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Abstract

Older adults experience a higher prevalence of multiple chronic conditions

(MCCs). Establishing the presence and pattern of MCCs in individuals or

populations is important for healthcare delivery, research, and policy. This

report describes four emerging approaches and discusses their potential appli-

cations for enhancing assessment, treatment, and policy for the aging popula-

tion. The National Institutes of Health convened a 2-day panel workshop of

experts in 2018. Four emerging models were identified by the panel, including

classification and regression tree (CART), qualifying comorbidity sets (QCS),

the multimorbidity index (MMI), and the application of omics to network med-

icine. Future research into models of multiple chronic condition assessment

may improve understanding of the epidemiology, diagnosis, and treatment of

older persons.
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INTRODUCTION

Older adults experience a higher prevalence of multiple
chronic conditions than having a single condition in iso-
lation.1 Establishing the presence and pattern of MCCs in
individuals or populations has importance for clinicians,
researchers and health policy makers. For example,
researchers studying the determinants or effects of MCCs
need valid, comprehensive measurement instruments.
Health policy makers require valid indices to evaluate
programs and quality of care for these complex and vul-
nerable patients. Finding the most appropriate MCC
measure or instrument can be challenging because,
although many are available, each has limitations.2 For
example, often only a relatively narrow range of chronic
conditions is captured in many existing MCC measures.

To assess MCCs, researchers and clinicians have
relied on five major data sources: medical records and
clinical assessments, administrative claims data, public
health surveys, patient reports, and electronic health
records (EHRs) (the last with the potential to merge the
other sources).2 Selection of appropriate data sources and
instruments for MCC measurement should be guided by
the purpose for which MCCs is being assessed. For exam-
ple, MCCs may be measured to describe the overall
health of a population or subpopulation, or to assess risk
of mortality, hospitalization, disability, or other impor-
tant outcomes in populations or individuals. We previ-
ously summarized several of the instruments or tools that
have been developed to measure MCCs for these pur-
poses and using one or more of these data sources.2 Limi-
tations of some instruments include failure to capture
undiagnosed or rare conditions, which are not part of
diagnostic lists; not assessing illness severity or stage; and
having weak clinical specificity. Patient reports also are
subject to potential recall and social desirability biases,
and low-literacy populations may be less able to accu-
rately report their health conditions. Especially for clini-
cians, assessing MCCs can be important for identifying
patients in need of extra care or support; one tool devel-
oped for this purpose is the Care Assessment Need
(CAN) score that is used in the Veterans Administration
healthcare system.3 CAN and similar scores also may be
used by payors to adjust payments for more complex
patients requiring more involved care, such as those with
MCCs.4

METHODS

A special 2-day expert workshop on the measurement of
MCCs was sponsored by the National Institutes of Health
in the Fall of 2018. A planning committee consisting of

scientific staff from the Office of Disease Prevention
(ODP), National Institute on Aging (NIA), National Can-
cer Institute (NCI), National Institute for Minority Health
and Health Disparities (NIMHHD), and Office of Behav-
ioral and Social Sciences Research (OBSSR), invited 40
experts from academic medical centers, healthcare insti-
tutes and departments, who held MDs, PhDs or MPHs
and were acknowledged for their research and experience
about MCCs, multimorbidity, comorbidity and their mea-
surement. The experts were drawn from several fields
and specialties, including internal medicine, family medi-
cine, geriatrics and gerontology, pediatrics, epidemiology,
public health, health scientist administration, nutrition
science, health statistics, informatics and systems biology,
behavioral medicine and clinical health psychology. Sci-
entific staff from NIH, Agency for Health Research Qual-
ity, the Centers for Disease Control, and Center for
Medicare and Medicaid Services also participated. The
workshop involved individual presentations, instrument
review, Q&A, and extensive discussion. Conclusions and
guidance were determined by verbal agreement among
those present.

Key points

• New approaches are needed to better under-
stand multiple chronic conditions (MCCs) in
older adults.

• Machine learning, multivariate matching, deci-
sion algorithms, and omics (genomics, trans-
criptonomics, proteomics, and metabolomics)
and their application to the study of MCCs are
described.

• These approaches can improve identification of
population subgroups at risk for MCCs, bench-
mark the care of MCC patients for quality
improvement, and describe the intersections
and multi-layered genomic, biologic, and
behavioral pathways resulting in
multimorbidity.

Why does this paper matter?

The prevalence of multiple chronic conditions
(MCCs) and the challenges they pose for older
persons have motivated the development of four
emerging approaches for MCC assessment to
improve the precision and comprehensiveness of
epidemiology, diagnosis, and treatment.
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One report arising from the workshop reviews avail-
able instruments.2 A second report describes research
needs and gaps related to MCC/multimorbidity assess-
ment.5 A segment of the workshop devoted to emerging
approaches to improve the validity, reliability, generaliz-
ability, and breadth of assessment of multimorbidity was
not addressed in either of the prior reports. The present
article describes four emerging measurement approaches
that were highlighted at the workshop, and discusses
their potential applications for improving prevention,
treatment and policy for the aging population.

RESULTS

Four emerging approaches for measuring MCCs were
identified in individual presentations, group discussion,
and verbal agreement. Each approach is defined and dis-
cussed below (see Table 1).

Classification and regression tree analysis

Most studies of MCCs have analyzed outcomes in rela-
tion to one condition at a time. However, chronic condi-
tions often co-occur, and their impact relative to the
outcome(s) of interest may vary depending on the indi-
vidual's sociodemographic characteristics, the specific
condition combinations, and/or the presence of other
health-related factors, such as functional limitations, sen-
sory impairment, or other geriatric syndromes
(e.g., cognitive impairment and urinary incontinence).6

In addition, multivariable models are usually developed
based on a priori hypotheses, and are limited in their
ability to incorporate several independent variables,
which may be highly correlated.

Classification and regression tree (CART) analysis
may provide a superior alternative to traditional multi-
variable models in MCC research. Although CART has
been used since the early 1980s,7,8 only recently has it
been applied to MCC research9; and differs from tradi-
tional measures2 and other recently developed instru-
ments, such as Wei et al.,10 that list and provide
weighting to conditions constituting MCCs. CART allows
us to identify combinations of MCC conditions that are
associated with a certain outcome, regardless of the
instrument from which these conditions originate.

CART is an artifical intelligence model,11 using recur-
sive partitioning, which considers all possible splits from
all possible variables (e.g., marital status, <85 years vs
>85 years, lung disease [yes/no]); it selects the variable
that creates the most homogeneous clusters when split
relative to a study outcome (e.g., self-reported health,

TABLE 1 Description of four measurement approaches

Classification and regression tree analysis (CART):
• Identifies combinations of MCCs and other variables that

best predict health outcomes.
• Starting with the entire sample (parent node), CART

branches into binary child nodes by examining all
independent variables and selecting the ones that yield the
most unique groups in terms of the outcome variable.

• Each child node becomes a parent node itself, and the
splitting continues until a terminal node is reached, that is,
when no more homogeneous clusters can be obtained in the
health outcome (e.g., self-reported health).

• Yields a multiple decision tree model (see Figure 1).

Qualifying comorbidity sets (QCSs):
• Identifies specific comorbidity combinations associated with

poorer outcomes after hospital procedures.
• For example, QCSs based on inpatient population with

Medicare Claims for 12-months prior to hospitalization.
• Create QCS lists of single, double-, or triple-comorbidity

combinations that double the odds of 30-day mortality vs
general population getting same procedure.

• Identify patient's comorbidities in EHR; check QCSs list for
General Surgery in the elderly, see.10 Then find match
between patient's conditions with QCS list.

• For a 70-year-old (COPD & CHF history) undergoing
cholecystectomy, QCS conferred a 2.5 increased 30-day
mortality compared to the general patient population
receiving same surgery.

Multimorbidity index:
• Estimates prognosis (mortality) of patients with multiple

diagnoses, including rare, but serious, diseases.
• Collected ICD-codes from EHR of thousands of patients to

create mortality Likelihood Ratio (LR) look-up table.a

• LR associated with each patient diagnosis, including rare
diseases, is identified (see Notes). The highest LR—the worst
diagnosis—within each body system is kept; all other
diagnoses in that system are ignored.

• Calculate product of LRs associated with the worse disease
within each body system. Use change in odds of mortality to
estimate the probability of mortality.

Omics and network medicine:
• Provide network representations of overlap and distance

among diseases and their underlying biology32,36 to estimate
the likelihood health conditions will co-occur.

• For example, 32 million inpatient claims formed the basis of
networks showing distances and connections between
diseases.33 The Phenotypic Disease Network (PDN) was
created, which when overlaid with longitudinal information
on disease trajectories, showed patients develop diseases
more highly connected in the PDN; highly connected
diseases also more lethal.

• Network representations of disease co-occurrence, the
genome, epigenomic modifications, transcriptome,
proteome, and metabolome have the potential to aid
diagnosis, identify shared pathogenic pathways and map the
trajectories of patients at risk of MCCs.

aLR indicates how much the odds of mortality change when the
patient has the disease. LR's are available as a look-up table; free of
cost at http://openonlinecourses.com/464/default.asp.
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mortality). The variable that is most strongly associated
with the outcome is selected for the next split, and so on
(hence, the term “recursive”). Thus, rather than testing a
priori hypotheses, CART provides a way for researchers
to learn “what the data say.” For example, a CART model
developed to predict fair or poor self-rated health status
identified visual impairment as a condition strongly asso-
ciated with the outcome and ahead of many major
chronic conditions.9 Yet, one may not have hypothesized
a priori that visual impairment would be one of the top
predictors. CART is also a nonparametric model, mean-
ing that the distribution of the variables under investiga-
tion does not matter, and it can accommodate
continuous, binary, multinomial, and even time-to-event
outcomes. Use of other measurement approaches are typ-
ically constrained by these features.2

CART begins with the “parent” node, which includes
the entire sample, then branches into binary child nodes
by examining all independent variables and selecting the
ones that yield the most unique groups in terms of the
outcome variable. Each child node becomes a parent
node itself, and the partitioning continues until a termi-
nal node is reached. Figure 1 presents a hypothetical

CART to predict 2-year worse self-rated health. The top
splitting variable was difficulty walking several blocks,
reflecting its importance in predicting the outcome. The
combination of variables associated with the highest per-
centage of 2-year self-rated worse health includes diffi-
culty walking several blocks, visual impairment, and age
68.5 years or older (see the first bar at the right, with a
percentage of nearly 60%). Conversely, the lowest per-
centage of 2-year self-rated worse health is observed
among individuals with no difficulty walking several
blocks, no self-rated fair/poor health, and no urinary
incontinence.

CART is based on the concept of reducing impurity, so
that the child nodes are “purer” (i.e., more homogeneous)
than the parent node.12 A node that has no impurity is
one in which there is no variability in the dependent vari-
able.13 The splitting criterion ensures that the split is based
on the largest difference in impurity between the impurity
of the parent node and the weighted average of the impu-
rity of the child nodes.13 Consequently, the subgroups of
the population that are identified in terminal nodes are
more homogeneous relative to the outcome of interest
than the population average.

FIGURE 1 Hypothetical classification and regression tree analysis to predict 2-year self-rated worse health. Chronic conditions may

include such conditions as heart or lung disease, diabetes, and cancer; functional limitations may include limitations in upper/lower body

strength and limitations, and/or limitations in activities of daily living or instrumental activities of daily living (IADL); demographic

variables may include age, race/ethnicity, sex, and marital status; behavioral factors may include smoking, alcohol consumption, and

physical activity; geriatric syndromes may include such conditions as urinary incontinence, sensory impairment, and depressive sympoms.
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CART models have several advantages. They allow
investigators to characterize phenotypes consisting of the
combinations of MCCs that are most closely associated
with the study outcome. CART modeling also facilitates
identification of empirically emerging population sub-
groups, highlighting specific combinations of variables
that are strongly associated with the outcome of interest.
In addition, when other variables such as demographics
are included, the tree produced by the CART model may
show combinations that include demographic variables,
if they are important enough for the tree to base its parti-
tion, which may provide a way of showing substantial
racial or ethnic disparities and inequities. Lastly, visual
presentation of CART results in a tree diagram that
affords easier interpretation of the complex associations
among variables.

CART modeling also has limitations. Trees may be
susceptible to change structure even with small changes
in the data, especially when the decision tree model fails
to generalize to new data, small samples, predictors that
are weakly related to the outcomes, or when predictors
are too strongly correlated with each other.14 In addition,
while certain variables may be quite useful in predicting
the outcome in a small partition of the sample, a single
tree may fail to identify these variables if the preceding
splits were not optimal.14 These limitations can be over-
come by using ensembles of trees (referred to as a ran-
dom forest), which use subsets of the data to identify the
most important predictors.11 The random forest approach
yields more robust models, but it may not allow us to
visually identify combinations of variables, which is of
paramount importance when studying outcomes in the
context of multimorbidity. To remedy this problem, the
data can be divided into subsets, and the tree is derived
in all but one of the subsets. This tree is then applied to
the remaining subsets to estimate the cost of
misclassification.13

Qualifying comorbidity sets

Qualifying comorbidity sets (QCS) is a tool developed to
enable hospitals and healthcare systems to evaluate how
their patients with multiple health conditions fare, in
terms of mortality, morbidity, length of hospitalization,
expense, and so forth, relative to other hospitals and
health systems (a process known as “benchmarking”).
Benchmarking hinges on having an appropriate defini-
tion of multimorbidity and requires the comparison of
similar patients with similar risk.15–17 Although conven-
tional approaches rely on a set (often arbitrary) number
of comorbid conditions2,5 or define groups with increased
risk of specific outcomes through multivariate models,2 a

model that just identifies which patients are high-risk
does not convey the same depth of information as esta-
blishing that patients are high-risk because of specific
co-occurring health conditions. Furthermore, decision-
making about quality improvement actions for specific
types of patients is challenging without the ability to
match specific combinations of health conditions.

The approach developed by Silber et al. applies multi-
variate matching algorithms to Medicare claims data to
create QCSs.18,19 In one application comparing mortality
of hospitalized general surgery patients, multivariate
matching identified QCSs composed of at most three
comorbid conditions. Each QCS was required to exceed a
doubling of the odds of 30-day mortality (95% confidence
interval).19 Sixty-seven candidate comorbid conditions
and 50,183 potential QCSs were evaluated. Rigorous out-
of-sample validation was applied to mitigate spurious
findings. The algorithm identified a total of 576 QCSs;
after removing redundant sets, 113 QCSs remained;
25 comorbid conditions were represented in these QCSs.

The importance of the specific QCSs identified by the
algorithm can be discerned when one compares patients
without qualifying but with multiple co-occurring condi-
tions, to patients with a similar number of co-occurring
conditions who met the QCS definition. In a separate
data set, using the identified 25 comorbidities, the mor-
tality rates of patients who did not have any of the QCSs,
but who had concurrent conditions, were identified.
Using four comorbidities as an example, 30-day mortality
was examined in elderly surgical patients with 4 of the
25 comorbidities that comprise QCSs but without any
QCSs defined by the algorithm. There were 13,673 non-
multimorbid patients who still had four MCCs, but just
not any combinations that were qualifying by the Silber
et al. algorithm.18 Their mortality odds were one-half that
of multimorbid patients who had the same number of
conditions but who had at least 1 QCS (OR = 0.49 (95%
CI 0.41, 0.58). If the reference population consisted of all
patients with multiple conditions, the odds ratio was
even lower at 0.34 (0.30, 0.39). (See look-up tables,
19, Appendix Table 7c.) Lower odds of mortality were
similarly found in the non-multimorbid group for as
many as eight qualifying comorbidities. In short, it is not
just the number of comorbidities, not even the number of
qualifying comorbidities, that elevates risk. Instead, it is the
specific combination of co-occurring conditions that places
elderly patients at elevated risk of mortality after surgery.

Derivation of QCSs and matching should be specific
to the application. In this way, hospitals wishing to exam-
ine how they treat patients cannot only closely compare
their multimorbid patient outcomes to similar patients
treated at other hospitals but can also closely examine
those QCSs that define the hospital's population of
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patients with multiple health conditions. For example, a
hospital may find that they are especially deficient with
respect to patients who have respiratory, in addition to
other conditions, and with this knowledge may gain
insights into changing their care for such patients. Fur-
ther, recognizing the growing prevalence of Alzheimer's
Disease and Related Dementias (ADRD) in the United
States and the care challenges that it presents for hospi-
tals and healthcare systems, Jain et al. recently developed
a claims-based validated tool for defining ADRD,20 which
should further advance the explication of
MCC/multimorbidity definitions with QCSs.

The QCS approach using multivariate matching of
electronic records can provide considerable specificity for
benchmarking and identify areas of improvement in care
of patients with MCCs. It is somewhat dependent on the
dataset available and utilized. Additional clinical data
may become available and care patterns may change in
the future requiring algorithms to be re-run. Also, any
approach that uses claims data may result in some mis-
classification of medical conditions and their severity.
The decision of Silber et al. to use the more severe state
for some MCCs may have overestimated the severity of
these conditions for some patients. Like any system rely-
ing on administrative claims, records are vulnerable to
compiling, transcribing and coding errors.

Multimorbidity index

The multimorbidity index (MMI) was developed by a
group of data scientists taking advantage of the massive
data available within EHRs from the Veterans Affairs
data warehouse and the Healthcare Cost and Utilization
Project of the Agency for Health Care Research and
Quality.21–24 The MMI assumes that every illness worsens
a patient's prognosis and identifies these illnesses from
the ICD-9 and ICD-10 codes in the EHR. Recent versions
of the index organize patients' diagnoses into 13 body sys-
tems, such as “circulatory” or “endocrine/nutrition/meta-
bolic.” The index is scored in three steps. First, a
likelihood ratio (LR) is estimated for each diagnosis.25 A
LR greater than 1 worsens, and a value below 1 improves,
the patient's prognosis. These ratios are made avaiable by
Farrokh Alemi at http://openonlinecourses.com/464/
default.asp. Second, within each body system the most
serious diagnosis is identified. This corresponds to the
diagnosis that has the highest LR. Third, the patient's
prognosis is calculated as product of the LRs.

For example, consider a patient with iatrogenic hypo-
tension (LR = 0), cardiac arrest (LR = 2.26), tumor lysis
syndrome (LR = 1.58), and methemoglobinemia
(LR = 0.31). In step 1, the LRs are obtained from the

URL. In step 2, the most serious condition within each
body system is identified. This step leads us to ignore
hypotension because cardiac arrest is the most serious
disease within the circulatory system. In step 3, under
assumption of independence of body systems, the overall
odds of mortality are calculated as the product of LRs
associated with the most serious conditions within all
body systems: Posterior Odds = Prior Odds�
P

s(Likelihood Ratios)]. In this example, we assume a
prior odds of 1 to 1. The product of 0.31 � 2.26 � 1.58
estimates a posterior mortality odds of 1.11. The probabil-
ity of mortality can be calculated from the odds of mortal-
ity as: Probability = Odds/(1+Odds) = 1.11/(1+
1.11) = 0.52.

Unlike comorbidity measures such as the Charlson
index,26 the MMI is not based on a pre-determined subset
of conditions that are the most significant predictors of
mortality.24 Instead, it considers all diagnoses of the
patient, including repeated, similar, and related diagno-
ses; within these diagnoses it empirically finds the most
serious diagnoses. For some patients, if the less severe
diagnosis is the only diagnosis, then it is scored and the
LR may reduce the probability of mortality. For other
patients, less severe diagnoses are ignored when a more
serious diagnosis in the same body system exists. The
more serious diagnosis has a higher LR and it increases
the probability of mortality.

The MMI relies on thousands of diseases within all
body systems, and therefore is based on a comprehensive
set of diagnoses. The scoring includes rare diseases,
which are often ignored by other measures. Rare dis-
eases, however, can radically change the patient's prog-
nosis. In hospitals, patients with one rare disease are 1.80
times and those with two or more rare diseases are 2.78
times more likely to die compared with patients who do
not have a rare disease.27 Rare diseases are almost never
part of statistical prognostic indices. One does not need
to look at extremely rare diseases. For example, coma is a
relatively uncommon condition, that can be fatal. Yet,
because coma is uncommon, it is missing in almost all
prognostic indices. “Although rare diseases are individu-
ally rare by definition, they are collectively common.”28

When thousands of infrequent, but serious, conditions
are missing from a prognostic index, the effect may be
substantial. MMI can improve accuracy of predictions by
including rare but serious diseases in its calculations.24

A recent review24 reported that the MMI was 15%
more accurate in predicting mortality than the Quan var-
iant of the Charlson index29; 27% more accurate than the
Deyo variant of the Charlson index30; and 22% more
accurate than the von Walraven variant of the Elixhauser
Index.31 These margins of improvement in cross-
validated accuracy are not small and show the value of
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the MMI, compared with conventional assessments, may
be large enough to change reported treatment effects in
many studies.

A limitation or impediment to uptake of MMI is it
scores every diagnosis so it consequently takes more
effort and therefore may be difficult for many clinicians
to understand and implement. The MMI score can, how-
ever, be computed in the background of the EHR and
provided to clinicians. The index and the scoring
methods are described22,24 and the look-up LRs available
at http://openonlinecourses.com/464/default.asp. Like
methods based on administrative claims data, the MMI's
reliance on the EHR does not eliminate the possibility of
coding errors and missing entries.

Omics and network medicine

Omics refers to biological entities, such as the genome,
its epigenomic modifications and transcription products
(transcriptome), protein products (proteome), and meta-
bolic products (metabolome)—biological molecules
involved in the structure, function and dynamics of a cell,
tissue or organism. Network medicine refers to construc-
tion of a complex system of interconnected elements to
visualize and understand the functions and interactions
of these biomolecules, which underly health and dis-
ease.32 Application of omics and network medicine to
MCC assessment has the potential to radically improve
diagnosis and better understand pathogenesis by going
beyond conventional clinical, epidemiological, and

medical records data. Network science can provide easily
explorable maps of disease co-occurrence networks,
where diseases or disease phenotypes are displayed as
nodes and edges, showing the relationships between two
nodes/diseases. Depicting these pairwise relationships
within a map or network gives a more comprehensive
picture of the problem of MCCs (Figure 2). For example,
a database summarizing correlations obtained from the
medical records for the disease history of more than
30 million patients resulted in a large Phenotypic Disease
Network (PDN) of disease phenotypes with unique ICD9
codes.33 Overlaying the PDN structure with longitudinal
information on patient disease trajectories showed that
patients, over time, develop diseases more highly con-
nected in the PDN. Moreover, patients diagnosed with a
disease that is highly connected in the network died
sooner than those affected with less connected diseases,
demonstrating the value of such data-driven disease
maps for understanding progression to MCCs.

Big omics data sets also facilitate creation of disease
maps based on shared genetic associations or shared met-
abolic processes, to show why some diseases co-occur.
For example, a network of Mendelian gene-disease asso-
ciations was created by connecting diseases that have
been associated with the same genes.34 (See Figure 2)
Another network was created in which two diseases were
linked if their associated genes encode enzymes that cata-
lyze adjacent metabolic reactions.32 In addition to gene-
and metabolism-based links, diseases can be related via
shared protein signals because disease-associated proteins
act on the same pathways32 or are strongly correlated in

-C

D

S

S

M

G

FIGURE 2 Disease co-occurrence networks. Disease networks depict and combine pairwise relationships between diseases and allow

visualization and analysis of more complex interrelationships between multiple diseases. While each node represents a disease or disease

phenotype, an edge between two diseases can represent different types of relationships in different types of disease networks; depicted

relationships can range from mere comorbidity (co-occurrence) of the two diseases as observed in the population (comorbidity network) to

molecular links (e.g., genetic, metabolic) between the diseases, derived from omics studies (genetic disease network; metabolic disease

network). For example, the APOE-ε4 genotype, a genetic risk factor for both Alzheimer's diseases and for atherosclerosis, suggests shared

aspects in pathomechanisms.
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proteomic analyses.35 As these gene-, metabolism-, and
protein-based disease networks typically resemble the
structure of disease co-occurrence networks, the revealed
molecular connections can help elucidate the interrelated
origins of many diseases.32

Conceptually, network medicine/systems biology
treats disease phenotypes as the result of various
pathobiological processes represented in a complex lay-
ered network of the organism's “omics.” Disturbances in
these complex interactions within- and between layers of
disease-associated genes, proteins, and metabolites can
result in physiological failures that eventually lead to
functional, molecular and causal relationships among
apparently distinct (disease) phenotypes.30 Until recently,
disease networks built on these types of associations
could not differentiate among direct, potentially causal,
and indirect, probably mediated, links between molecular
entities and diseases.

Advanced computational modeling, however, allows
integration into network models of different kinds of
data, such as metabolites, gene transcripts, and clinical
parameters (e.g., diagnostics, questionnaires) available
for the same individuals.36 By focusing on direct relation-
ships, network models can help to elucidate why certain
health conditions confer risk for others.

Use of longitudinal disease data can also disentangle
direct and indirect relationships in co-occurrence or
molecular disease networks. Overlaying disease maps
with data from individual disease trajectories and associa-
tions of non-genetic molecular entities, such as tran-
script, proteins or metabolites, with future (incident)
disease reveal which molecular signatures precede one or
multiple diseases. For example, a study with 11,000 par-
ticipants found that 65.5% of 640 significant associations
between metabolites and incident disease within >20
years were shared between at least two of 27 incident
noncommunicable diseases (NCD).37 Integration of over
50 clinical risk factors demonstrated that shared meta-
bolitic signals, such as low-grade inflammation, decline
in liver and kidney function and lipid and glucose metab-
olism and specific health-related behaviors represented
antecedents of common NCD MCCs.

Combining the vast molecular (omics), clinical and
disease phenotypes data within disease networks pro-
vides the opportunity to cross barriers of current disease
definition based on symptoms and organ systems and
eventually move to a more mechanism-based definition
of disease. This task is massive, ongoing, and requires
integration of genetic, proteomic, metabolic and pheno-
typic datasets from genetic testing, assays, clinical diag-
nosis, medical records, and so forth. Network
development and computational modeling also require
large data sets and the collection and testing of numerous

potential confounding variables. These approaches also
are expensive, and may miss confounders. Nonetheless,
omics/network medicine approaches have potential to
estimate the likelihood that a patient will develop a par-
ticular pattern of MCCs, identify pathogenesis, and sug-
gest appropriate preventive measures—beyond what
current measurement approaches provide.

POTENTIAL APPLICATIONS

Each approach to MCC assessment adds to the toolbox
for improving the epidemiology, diagnosis and treatment
of persons with co-occuring medical conditions. Three of
the approaches (CART, QCS, and MMI) already are avail-
able for implementation; the fourth (omics and network
medicine) has contributed new understanding about why
different health conditions co-occur, and is likely to lead
to clinical translation.

As a descriptive tool, CART offers the unique advan-
tage of identifying subgroups of the patient population
that are at highest (or lowest) risk for the outcome of
interest—based not only on single factors or the interac-
tion of two variables, but on combinations of multiple
variables, besides medical conditions per se, that are
deemed important by the model (e.g., functional limita-
tions, age, SES). CART models also can identify older
patients who would benefit from comprehensive geriatric
assessment, close monitoring, and targeted interventions
to improve quality of life, paving the way for precision
geriatric medicine.

The ability of clinicians and hospital systems to assess
their success (or failure) relative to other clinicians and
hospitals in treating patients with MCCs has been limited
by multiple definitions of multimorbidity and difficulties
identifying and comparing similar patients with similar
risk. QCS, derived from multivariate matching of EHR
data, provides a valid, empirically-based metric that over-
comes these limitations. The approach enables hospitals
and clinicians to benchmark the care of their MCC
patients. It also facilitates identification of the MCCs rep-
resenting specific disease components, that pose the
highest mortality risk and costs across caregivers, hospi-
tals, and hospital systems, thereby providing information
to improve systems of care and referral patterns within
healthcare organizations.

Compared to conventional measures, the MMI
extracts more comprehensive diagnostic information
(even about conditions that may be rare, but serious)
from EHRs and applies risk algorithms to provide
detailed prognostic information. The complex computa-
tions required by MMI can be performed in the back-
ground, so that user-friendly information is provided for
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MCC patients and their clinicans for planning the most
appropriate care decisions, evaluating comparative effective-
ness of treatments, and anticipating patients' acuity and
nursing needs by administrators. Successful translations of
MMI have been reported by several projects with Veterans
Administration ICU and nursing home patients.21,23

Omics and network medicine permit the mapping of
phenotypic, genetic and biological overlap among health
conditions and identify common pathogenic pathways.
As omics are integrated successfully with EHRs, clini-
cians and researchers may be able to select treatments
that are complementary in their effects and improve pre-
diction and prognosis for MCCs. The multi-level nature
of the omics offers the radical possibility that current
diagnostic systems that tend to treat one condition at a
time will be replaced by constellations of MCCs and
interconnected pathogenic processes to guide preventive
measures and medical procedures.

All four approaches to multimorbidity stem from
advances in statistics and computing, omics and infor-
matics and “Big Data” extracted from EHRs and adminis-
trative claims data. In addition, researchers using CART
have also availed themselves of data on functional limita-
tions, geriatric sydromes, and so forth, such as collected
in the U.S. Health & Retirement Study. The reader may
be concerned that these new tools' reliance on algo-
rithms, artifical intelligence, interactions among different
omics, and psychosocial and behavioral variables intro-
duces a level of complexity that will discourage clinical
uptake. Fortunately, the developers of these approaches
have from the outset kept in mind accessibility, time and
effort (often with computation “working in the back-
ground”), and usability, which will facilitate clinical
translation and increase the ability to meet the ongoing
challenges of multimorbidity in older adults.

It has been said that if you cannot measure it, you
cannot change it. The four emerging measurement
approaches described in this article have the potential to
advance research and help caregivers treat patients and
policy makers evaluating care for these complex and vul-
nerable patients.
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