
own P-acquisiton strategies, but also on the poten-
tial of microorganisms to moblise P from different 
inorganic and organic sources, there is a need to 
study microbial-driven processes leading to min-
eralisation of  Porg pools (George et  al. 2018). The 
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outlined three pathways of cover crop-derived P 
benefits always occur simultaneously. However, 
the relative importance of each pathway depends 
on multiple factors such as cover crop species and 
growth, as well as the soil microbial community and 
P pools. In the past, soil chemistry dominated agri-
cultural sciences and plant nutrition studies, with 
much less attention for the role of microorganisms 
in cycling of  Porg (Johnston and Bruulsema 2014). 
Information about the potential activity of phospho-
monoesterases and phosphodiesterase as well as the 
quantification of  Porg is available (Nuruzzaman et al. 
2006; Maltais-Landry et al. 2014), while the inclu-
sion of molecular tools to assess the genomic back-
ground of the microbiota that drive  Porg transfor-
mation is still rare (Ragot et al. 2017; Fraser et al. 
2017).

The rhizosheath is the agglutination of soil par-
ticles around the roots, and is biologically the most 
active fraction of the rhizosphere (Ndour et  al. 
2020). Therefore, in addition to standard soil analy-
ses, assessment of the rhizosheath under field con-
ditions may allow us to improve our understanding 
of how cover crop-microbial interactions affect the 
ecophysiology of P dynamics, also regarding the 
persistence of these changes over time for the sub-
sequent main crop.

The present study aimed to address the ques-
tion of whether the availability of  Porg pools in the 
soil can be increased by cover crops, in particular 
regarding the relevance of the enhancement of the 
abundance and activity of microbes in the rhizos-
heath. These insights could improve our under-
standing of underlying mechanisms regarding the 
potential of P mineralisation as one of the main pro-
cesses for the supply of P to plants. An additional 
aim was to elucidate whether the observed changes 
of the microbial community persist in the soil and 
can still be detected in the rhizosheath of the fol-
lowing main soybean crop, a legume with a moder-
ate capacity for P-acquisition (Belinque et al. 2015; 
Lyu et  al. 2016). These questions were resolved 
by characterising the lability of soil  Porg pools for 
phosphatases (Jarosch et al. 2019) in the cover crop 
rhizosheath. Further, we assessed the role of the dif-
ferent microbial groups as important sources for the 
activity of P-cycling enzymes, and quantified phoD, 
a gene coding for alkaline phosphomonoesterase in 
bacteria.

The present study aimed to test the following 
hypotheses:

The selected cover crops increase labile  Porg 
derived from microbial necromass or rhizodeposi-
tion in their rhizosheath;
Cover crop species differ in their plant–microbe 
interactions, leading to a distinct microbial com-
munity and activity in their rhizosheath;
The cover crops shape their rhizobiome towards an 
increase in beneficial functions, e.g., by enhancing 
the specific enzymatic activity per unit of micro-
bial abundance;
Soybean as a subsequent main crop benefits from 
the increase in labile  Porg and microbial activity by 
the cover crops.

Materials and Methods

Site description

An on-farm field experiment was conducted in 
2016–2017 near Wendelsheim in southwest Germany 
(48.5111°N, 8.9197°E). The soil is a Regosol in an 
region of loess-derived soils (IUSS Working Group 
WRB 2015; Regierungspräsidium Freiburg, Lande-
samt für Geologie, Rohstoffe und Bergbau 2020) 
and has a clayey loam texture with a  pH(CaCl2) of 7.4 
and a soil organic carbon concentration of 18 g  kg−1 
in 0–20  cm. The climate is temperate with a mean 
annual temperature of 8.8ºC and 839  mm precipita-
tion (monitoring station Wetterstation Unterjesingen, 
5.6  km from the site). The field has been managed 
by a farmer under no-till management for around 
12 years and without applying any P-containing fer-
tilizers for the last 20  years. As a consequence of 
stratification, soil organic matter (including  Porg) 
accumulated in the topsoil, while available  Pi was 
probably depleted over the years. Soil P availability 
was low for the region, with an average content of 
resin-extractable P of 16 μg   g−1 at the beginning of 
the experiment. Contrary, total P concentration was 
with 1012 mg  kg−1 rather high.

Experimental design

The crop rotation for the experiment was spring 
barley (Hordeum vulgare var. Avalon)– cover 
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crops– soybean (Glycine max var. Tourmaline). Ferti-
lisers were not applied during the course of the exper-
iment. An overview of soil cover and sampling dates 
is presented in Fig. 1.

The cover crops were grown in plots of 8  m by 
50 m in four randomised complete blocks (in total 16 
plots). Four cover crop treatments were established: 
Fagopyrum esculentum (buckwheat), Sinapis alba 
(mustard) and Phacelia tanacetifolia (phacelia) were 
direct seeded with a row distance of 16 cm in August 
2016 after harvesting the wheat, while the fallow 
treatment was left bare to serve as control. Represent-
ing a common practice among farmers in the region, 
the selected cover crops died at the start of the win-
ter frosts in November/December. Consequently, the 
cover cropped plots were also fallow until soybean 
was sown in March 2017, albeit covered by the plant 
litter.

Soil samples were taken at the following times: 
August 2016, before seeding the cover crops, Novem-
ber 2016, at the end of the growing period of the 
cover crops, March 2017, before seeding the soybean 
crop, and June 2017, in the full soybean stand. In 
November 2016 and in June 2017, in addition to the 
bulk soil samples, the cover crop and soybean rhizos-
heaths were sampled. As, by definition, there were 
no plants in the bare fallow plots in November, there 
was no rhizosheath sampling in the control treatment 
at this time. Later, in June, when soybean was grow-
ing on all plots, its rhizosheath was sampled in all 
treatments.

Bulk soil samples were taken at 0–10  cm depth 
with an auger from around six locations inside each 
plot. For the rhizosheath sampling, 5–10 vigorous 
plants, depending on the size of the rooting sys-
tem, were selected from each plot and dug out in a 
25 × 25 × 10 cm block together with their intact roots 

and transported to the laboratory. The same day, the 
roots were gently separated and the attached soil 
(0–10 mm distance to the root) was removed with a 
toothbrush, resulting in rhizosheath samples. All soil 
samples were sieved at 5  mm and stored at -20ºC 
until analysis.

Plant biomass and P content

The roots and shoots of the cover crop plants sam-
pled for their rhizosheath were separated and dried 
(60ºC for 72 h). The biomass of both compartments 
was determined and subsamples were ball-milled for 
the analysis of C, P and N. Soybean grains were col-
lected after harvest and also analysed for C, P, N by 
dry combustion coupled with an Elemental Analyser 
or ICP-OES, respectively (VDLUFA 1995a, b). Due 
to a communication problem, the soybean yield could 
not be quantified.

Enzymatic availability of organic P pools

To characterise different  Porg forms according to their 
lability for enzymatic degradation, an enzyme-addi-
tion assay was used (Bünemann 2008; Jarosch et  al. 
2015). The assay consists of adding substrate-specific 
enzymes to soil NaOH/EDTA-extracts to hydrolyse 
specific  Porg compounds. The increase in P compared 
with a control sample without added enzymes corre-
sponds to the enzyme-labile  Porg pool in the extract.

Organic P was defined as the difference between 
total P  (Pt) after wet digestion with persulfate (Bow-
man 1989), and molybdate-reactive P (Ohno and 
Zibilske 1991) in the NaOH/EDTA extract. Although 
the residual, molybdate-unreactive P may also include 
other (inorganic) P compounds (Gerke 2010), for the 
sake of simplicity, we considered it  Porg.

Fig. 1  Soil cover, sampling scheme and a view of the field experiment
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For the measurement of the enzymatic availability 
of  Porg, the oven-dried (60ºC for 72 h) and milled soil 
samples were extracted following a 31P-NMR extrac-
tion protocol (Bowman and Moir 1993), shaking for 
16 h with 0.25 M NaOH and 0.05 M EDTA using a 
soil:extractant ratio of 1:10 (w/v). The suspensions 
were centrifuged for 10  min (2000  g) and filtrated 
(Whatman grade 40, ash-free paper). The extracts 
were transferred to transparent 96 well microplates, 
adding substrate-specific phosphatases and MES 
buffer adjusted to pH 5.2 in a final volume of 300 μl 
per well. Four distinct enzymes were used: 20  μl 
acid phosphatase (Sigma P1146, Sigma-Aldrich, St. 
Louis, USA: 50 units diluted in 15 ml  H2O) alone or 
together with 20 μl nuclease (Sigma N8630, Sigma-
Aldrich, St. Louis, USA; 0.167  mg diluted in 1  ml 
H2O), or 40 μl of a fungal phytase (Peniophora lycii, 
Ronozyme NP, Novozyme, Bagsværd, Denmark). 
The enzymes were added to wells containing 40  μl 
NaOH-EDTA extract and MES buffer adjusted to pH 
5.2 with a concentration of 0.2 M in the final volume 
of 300  μl per well. All reagents were prepared with 
autoclaved  H2O. The plates were incubated for 24 h 
at 37ºC, while being horizontally shaken at 40  rpm. 
For the detection of released P, aliquots of 25 μl were 
transferred to another plate with 175 μl of  H2O and 
50 μl of malachite I in each well (Ohno and Zibilske 
1991). After 10 min, 50 μl of malachite II was added 
and the absorbance was measured at 610  nm (HTX 
Synergy, BioTek Instruments, Winooski, USA). For 
each sample, three analytical replicates were analysed 
in separate runs.

The addition of acid phosphomonoesterase alone 
hydrolysed non-phytate-monoesters, for which the 
term “monoesterase-labile  Porg” is  used. The addition 
of phosphodiesterase/nuclease mineralised “diester-
ase-labile  Porg”. Since phosphodiesterase hydrolyses 
only the first of the two ester bonds in diesters, the 
combination with phosphomonoesterase was required 
to produce detectable phosphate. As preliminary tests 
revealed that the fungal phytase acts also as unspe-
cific phosphomonoesterase and mineralises non-
phytate monoesters, the monoesterase-labile  Porg pool 
had to be subtracted from the phosphate released by 
the phytase to obtain the “phytase-labile  Porg

” pool. 
As each of the four field replicates of each treatment 
was analysed in three separate runs, the individual 
analysis run was included as a random effect when 
averaging the analytical replicates.

Microbial biomass P

Phosporus in the microbial biomass  (Pmic) was deter-
mined in fresh soil by hexanol fumigation and simul-
taneous extraction with anion exchange resin mem-
branes (Kouno et al. 1995). For that, 2.5 g dry weight 
of frozen soil was extracted with 20 ml deionised  H2O 
and two resin strips that were charged with 0.5  M 
 NaHCO3. Subsamples received either no treatment 
 (Presin), 1  ml of 1-hexanol  (Phex) or 1  ml of a solu-
tion with a known P content  (Pspike) equal to 25 mg P 
 kg−1 soil. Samples were shaken horizontally for 16 h 
at 150 rpm. Thereafter, the resins were transferred to 
another vial, shaken for 1 h with 1 M HCl to desorb 
the P from the resins and the orthophosphate-P con-
centration was measured colorimetrically at 610  nm 
(Murphy and Riley 1962). Microbial biomass P was 
calculated by

where  Pspike recovery is the fraction of a recov-
ered P spike compared with the untreated  Presin sub-
sample. The  Pspike recovery was calculated for each 
sampling date and soil compartment separately, rang-
ing between 31 and 63%. A  KP-conversion factor to 
account for incomplete extraction of microbial P 
was not applied, since it was not determined for this 
specific soil (Brookes et al. 1982; McLaughlin et al. 
1986).

Potential activity of extracellular enzymes

Potential activities of acid phosphomonoesterase (EC 
3.1.3.2), alkaline phosphomonoesterase (EC 3.1.3.1), 
phosphodiesterase (EC 3.1.4.1) and β-N-acetyl-
hexosaminidase (EC 3.2.1.52) were determined 
using the corresponding compounds with fluorescent 
4-methylumbelliferone based on Marx et  al. (2001), 
modified by Poll et  al. (2006). The substrates were 
obtained all from Sigma–Aldrich (St. Louis, USA), 
except for the phosphodiesterase substrate, which was 
obtained from Carbosynth (Compton, UK).

For the analyses, 1  g of soil was ultra-sonicated 
with 50  J   s−1 for 120  s in 50  ml of deionised  H2O. 
Aliquots of 50  μl of soil suspension, 50  μl buffer 
(0.1  M MES-buffer, pH 6.1) and 100  μl MUF-
4-methylumbelliferyl-substrate dissolved in the buffer 

Pmic =
Phex − Presin

Pspikerecovery
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were pipetted on microplates and incubated at 30°C. 
For alkaline phosphomonoesterase a modified uni-
versal buffer (pH 11) was used (Schinner et al. 1993). 
The increase in fluorescence over time (slope) was 
measured in five 30-min intervals over 180  min at 
360/460  nm on a Microplate Fluorescence Reader 
(FLX 800, Bio-Tek Instruments, Winooski, USA) 
and fluorescence calculated in nmol substrate g dry 
 soil−1  h−1 using a sample-specific standard curve with 
4-methylumbelliferone added to the soil suspension.

Phospholipid and neutral lipid fatty acids

The structure of the soil microbial community was 
characterised by the extraction and analysis of spe-
cific phospholipid fatty acids (PLFA) (Frostegård 
et  al. 1993, modified according to Kramer et  al. 
2013). Fatty acids were extracted from 2  g soil 
(Bardgett et al. 1996), based on the method of Bligh 
and Dyer (1959) and modified by White et al. (1979). 
Fatty acid methyl-esters were stored at -20ºC until 
identification by chromatographic retention time and 
comparison with a standard mixture of qualitatively 
defined fatty acid methyl-esters ranging from C11 
to C20 (Sigma Aldrich, Darmstadt, Germany). Spe-
cific biomarker fatty acids allow the quantification 
of different microbial groups (Ruess and Chamber-
lain 2010; Willers et  al. 2015). The PLFAs i15:0, 
a15:0, i16:0, and i17:0 were used as biomarkers for 
Gram-positive, cy17:0 and cy19:0 for Gram-nega-
tive bacteria. The sum of these fatty acids, together 
with 16:1ω7 and 15:0 can be used as general bacte-
rial biomarkers. The PLFA 18:2ω6,9 was considered 
as biomarker for fungi (Frostegård and Bååth 1996). 
The sum of the bacterial and fungal markers, together 
with the general microbial PLFA 16:1ω5, were used 
as a proxy for microbial biomass.

DNA extraction

DNA was isolated from 380–400 mg rhizosheath and 
bulk soil samples using the FastDNA™ SPIN Kit for 
Soil (MP Biomedicals, Irvine, USA) and the Thermo 
Savant FastPrep® 120 Cell Disrupter (Thermo Sci-
entific, Waltham, USA) according to the manufac-
turer’s instruction. An additional washing step with 

0.5 ml 5.5 M guanidine thiocyanate (Sigma-Aldrich, 
St. Louis, USA) was added to reduce soil contami-
nants. DNA quantity and quality was assessed using 
the NanoDrop™ 2000 spectrophotometer (Thermo 
Scientific, Waltham, USA). The isolated DNA was 
stored at − 20 °C until further analysis. Additionally, a 
negative control of the extraction procedure was per-
formed without soil.

Quantitative real-time PCR (qPCR)

Bacterial 16S rRNA genes were targeted using primer 
pairs 341F (5’–CCT ACG GGA GGC AGC AG–3’) 
and 515R (5’–ATT ACC GCG GCT GCT GGC 
A–3’) (López-Gutiérrez et  al. 2004) For the alka-
line phosphomonoesterase gene (phoD) the primers 
phoD-FW (5’–TGT TCC ACC TGG GCG AYW 
MIA THT AYG–3’) and phoD-RW (5’–CGT TCG 
CGA CCT CGT GRT CRT CCC A–3’) (Bergkemper 
et al. 2016) were used. The bacterial 16S rRNA gene 
was quantified with Power SYBR™ Green PCR Mas-
ter Mix using the 7500 Fast Real-Time PCR System 
(software version 2.3; Applied Biosystems) with a 
standard sequence from Verrucomicrobium spinosum 
(DSMZ 4136) according to protocols given in detail 
in Ditterich et al. (2013).

The qPCR for the phoD gene was performed 
in a reaction volume of 15  µl with 10  pmol·µl−1 of 
each primer, 2.5% (v/v) T4 Gene 32 Protein, and 
5  ng DNA. The thermal profile was optimised to 
following conditions: 10  min at 95  °C, 5 cycles: 
[15 s at 95 °C, 30 s at 65 °C (-1 °C per cycle), 45 s 
at 72  °C], 40 cycles: [15  s at 95  °C, 30  s at 60  °C, 
45 s at 72 °C, 30 s at 81 °C (measurement of fluores-
cence)]. The standard sequence for phoD originates 
from Bradyrhizobium japonicum. A PCR amplicon 
was obtained with the primers phoD-FW and phoD-
RW using genomic DNA from the host strain prior to 
ligation into the vector pCR®-Blunt and cloning in E. 
coli competent cells. The purified plasmid was trans-
formed into E. coli JM109 (Promega, Madison, USA) 
to obtain the final strain for standard preparation. The 
insert sequence was confirmed by Sanger-sequencing 
(GATC Biotech, Ebersberg, Germany). A tenfold 
serial dilution of the standard, ranging from  101–108 
copies·µl−1, was used for quantification. Amplifica-
tion efficiency was accepted when exceeding 85%.
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Statistical analyses

To account for the complete block design with sam-
pling date and soil compartment (rhizosheath vs bulk) 
as repeated measurements, we used linear mixed 
models with block and the interaction of cover crop 
treatment, soil compartment and date as fixed effects, 
and block x soil compartment and block x date as ran-
dom effects (Piepho et  al. 2003). The models were 
fitted using the package lme4 v1.1–26 (Bates et  al. 
2015), in R v3.5.0 (R-Core Team 2013) and R-Studio 
v1.1.453 (RStudio 2013) and reduced by elimination 
of the random effects with a standard deviation of 
0. The residuals were checked using Q-Q-plots and 
histograms (Schützenmeister et  al. 2012; Kozak and 
Piepho 2018) and log or square root transformation 
was applied where appropriate. The complete R code 
along with the structure of the fitted models and the 
F-tests is provided in Supplementary Material 2 and 
3. The following packages were used in the analy-
ses: here v1.0.1 (Müller 2020), readxl v1.3.1 (Wick-
ham and Bryan 2018), writexl v1.3.1 (Ooms 2020), 
plyr v1.8.6 (Wickham 2011), kableExtra v1.3.4 (Zhu 
2021), stringi v1.5.3 (Gagolewski 2018), tidyverse 
v1.3.0 (Wickham et al. 2019), cowplot v1.1.1 (Wilke 
2017) as well as RColorBrewer v1.1–2 (Neuwirth 
2014) and viridis v0.5.1 (Garnier 2018), pbkrtest 
v0.5.1 (Halekoh and Højsgaard 2014) and LmerTest 
3.1–3 (Kuznetsova et al. 2017). The figures were pro-
duced with estimated means using emmeans v1.5.4 
(Lenth 2018) and multcomp v1.4–16 (Hothorn et  al. 
2008).

Results

Crop biomass and nutrient content

Mustard produced by far the most biomass of any 
cover crop (6500 and 1300  kg   ha−1 shoots and 
roots, respectively) and, with a P concentration of 

Fig. 2  Cover crop shoot and root parameters: a) plant bio-
mass; b) phosphorus (P) concentration and c) plant P con-
tent. Displayed are the estimated marginal means of the four 
field replicates; error bars indicate the modelled 95% CI. The 
underlying data is provided in Supplementary Material 1, the 
structure of the fitted models and the F-tests in Supplementary 
Material 2 and the complete R code in Supplementary Mate-
rial 3

▸



 Plant Soil

1 3
Vol:. (1234567890)

2.5 and 1.8 g   kg−1 in shoots and roots, respectively, 
cycling around 18  kg P  ha−1 through its total bio-
mass (Figs.  2a-c). Phacelia produced less biomass, 
but exhibited a higher P concentration in its shoots. 
Buckwheat produced the smallest amount of biomass 
of the three cover crops and had the lowest shoot P 
concentration, resulting in only 2.7 kg P  ha−1 cycled 
through the plant biomass.

The P concentration of harvested soybean grains 
was not significantly changed and tended to slightly 
decrease by the cover crops and there were no differ-
ences among the tested cover crop species (Fig. S4).

Soil P pools.
Organic and inorganic P pools were assessed in 

the rhizosheath of the cover crops and in the fallow 
control in November 2016. For the interpretation 
of the effects of cover crops on soil P turnover, it is 
necessary to outline the soil P status. Generally, total 
P ranged from 922 to 1384  mg   kg−1 soil (Fig.  3a). 
Organic P prevailed, with  Pi accounting for only 
around 25% of the total P concentration. Between 
174–328  mg P  kg−1 soil (representing around 30% 

of the  Porg) could be mineralised by added enzymes. 
Of the added enzymes, phytase released the greatest 
amount of phosphate, more than the sum of the phos-
phomonoesterase- and phosphodiesterase-labile pools 
(Fig. 3b).

The enzyme-labile  Porg pools tended to be higher 
in the rhizosheath of cover crops compared with the 
fallow control (Fig.  3b). This was most evident for 
total enzymatically-available  Porg and its compo-
nents monoesterase-labile  Porg, and diesterase-labile 
 Porg. The rhizosheath P pools showed no differences 
among the tested cover crop species.

In general,  Presin, representing the water-soluble read-
ily-available P pool, showed no consistent shift in the 
cover crop rhizosheath in November, but was affected by 
the plant species(Fig. S5, Supplementary Table S6). In 
June of the following year, we detected a strong positive 
effect of the growing soybean crop on  Presin in the rhizos-
heath. However, despite overall slightly higher values 
in the plots where cover crops had been grown over the 
winter, under soybean there were no differences among 
the cover crop species.

Fig. 3  Soil phosphorus (P) pools in rhizosheath soil of 
buckwheat, mustard and phacelia as cover crops and bulk 
soil of the fallow control: a) inorganic, enzyme-stable 
organic P  (Porg) and enzyme-labile  Porg in NaOH-EDTA 
soil extracts; b) detailed characterisation of the enzyme-
available  Porg available for phosphodiesterase, phosphomo-
noesterase and fungal phytase [µg P  g−1 soil). The enzyme 
addition assay was conducted with rhizosheath samples 
of the cover crops and bulk soil of the fallow control in 

November 2016. The bars represent the estimated marginal 
means of the four field replicates, the error bars the 95% 
CI. Letters indicate significant differences by Tukey HSD. 
In the legend, the p-value for the main effect of the cover 
crop treatment is given (n.s. = not significant). The under-
lying data is provided in Supplementary Material 1, the 
structure of the fitted models and the F-tests in Supplemen-
tary Material 2 and the complete R code in Supplementary 
Material 3
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The recovery of an added phosphate spike increased 
in the rhizosheath of cover crops and decreased in 
the rhizosheath of soybean (Fig. S7, Supplementary 
Table S6) compared to bulk soil, but the variability was 
generally high.

Microbial P was increased in the rhizosheath of cover 
crops compared with that in the bulk soil, but we detected no 
differences among the plant species (Fig.  4, Supplementary 
Table  S6). We also found large increases of microbial P in 
the rhizosheath compared with that in bulk soil in June under 
soybean.

Microbial community structure

The abundance of PLFA biomarkers for Gram-posi-
tive and Gram-negative bacteria was enhanced in the 
rhizosheath of cover crops in November (Figs. 5a + b, 
Supplementary Table S6) compared with that in the 
surrounding bulk soil or the fallow control. The dif-
ferent cover crops had apparently little influence on 
the bacterial abundance in the rhizosheath and we 
found no effect in the bulk soil. In June under soy-
bean, bacterial PLFA were also increased in the 
rhizosheath, but not in the bulk soil. The abundance 
of fungal PLFA was markedly increased in the rhizos-
heath of the cover crops in descending order of buck-
wheat > phacelia > mustard (Fig. 5c). In the phacelia-
cropped plots, this increase was also found in the bulk 
soil in November.

In the soybean rhizosheath, fungi were increased 
relative to the surrounding bulk soil. Under soybean, 
fungal biomass tended to be higher in the plots where 
formerly phacelia had been grown, but fungal abun-
dance in the other plots had returned mostly to back-
ground levels.

The abundance of bacterial 16S rRNA genes per 
gram soil and the phoD gene, coding for alkaline 
phosphomonoesterase, assessed in November, were 
more abundant in the rhizosheath of the cover crops 
than in the bulk soil (Figs S8 and S9).

Microbial activity

Potential enzyme activities were higher in the 
rhizosheath of cover crops than in the bulk soil 
(Figs.  6a-d, Supplementary Table  S10). The cover 
crops showed different activities of β-N-acetyl-
hexosaminidase and acid and alkaline phosphomo-
noesterase in the following order: buckwheat > mus-
tard > phacelia, but this trend was not significant for 
the the P-cycling enzymes. A positive rhizosheath 
effect was also found under soybean. The legacy 
effects of the cover crops were not straightforward, 
with the enzyme activities generally in the order 
phacelia > mustard = control > buckwheat.

The specific enzyme activity per  Pmic of aka-
line phosphomonoesterase and phosphodies-
terase (Figs S11b + c) was lower in the rhizos-
heath than in the bulk soil, while the specific acid 

Fig. 4  Microbial biomass 
phosphorus (P) in μg P  g−1 
bulk (black) and rhizos-
heath (white) soil of the 
cover crop treatments over 
the course of the experi-
ment. Displayed are the 
estimated marginal means 
of the four field replicates; 
error bars indicate the 
modelled 95% CI. The 
underlying data is provided 
in Supplementary Material 
1, the structure of the fitted 
models and the F-tests in 
Supplementary Material 2 
and the complete R code in 
Supplementary Material 3
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phosphomonoesterase activity was not influenced by 
soil compartment (Fig. S11a).

Correlation of microbial community structure and 
function

The abundance of phoD copies per g soil was posi-
tively correlated with alkaline phosphomonoester-
ase activity (Fig.  7a, R2 = 0.39, p < 0.001) and the 
abundance of bacterial PLFAs (Fig.  7b, R2 = 0.42, 
p < 0.001). Alkaline phosphomonoesterase activ-
ity was positively correlated with bacterial PLFAs 
(Fig.  7c, R2 = 0.29, p < 0.001). The abundance of 
phoD was positively correlated with the abun-
dance of 16S rRNA under mustard and buckwheat, 
but not under phacelia or in the control (Fig.  7d, 
 pcover crop = 0.046). The β-N-acetyl-hexosaminidase 
activity was strongly correlated with fungal abun-
dance in the rhizosheath, but not at all in the bulk 
soil (Fig. S12,  R2 = 0.6 and 0.0003, p < 0.001 and 0.9, 
respectively).

The potential activities of acid phosphomo-
noesterase and phosphodiesterase were positively 
correlated with their corresponding labile  Porg pools 
(Figs.  8a + c), while alkaline phosphomonoesterase 
activity showed no significant correlation with  Porg 
available for added phosphomonoesterase (Fig. 8b).

Discussion

In this study, we compared soil microbial proper-
ties of three cover crops and their effects on soy-
bean regarding soil P pools and P-cycling potential. 
In the rhizosheath of the cover crops, we observed 
an increased abundance of enzyme-labile  Porg, as 
well as microbial abundance (PLFAs,  Pmic, 16S 
rRNA, phoD) and enzyme activity relative to that 

in the bulk soil. Differences among the cover crop 
species were limited to the abundance of Gram-
negative bacteria and fungi, as well as N-acetylhex-
osaminidase activity. Fungal abundance was cor-
related with the activities of phosphatases, which 
likely played an important role in the cycling of 
 Porg. We observed only a little influence of cover 
crops on bulk soil or the subsequent soybean crop.

Soil P pools in the cover crop rhizosheath

The characterisation of soil  Porg pools as a poten-
tial pool for plant nutrition was one of the principal 
objectives of this study. The amount of total P, and 
particularly  Porg, in the field, was rather high com-
pared with the values reported in a review by Harri-
son (1987), despite the absence of P fertilization for 
over 20  years. This may be attributed to soil type, 
stratification and fertilisation in previous times. Con-
sidering their proportion in the P pools, organic P 
forms likely play an important role in soil P dynamics 
at this site which might also be the result of the long-
term no-till management (Tiecher et al. 2012). This is 
reflected by the concentration of enzyme-labile  Porg, 
quantified in the enzyme addition assay, which was 
high in comparison with the values found by Jarosch 
et al. (2015). The large enzyme-labile  Porg pool indi-
cates a high potential for soil microorganisms to have 
access to this fraction. The large concentration of  Porg 
was responsible for these high absolute pool sizes, 
as the proportion of enzymatically available  Porg of 
the total  Porg was similar to that in other arable soils 
(Jarosch et al. 2015). In summary, the soil contained 
little  Pi, and the  Porg pool was remarkably large with a 
typical proportion of mineralisable  Porg.

The quantity of enzyme-labile  Porg in the rhizos-
heath of the cover crops was increased by about 25% 
compared with fallow bulk soil, driven mainly by the 
increases in monoesterase- and diesterase-labile  Porg 
pools. The P pools were the same among the cover 
crop species. In November, when the sampling was 
carried out, buckwheat had already been killed by 
frost several nights before, while mustard and phace-
lia were reaching the end of their growing period. It is 
possible that rhizodeposits or dead roots contributed 
to the enzyme-labile  Porg fraction. However, since we 
did not find a plant-specific effect, we expect that this 
effect was small.

Fig. 5  Abundance of microbial groups: a) Gram-positive bac-
teria [PLFAs i15:0, a15:0, i16:0, and i17:0], b) Gram-negative 
bacteria [PLFAs cy17:0 and cy19:0], and c) saprotrophic fungi 
[PLFA 18:2ω6,9] in nmol of fatty acids per gram bulk (black) 
and rhizosheath (white) soil of the cover crop treatments over 
the course of the experiment. Displayed are the estimated mar-
ginal means of the four field replicates; error bars indicate the 
modelled 95% CI. The underlying data is provided in Supple-
mentary Material 1, the structure of the fitted models and the 
F-tests in Supplementary Material 2 and the complete R code 
in Supplementary Material 3
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Fig. 6  Potential activities 
of extracellular enzymes: 
a) acid phosphomo-
noesterase; b) alkaline 
phosphomonoesterase; c) 
phosphodiesterase and d) 
β-N-acetyl-hexosaminidase 
in nmol (MUB = fluores-
cent methylumbelliferone) 
product per gram dry soil 
per hour in bulk (black) 
and rhizosheath (white) soil 
of the cover crop treat-
ments over the course of 
the experiment. Displayed 
are the estimated marginal 
means of the four field 
replicates; error bars show 
the modelled 95% CI. The 
underlying data is provided 
in Supplementary Material 
1, the structure of the fitted 
models and the F-tests in 
Supplementary Material 2 
and the complete R code in 
Supplementary Material 3
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The prediction of a rhizosheath effect on the deple-
tion/accumulation of P in low-P soils is not trivial 
(Hinsinger 2001), and much less so for the abundance 

of mineralisable  Porg. The rhizosheath with its higher 
enzyme activity (and mineralisation rate of  Porg) 
might have made us expect a lower abundance of 

Fig. 7  Relation of the measured potential alkaline phospho-
monoesterase activity with phoD, coding for alkaline phos-
phomonoesterase (a); bacterial PLFA with phoD (b); bacterial 
PLFAs with alkaline phosphomonoesterase activity (c); and 
abundance of the bacterial gene phoD with the abundance of 
bacterial 16S (d). MUB = Methylumbelliferone, corresponding 
to product of hidrolysis. Figure (c) has more data points than 

the other figures, because enzyme activity and PLFA were 
assessed at all sampling dates, while phoD abundance was 
quantified only in November. The underlying data is provided 
in Supplementary Material 1, the structure of the fitted models 
and the F-tests in Supplementary Material 2 and the complete 
R code in Supplementary Material 3

Fig. 8  Relation of measured potential enzyme activities of a) 
acid phosphomonoesterase, b) alkaline phosphomonoesterase 
and c) phosphodiesterase the corresponding enzyme-labile 
organic phosphorus (P) (amount  Porg mineralised by the addi-
tion of phosphomonoesterase or phosphodiesterase in the 

enzyme addition assay). The underlying data is provided in 
Supplementary Material 1, the structure of the fitted models 
and the F-tests in Supplementary Material 2 and the complete 
R code in Supplementary Material 3
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enzyme-labile  Porg. On the other hand, it is possible 
that a substantial amount of the detected enzyme-
labile  Porg was derived from the necromass of soil 
microorganisms. The addition of C sources to soil 
may increase organic P forms, even without addition 
of inorganic P (Bünemann et al. 2008) and the use of 
rhizodeposits as C sources by microorganisms can be 
expected to follow similar mechanisms (Aerts et  al. 
1992). The detected increases of  Pmic support this, 
but are not unequivocal proof, because the method we 
used for quantification detects P, and not specifically 
 Porg in the microbial biomass (Kouno et al. 1995).

The pools of enzyme-labile  Porg were positively 
correlated with their corresponding enzymes in the 
case of acid phosphomonoesterases and phosphodies-
terase, but not for alkaline phosphomonoesterase. In 
other studies, phosphodiesterase activity correlated 
better with the availability of its substrate (Jarosch 
et al. 2019; Hallama et al. 2021) than acid phospho-
monoesterase, while alkaline phosphomonoesterase 
has not yet been compared with the phosphomo-
noesterase-available pool. In accordance with this, 
Spohn and Kuzyakov (2013) concluded that alkaline 
phosphomonoesterase is not related to rhizodeposits. 
One reason for these results might be that microsite 
conditions around roots with exudation of carboxy-
lates and protons could decouple the alkaline phos-
phomonoesterase activity from the availability of its 
substrate.

The microbial community structure and functional 
potential in the rhizosheath of cover crops

The results of  Pmic, microbial PLFAs and 16S rRNA 
show that the microbial abundance in the rhizosheath 
of cover crops was increased by a factor of 2.2, 1.9 
and 1.7 respectively, compared with values of the 
bulk soil. This rhizosheath effect corresponds to most 
other results of the assessed microbial properties, 
i.e. enzyme activity, and we suggest that microbial P 
cycling was responsible for the increased availability 
of the organic P pools.

Fungi seemed to be promoted most by cover crops, 
both in the rhizosheath and in the bulk soil, result-
ing in a persistent shift of the microbial community 
structure. Overall, the increase of fungal biomass 
in the rhizosheath of cover crops followed the order 
buckwheat > phacelia > mustard. Soil fungi report-
edly respond to cover cropping and are sensitive to 

the plant species grown (Benitez et al. 2016). In our 
experiment, for phacelia the increase of fungal bio-
mass could even be detected 30 weeks later under the 
main soybean crop. This prominent effect on sapro-
trophic fungi is likely connected with the particular 
capacities of the members of this kingdom. Their 
hyphal network allows fungi to connect islands of 
available nutrients (Ritz 1995) and water (Guhr et al. 
2015), as well as enhance internal recycling and 
relocation of nutrients. These abilities of fungi are 
especially pronounced in heterogeneous soils such 
as under long-term no-till management (Young and 
Ritz 2000). The general conditions of the studied field 
harboured a potential for fungal growth that material-
ised in the rhizosheath of cover crops with the input 
of easily-available rhizodeposits, leading to a large 
increase in fungal biomass and turnover. An observed 
enhancement of fungal abundance with cover crops 
was also found in other studies (Benitez et al. 2016) 
and is especially interesting in view of a potential for 
increased soil C storage (Six et  al. 2006) and other 
ecosystem functions (Frąc et  al. 2018). Our results 
suggest that the trend towards bacteria-dominated 
soil ecosystems in more conventional agroecosys-
tems (Frey et al. 1999) can be reversed with the use of 
appropriate agricultural management techniques (e.g., 
no-till and cover cropping).

The increases in fungal abundance involve an 
enhanced turnover of their biomass. Fungi are the 
main producers of N-acetylhexosaminidase in soils, 
using this enzyme for the internal recycling of the 
chitin contained in their cell walls. The large increase 
in the rhizosheath indicates a fast turnover and quick 
metabolism of fungal hyphae in this soil compart-
ment (Staddon et al. 2003), probably mainly by fungi 
(Miller et al. 1998). During the turnover of microbial 
biomass, the contained nutrients are released into the 
soil solution and can become temporarily available 
for plants (Bünemann 2015).

It is often assumed that plants shape their rhizo-
biome to a certain extent and that this maximises 
benefits in terms of ecosystem function, and there 
is indeed evidence to support this contention (Sasse 
et al. 2018). However, the present results support the 
notion that the observed increase in 16 involves a gen-
erally enhanced microbial abundance, as we did not 
find a specific enrichment of specific microbial func-
tions (i.e. potential enzyme activity or phoD abun-
dance per microbial biomass), despite having used 
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phylogenetically very different plant species. The 
combined assessment of bacterial phoD, correspond-
ing to the genetic potential for the production of alka-
line phosphomonoesterase, and bacterial 16S rRNA, 
together with enzyme activities and PLFA data allow 
us to examine the relation among these variables. We 
had expected a specific enrichment of a phoD–har-
bouring population of bacteria in the rhizosheath (i.e. 
more phoD copies per bacterial 16S rRNA copies) 
(Figs. 7b and d), an increased expression of the gene 
(i.e. more alkaline phosphomonoesterase activity 
per phoD) (Fig. 7a), or an increased specific enzyme 
activity per unit of microbial abundance (Figs. 7c and 
S11b), as plants would benefit from the increased 
mineralisation potential. However, there was no effect 
of soil compartment on the correlation between phoD 
and bacterial PLFA or phoD and alkaline phospho-
monoesterase. This suggests a general effect of an 
increased bacterial abundance being responsible 
for the observed enzyme activity in the rhizosheath. 
However, the relation could still be more complex. It 
needs to be borne in mind that phoD is quite ubiqui-
tous among different microbial groups (Bergkemper 
et al. 2016) and our primers did not target fungal or 
archaeal phoD. Also, there are other genes that code 
for alkaline phosphomonoesterases, such as phoX 
(Ragot et al. 2017). Although the rhizosheath appar-
ently had little effects on specific phoD gene abun-
dance or expression, the observation that cover crop 
species affect the concentration of phoD per bacte-
rial 16S rRNA (Fig. 7d) deserves further attention in 
future studies.

The interpretation of the results of the phoD gene 
is supported by the specific activity of phosphatases 
(the enzyme activity per unit of microbial biomass, 
here  Pmic). Microbial activity, as well as microbial 
abundance was higher in the rhizosheath. The specific 
enzyme activities per µg  Pmic of alkaline phosphomo-
noesterase were lower in the rhizosheath than in bulk 
soil (Fig S11b). Lower specific activity in the rhizos-
heath following the general increase of the microbial 
biomass makes sense in that not all microbes that 
benefit from the availability of rhizodeposits con-
tribute equally to enzyme production. Notably, there 
were no significant rhizosheath effects for the spe-
cific activity of acid phosphomonoesterase, possibly 
because the plant roots themselves act as a substantial 
source of this enzyme (Tadano and Sakai 1991).

Cover crop roots and extension of the rhizosheath

Cover crops improve P availability through the 
cycling of P through their biomass (biomass path-
way), the enhancement of the soil microbial com-
munity (microbial pathway) and the mining of spar-
ingly-available P forms (biochemical modification 
pathway). The plant biomass P pathway is quite 
easily evaluated by measuring the P content of the 
cover crop biomass, at least when C:P and miner-
alisation rates are favourable (Damon et  al. 2014). 
High plant yields would provide the greatest ben-
efit, as cover crop biomass varies more among plant 
species than P concentration.

When it comes to soil-related processes (i.e. uti-
lisation of soil P pools), the issue becomes more 
complex. Regarding the soil microbial pathway, the 
P contained in the microbial biomass constitutes an 
important pool for plant uptake (He et al. 1997), but 
also microbial activity and  Porg availability are fac-
tors to consider. Even when only quantifying pool 
sizes, calculations of kg per ha values are ham-
pered by the large differences between rhizosheath 
and bulk soil. Without an estimation of the specific 
rhizosheath volume and more information about its 
compartments, as can be obtained, e.g., with X-ray 
tomography (Vetterlein et al. 2020), it is not possi-
ble to quantitatively compare the different pathways 
of the potential cover crop-derived P benefit for the 
main crop under field conditions.

Although buckwheat might have had a nota-
ble effect on microbial properties and P pools in 
its rhizosheath, the plants had a small root bio-
mass and, consequently, the proportion of rhizos-
heath volume in relation to the total bulk soil was 
very small in comparison with that of the other 
cover crops. This could explain the trend of a lower 
microbial abundance and activity after buckwheat 
compared with those after phacelia and mustard. 
Therefore, to assess the effect of cover crops on 
the following main crop, not only the magnitude of 
change in their rhizosheath needs to be considered, 
but also the size of the rhizosheath (Nannipieri et al. 
2008). In addition to being affected by root biomass, 
rhizosheath volume depends on root architecture 
(root length density) and the distribution of roots 
(Honvault et al. 2020). When exclusively consider-
ing root morphology, mustard’s rhizosheath might 
be underestimated in terms of rhizosphere-driven 
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changes on a field soil, because of its abundant root 
hairs and release of root exudates, which is common 
for Brassicaceae (Marschener 1998; Dechassa et al. 
2003) and affect the size of the rhizosheath (Ndour 
et al. 2020; Burak et al. 2021). Moreover, their large 
shoot and root biomass and substantial rhizodepos-
its (Hunter et al. 2014) might outweigh their “unfa-
vourable” root architecture. It may be time to revisit 
the widespread conception that Brassicaceae do not 
interact strongly with the microbial community, an 
idea that may be biased by their non-mycorrhizal 
nature.

The present matters: soybean roots dominate the soil, 
rather than preceding cover crops

The changes observed in the cover crop rhizosheath 
were rather transient and did not carry over to the 
main soybean crop, with the notable exception of 
fungal abundance. There are reports of cover-crop-
induced changes of the microbial community in the 
main crop rhizosheath using molecular methods 
(Maul et  al. 2014; Ortega et  al. 2021). However, in 
the present experiment the microbial properties in 
the soybean rhizosheath were dominated by the 
growing soybean roots, and to a lesser extent by the 
winter cover crops that were growing on the plots 
before. The ecological concept of “hot spots and hot 
moments”, coined by McClain et  al. (2003) is use-
ful to classify the importance of observed changes in 
the cover crop rhizosheath for the agroecosystem. In 
the present case, the magnitude and/or durability of 
the changes induced by the cover crop were not large 
enough to affect the soil ecosystem as a whole or the 
new hot spots around soybean roots. In grasslands, 
the observed mechanisms would probably be more 
important due to the permanent plant cover (Kandeler 
et al. 2006). Root turnover depends on climate, spe-
cies and root diameter, with an estimate for temperate 
grasslands at a similar latitude as the present experi-
mental field of around 0.4–0.6  yr−1 (Gill and Jackson 
2000).

The effects of cover crops on soil microbes and 
nutrient cycling likely depend on the starting point 
and crop management. In soils with abundant micro-
bial communities such as the present field with a long 
history of no-till management, cover crops might 
not enhance the microbial community further, while 
for biologically poorer systems (i.e. minimum vs 

conventional tillage) the relative gain could be greater 
(Balota et al. 2014). However, when comparing sys-
tems, the opposite can also be observed, with conven-
tional tillage obtaining the greatest relative improve-
ment (Wittwer et al. 2017).

Soybean belongs to Fabaceae, a family in which 
many species reduce the pH of the rhizosheath associ-
ated with N fixation (Hinsinger et al. 2003) and some 
release carboxylates and increase plant-available P 
fractions (Nuruzzaman et al. 2006). The expression of 
this mechanism is supported by the decreased P-sorp-
tion capacity in the rhizosheath of soybean  (Prec, 
Fig.  S7), associated with an increased concentration 
of plant-available phosphate  (Presin, Fig.  S5). This 
biochemical rhizosheath modification might involve a 
close interaction with the microbial community, but 
this is not necessarily the case (Weisskopf et al. 2006; 
Spohn and Kuzyakov 2013).

Soybean performance

The field where the experiment was conducted was 
selected because of expected large effects of cover 
crops on main crop nutrition due to a low concentra-
tion of available P. The P concentration of the soybean 
grains in this experiment was in the lower range of val-
ues reported by Xie et al. (2017), but soil P availabil-
ity was probably not the most important limiting factor. 
Agronomically, the main crop did not benefit from the 
preceding cover crops in terms of P concentration. This 
absence of a positive effect on the main crop makes it 
difficult to draw conclusions about the relative impor-
tance of the pathways of P benefits outlined in the intro-
duction. In the present study, the plant biomass pathway 
was apparently not very important, as the considerable 
amount of P cycled through the mustard biomass did 
not affect soybean P concentration. A shorter timespan 
between cover crop death and sowing of the main crop 
might have improved the synchronisation of P release 
from the plant litter (Damon et al. 2014) This highlights 
the dependence of cover crop results on management 
(Wittwer et al. 2017) and site conditions (Blanco-Can-
qui et al. 2015), while the potential of enhanced P-trans-
formation in agroecosystems by increasing above- and 
belowground biodiversity might require time to unfold 
(Oelmann et al. 2021). A fact that could be relevant for 
the (agronomic) results of this study is that the main 
crop was a legume and the cover crops were not. A dif-
ferent combiation with a (non-legume) main crop might 
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well have had greater benefits from the cover crops 
(Tonitto et al. 2006).

Conclusions

This on-farm experiment evaluated the correlation 
between the availability of  Porg, the microbial com-
munity and P-cycling enzymes in the bulk and rhizos-
heath soil of buckwheat, mustard and phacelia as cover 
crops and in the following soybean crop on a soil low 
in plant-available  Pi, but with abundant  Porg. Our find-
ings confirm our first hyptothesis, as cover crops greatly 
enhanced the amount of enzymatically-available  Porg, as 
well as microbial abundance and activity in their rhizos-
heath, showing a potential to increase the cycling of 
 Porg. Our second hypothesis was not confirmed, as the 
fact that most microbial properties did not differ greatly 
among the tested cover crop species indicates that the 
sheer presence of a living plant was more important 
than the nature of the species. However, in an experi-
ment with a longer duration, the impact of several suc-
cessive cycles with the same cover crop probable would 
have produced a larger impact on P cycling.

The large effects of cover crop species on fungi 
indicate that the potentially important role of fungi 
in P cycling deserves more attention. This is to be 
understood in the context of our observation that cur-
rently in the scientific community there seems to be 
more attention on the development of sophisticated 
methods targeting bacteria, rather than fungi or other 
soil biota.

We found no evidence for a specific enrichment of 
microbes providing beneficial functions such as an 
overproportional increase of a phoD-harbouring bacte-
rial populations or the specific enzyme activity per unit 
of microbial biomass. Contrary to our third hypothe-
sis, the observed increases in microbial function in the 
rhizosheath of cover crops might therefore be related 
more to an overall increase of the microbial abundance 
and its turnover due to the availability of rhizodeposits 
than to specific shifts of the microbial community.

The observed cover crop-induced changes to bac-
terial abundance and activity of several P-cycling 
enzymes were spatially and temporally restricted 
and, contrary to our fourth hypothesis, soybean grain 
P concentration was not affected by cover cropping. 
The differentiation between the rhizosheath and 
bulk soil indicates that the rhizosheath volume (i.e. 
root density and architecture) needs to be taken into 

account when estimating potential cover crop effects. 
For future studies, it is recommended to consider the 
three dimensional heterogeneity of P cycling pro-
cesses and soil microorganisms in the bulk soil and 
the rhizosphere.

It is important to bear in mind that the current 
management of the field without application of any 
fertilisers, but nutrient export with harvest, repre-
sents a form of P-mining that can only be sustained 
during a limited timespan until the sparingly-avail-
able P reserves will become exhausted. However, to 
decrease pressure on the limited mineable P reserves 
and reduce environmental hazards from the overap-
plication of fertilisers, it might be worth to investigate 
the management options to extend this period.

In summary, we confirmed that cover crops can be 
used to locally modify plant-available P pools, and 
their enhanced rhizobiome affects different functions 
involved in P cycling. Organic P is an important com-
ponent of the cycling of terrestrial P, and should be 
taken more into consideration.
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