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Abstract 

Background: Maternal stress before, during and after pregnancy has profound effects on the development and 
lifelong function of the infant’s neurocognitive development. We hypothesized that the programming of the central 
nervous system (CNS), hypothalamic–pituitary–adrenal (HPA) axis and autonomic nervous system (ANS) induced by 
prenatal stress (PS) is reflected in electrophysiological and epigenetic biomarkers. In this study, we aimed to find non-
invasive epigenetic biomarkers of PS in the newborn salivary DNA.

Results: A total of 728 pregnant women were screened for stress exposure using Cohen Perceived Stress Scale (PSS), 
164 women were enrolled, and 114 dyads were analyzed. Prenatal Distress Questionnaire (PDQ) was also adminis-
tered to assess specific pregnancy worries. Transabdominal fetal electrocardiograms (taECG) were recorded to derive 
coupling between maternal and fetal heart rates resulting in a ‘Fetal Stress Index’ (FSI). Upon delivery, we collected 
maternal hair strands for cortisol measurements and newborn’s saliva for epigenetic analyses. DNA was extracted from 
saliva samples, and DNA methylation was measured using EPIC BeadChip array (850 k CpG sites). Linear regression 
was used to identify associations between PSS/PDQ/FSI/Cortisol and DNA methylation. We found epigenome-wide 
significant associations for 5 CpG with PDQ and cortisol at FDR < 5%. Three CpGs were annotated to genes (Illumina 
Gene annotation file): YAP1, TOMM20 and CSMD1, and two CpGs were located approximately lay at 50 kb from 
SSBP4 and SCAMP1. In addition, two differentiated methylation regions (DMR) related to maternal stress measures 
PDQ and cortisol were found: DAXX and ARL4D.

Conclusions: Genes annotated to these CpGs were found to be involved in secretion and transportation, nuclear 
signaling, Hippo signaling pathways, apoptosis, intracellular trafficking and neuronal signaling. Moreover, some CpGs 
are annotated to genes related to autism, post-traumatic stress disorder (PTSD) and schizophrenia. However, our 
results should be viewed as hypothesis generating until replicated in a larger sample. Early assessment of such nonin-
vasive PS biomarkers will allow timelier detection of babies at risk and a more effective allocation of resources for early 
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Background
Compelling evidence from both animal and human stud-
ies indicates that adversities in the perinatal environment 
significantly increase the risk for developing neurocogni-
tive disorders later in life [1–10].

Human studies provide substantial evidence that 
maternal stress during the gestational period (namely 
PS) can lead to behavioral, cognitive and temperamen-
tal disorders in the infant, increasing child morbidity 
and neurological dysfunction. For example, maternal 
psychosocial stress (general and specific stress and anxi-
ety) increases the risk for the growing infant to develop 
disorders such as attention-deficit hyperactivity disor-
der (ADHD) [10], autism spectrum disorders (ASD) [11] 
and sleep disturbance that can result in depression and 
other psychiatric disorders. Severe PS is associated with 
increased cortisol response after a behavioral challenge 
paradigm in young adults [12]. Moreover, several studies 
have indicated that PS and glucocorticoid exposure may 
reprogram the cardiovascular system, including aberra-
tions in cardiac and kidney development [13].

It is important to understand the mediators that con-
nect the mother’ stress with the fetus. In this regard, Rak-
ers et  al. [8] proposed that the causal pathway lies not 
only via cortisol but also includes catecholamines, reac-
tive oxygen species, cytokines, serotonin/tryptophan 
and maternal microbiota. The stress response system has 
been traditionally linked to the hypothalamic–pituitary–
adrenal (HPA) axis that is responsible for the production 
and secretion of corticosteroids under basal and stressed 
conditions [14]. However, the autonomic nervous sys-
tem (ANS) also plays a key role through its rapid (within 
seconds) activation enabling fine adjustments of the tar-
get organs. This aspect has been often neglected. In this 
regard, Monk et  al. [15] have shown that the fetal ANS 
is very perceptive of maternal anxiety. This study shows 
that during women’s recovery following a stress-eliciting 
task, fetal heart rate (fHR, a biomarker of ANS) changed 
in association with the mother’s acute cardiovascular 
activity [15]. In addition, fHR sensitivity to a stimulus 
reflects emerging individual differences in the develop-
ment of ANS [16, 17].

Responding to environmental factors, these stress-
mediating pathways are assumed to leave permanent 
epigenetic signatures that may affect the neurobehavio-
ral outcomes of the child. In fact, it has been shown that 

the epigenome is vulnerable to external exposures during 
the early prenatal development, a crucial period when 
intense programming of gene expression is taking place 
[18, 19]. Among these mechanisms, DNA methylation 
is recognized as the most well-characterized epigenetic 
signature.

While some knowledge has been gained linking the 
scale of epigenetic organization of phenotypical informa-
tion with the psychological behavior [20, 21], the connec-
tion between the epigenetic signatures of adversity and 
the scale of biophysical organization of human integra-
tive physiology has remained unexplored. This is of great 
interest because biophysical behavior, such as the prop-
erties of ANS describable noninvasively by mathematical 
HRV analyses, is highly accessible, now more than ever, 
with the rise of the wearable technologies and remote 
health monitoring [22]. As such, linking these scales 
of physiological organization may aid in early detec-
tion of unhealthy developmental trajectories and timely 
intervention while also providing a more mechanistic 
multi-scale framework for understanding these complex 
relationships [7]. With the present ‘FELICITy’ study, we 
aimed to address this knowledge gap.

First, we hypothesized that early epigenetic signatures 
of PS are detectable in neonatal saliva. This is important 
because the detection of such epigenetic signatures, ide-
ally at birth, will help to detect ‘at-risk children’ who can 
benefit from early stimulation programs and follow-up 
[23]. Second, we hypothesized that late gestation bio-
physical alterations in mother–fetus dyads due to PS are 
reflected in the neonatal epigenetic marks observed at 
birth. To test these hypotheses, we devised the FELICITy 
study to obtain a combination of noninvasive multimodal 
physiological measures of PS.

We recruited a cohort of third trimester pregnant 
women screened for exposure to chronic psychosocial 
stress during pregnancy. The biophysical signature of 
the PS exposure has been validated during late gestation 
using noninvasive feto-maternal transabdominal electro-
cardiogram (taECG). This approach yielded fetal stress 
index (FSI), a joint maternal–fetal biomarker of PS [24]. 
At the same time, we also acquired quantitative psycho-
logical maternal chronic stress scores (details in Results 
and Methods) [24]. Using maternal behavioral data and 
the biophysical FSI assessment on the one hand and the 
epigenetic analysis of the newborn’s saliva on the other 

intervention programs to improve child development. A biomarker-guided early intervention strategy is the first step 
in the prevention of future health problems, reducing their personal and societal impact.
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hand, we aimed to validate the presence of linkages 
between the mother–fetus behavior and the neonatal 
saliva’s epigenetic modifications. To test for persistence 
of such multimodal multi-scale linkages we are currently 
following up this cohort for a second time point at two 
years of age. Here, we report the existence of such antici-
pated linkages at birth. The study represents a first report 
of a well-controlled, prospective study to investigate 
epigenome-wide methylation changes in > 850.000 loci 
in newborn saliva samples in association with behavioral 
and biophysical maternal–fetal stress measures.

Results
We performed an Epigenome-Wide Association Study 
(EWAS) with the Illumina MethylationEPIC BeadChip 
array, which includes around 850,000-methylation loci 
in saliva samples obtained from newborns at the time of 
delivery. We examined the association between prenatal 
exposure to maternal psychosocial stress and offspring 
genome-wide saliva methylation using four statisti-
cal approaches in association with four complementary 
maternal and fetal stress measures. The stress measures 
are: 1) the PSS-10 questionnaire, accounting for the per-
ceived stress of a mother during the third trimester; 2) 
the PDQ questionnaire accounting for the specific wor-
ries related to pregnancy such as pain during labor and 
delivery, personal appearance after delivery and baby’s 
health; 3) maternal hair cortisol levels (integrated corti-
sol levels in hair reflecting three prior months of stress 
exposure) accounting for the chronic activity of the HPA 
stress response system of the mother during the third tri-
mester and 4) the FSI, a biophysical ANS biomarker for 
stress, which accounts for fetal ANS reactivity to mater-
nal heart beat during pregnancy.

Cohort characteristics
Of the 728 subjects who returned the questionnaires, 
the socio-demographic characteristics of the participat-
ing mothers and their offspring (n = 114) are shown in 
Table 1. The average age of the mother at study entry was 
34  years. Most of the mothers in this study were Cau-
casians, married and having a university degree. Preg-
nancies were mostly planned, and 72% of mothers had 
vaginal deliveries. The perceived stress measures (PSS 
and PDQ scores) were moderately correlated (Spearman 
R2 = 0.537; p value = 6.952e-10).

Differentially methylated positions (DMPs)
Each CpG site was separately tested for association with 
exposure to stress (PSS, PDQ, Cortisol and FSI), and sep-
arate linear regression models were run, unless otherwise 
specified. All the models were adjusted as specified in the 
Methods section.

DNA methylation and stress measures
DNA Methylation and PSS score PSS score (the continu-
ous variable) was used for the association analysis. We did 
not identify any differentially methylated sites in relation 
to PSS score. Figure 1 shows the Manhattan plot and the 
Q–Q plot. Table 2 shows the top four hits for the associa-
tion with no significant findings.

DNA methylation and  PDQ score The association 
analysis with PDQ scores yielded one CpG (cg06542869, 
p = 4.62E-08) (Fig. 2) achieving FDR < 0.05. This site has 
a positive direction of effect, and it is located in the body 
of the protein coding gene YAP1 (Yes1-regulated tran-
scription factor) present in chromosome 11 (Table  2). 
The regression coefficients and values for the next three 
nonsignificant hits for this association are reported in 

Table 1 Baseline characteristics of study population (n = 114, 
mother–newborn pairs), FELICITy study

Data are mean (SD) using chi-square test, mean (interquartile) using Wilcox. 
test or n (%) using Fisher’s test. All the continuous variables are shown as [mean 
(SD)], [median(range)] and the categorical variables as n (%)

PSS Cohen Perceived Stress Scale, PDQ Prenatal Distress Questionnaire, BMI body 
mass index; ICSI intracytoplasmic sperm injection; IVF in vitro fertilization; FSI 
Fetal Stress Index

Characteristics n = 114

Maternal characteristics—Baseline

Age of mother at study entry, years 34.61 (± 4.52)

Gestational age at screening, weeks 34.07 [33.18, 34.96]

Gestational age at inclusion, weeks 36.71 [35.32, 37.54]

Score PSS 17.00 [9.00, 22.00]

Score PDQ 10.50 [6.25, 16.75]

BMI at study entry, kg/m2 27.61 [25.20, 30.42]

BMI pregestational, kg/m2 21.82 [20.30, 24.96]

Ethnicity, Caucasians/Europeans 106 (92.98)

Married, yes 85 (74.6)

University degree, yes 80 (70.2)

Household income > 5000€/month, Yes 53 (46.5)

Working status at screening, working 4 (3.5)

Multiparity, Yes 85 (74.6)

Planned pregnancy, Yes 92 (81.4)

Cesarean delivery, Yes 28 (24.6)

Smoking, Yes 7 (6.1)

IVF / ICSI, Yes 10 (8.8)

Gestational diabetes, Yes 11 (9.6)

Autoimmune disease, Yes 15 (13.2)

Cortisol in maternal hair, pg/mg 97.00 [58.00, 161.00]

Infant characteristics—Perinatal outcome

FSI 0.15 [−0.28, 0.60]

Gestational age at birth, weeks 39.71 [38.86, 40.57]

Gender, female 52 (45.6)

Birthweight, grams 3544.96 (± 431.78)
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Fig. 1 Manhattan plot and Q–Q plot of salivary DNA methylation associated with PSS. Manhattan plots of salivary DNA methylation associated with 
PSS. The x-axis represents the genomic loci of the individual CpGs and the y-axis represents the –log10 (p value). Black line: Bonferroni threshold 
(p = 6.183879e-08) and the dotted line: Multiple testing correction threshold (FDR < 0.05) has been added to the plot. There are no CpGs that cross 
the significance threshold. Quantile–quantile (QQ) plot shows the expected and the observed quantiles

Table 2 CpG sites associated with stress measures in DNA methylation analysis

The table shows top four CpGs from the EWAS that are associated with the respective stress measures. Marked in bold are significant
a Cohen Perceived Stress Scale
b Prenatal Distress Questionnaire
c Fetal Stress Index
d Regression coefficients from the statistical model
e Significance from the statistical model
f False discovery rate
g Chromosome

NA: Not available

Stress measure Probe Coefd P.Valuee FDRf chrg Illumina gene 
annotation

Genes within 
50 kb of 
associated CpG

PSSa cg17478679 −0.2 3.59E-07 0.25 chr17 KPNB1 CRHR1

cg22124215 −0.1 1.07E-06 0.25 Chr2 MARCH4 DIRC3

cg06195987 0.52 1.96E-06 0.25 Chr7 NA LMTK2

cg15426815 0.31 2.24E-06 0.25 Chr12 MIR200C C1S

PDQb cg06542869 0.02 4.62E-08 0.03 chr11 YAP1 YAP1
cg22861369 0.02 2.30E-07 0.08 chr5 PDLIM4 SLC22A4

cg01629131 0.03 3.31E-07 0.08 chr20 NA RP11, RP1

cg03105159 0.01 7.18E-07 0.11 chr2 ALKAL2 ALKAL2, FAM105B

Cortisol cg11409463 0.003 2.87E-09 0.002 chr5 NA SCAMP1
cg20905655 0.004 1.16E-07 0.03 chr19 NA SSBP4;
cg25252839 0.002 1.24E-07 0.03 chr1 TOMM20 SNORA14B
cg05306225 −0.002 2.08E-07 0.04 chr8 CSMD1 CSMD1

FSIc cg13547817 −0.39 8.85E-08 0.07 chr9 ERP44 ERP44; INVS

cg07642729 −0.35 2.81E-06 0.49 chr8 ASB15 -

cg24795351 −0.34 3.79E-06 0.49 chr8 PREX2 PREX2

cg16692227 −0.21 3.80E-06 0.49 chr14 SAMD12 SAMD12
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Table 2. The Q–Q plot shown in Fig. 2 is corrected for 
inflation which has a lambda value of 1. 04. The uncor-
rected vs the corrected Q–Q plot is shown in Additional 
File 1: Fig. S1.

DNA methylation and  cortisol We identified stronger 
associations with cortisol compared to other stress vari-
ables (Fig.  3, Table  2). Four CpG sites were identified 

after controlling for multiple testing using FDR < 0.05 
(cg11409463, cg20905655, cg25252839 and cg05306225). 
The top hit was cg11409463, located on chromosome 5 but 
did not annotate to any gene via the Illumina gene annota-
tion file. A look up on University of California Santa Cruz 
(UCSC) browser showed that the nearest genes within 
50  kb distance to this CpG site are SCAMP1 (Secre-
tory Carrier Membrane Protein 1) and AP3B1 (Adaptor 

Fig. 2 Manhattan plot and Q–Q plot of the association between PDQ and salivary DNA methylation. Manhattan plots of salivary DNA methylation 
associated with PDQ. The x-axis represents the genomic loci of the individual CpGs and the y-axis represents the –log10 (p value). Black line: 
Bonferroni threshold (p = 6.183879e-08) and the dotted line: Multiple testing correction threshold (FDR < 0.05) has been added to the plot. CpGs 
that cross the FDR threshold are marked in the Manhattan plot. There is 1 CpG that crosses the significance threshold. Quantile–quantile (QQ) plot 
shows the expected and the observed quantiles

Fig. 3 Manhattan plot and Q–Q plot of the association between cortisol and salivary DNA methylation. The lambda value for the Q–Q plot is 
1.08. Manhattan plots of salivary DNA methylation associated with cortisol. The x-axis represents the genomic loci of the individual CpGs and the 
y-axis represents the –log10 (p value). Black line: Bonferroni threshold (p = 6.183879e-08) and the dotted line: Multiple testing correction threshold 
(FDR < 0.05) have been added to the plot. CpGs that cross the FDR threshold are marked in the Manhattan plot. There are four CpGs that cross the 
FDR multiple correction threshold. Quantile–quantile (QQ) plot shows the expected and the observed quantiles
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Related Protein Complex 3 Subunit Beta 1). This CpG site 
also overlaps with several transcription factors from the 
AP-1 family. The second hit was cg20905655 (p = 1.16E-
07) located on chromosome 19 which did not annotate to 
any gene via Illumina platform. According to the UCSC 
genome browser, the nearest genes within the 50 kb region 
are SSBP4 (single-stranded DNA binding protein 4) (Cas-
tro et al., 2002) and LRRC25 (leucine-rich repeat contain-
ing 25). The third hit was TOMM20 (translocase of outer 
mitochondrial membrane 20) (cg25252839, p = 1.24E-07) 
located on chromosome 1. All the CpG sites had a posi-
tive direction of association except for the fourth hit, 
cg05306225, which annotates for the gene CSMD1 (CUB 
and Sushi multiple domains 1) located on chromosome 8 
and encoding for Q96PZ7-CSMD1_HUMAN (CUB and 
Sushi domain-containing protein 1). Inspection of quan-
tile–quantile (QQ) plot did not show evidence for infla-
tion or bias (Fig. 3; lambda = 1.08).

DNA methylation and FSI There were no DMPs that sur-
vived the correction for multiple testing when the associa-
tion was performed with FSI, the biophysical biomarker 
of PS exposure. Of interest, the top hit, CpG (cg13547817, 
p = 8.51E-08) with an FDR: 0.06, very close to the thresh-
old, mapped to the gene ERP44 (Endoplasmic reticulum 
protein 44) on chromosome 9, which is a protein coding 
gene whose related pathways are the Innate immune sys-
tem and translational control. Table 2 shows the top four 
hits from the FSI association analysis and Fig. 4 shows the 
Manhattan plot and the Q–Q plot.

Sex specificity analysis
The CpG-by-sex interaction analysis did not reveal any 
significant differences between sexes for the associations 
(Table 3).

Exploratory analysis of DMPs
In a second layer of analysis, the network interactions 
between the proteins encoded by the genes that were 
annotated to significant DMPs were analyzed using 
STRING-db, a database and software application ena-
bling an semi-unsupervised statistical network analysis 
of known and predicted protein–protein interactions as 
well as their physical and functional interaction networks 
based on computational predictions, i.e., enrichment 
[25]. Unique URL for the resulting analysis is as follows:

https:// versi on- 11-5. string- db. org/ cgi/ netwo rk? 
taskId= bMnf9 hIgSY rT& sessi onId= bl9Pr y04Kz yB.

The protein–protein interaction (PPI) enrichment p 
value for this network is 3.47e -06. The top three bio-
logical processes identified were 1) Hippo signaling path-
way, 2) regulation of canonical Wnt signaling pathway 
and 3) cell–cell junction assembly. Figure 5 shows YAP1 
interacting with several proteins of the Hippo signaling 
pathway and the ß-catenin signaling pathways-CTNNB1 
(Catenin Beta 1). YAP appears also directly related to 
TEAD1 and TEAD4 since YAP/TAZ are transcriptional 
coregulators and partners of the TEAD family transcrip-
tion factors.

The Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways map molecular objects such as genes 
and proteins to molecular interactions or relations. The 

Fig. 4 Manhattan plot and Q–Q plot of the association between FSI and salivary DNA methylation. Manhattan plots of salivary DNA methylation 
associated with FSI (Fetal Stress Index). The x-axis represents the genomic loci of the individual CpGs and the y-axis represents the –log10 (p value). 
Black line: Bonferroni threshold (p = 6.183879e-08) and the dotted line: Multiple testing correction threshold (FDR < 0.05) has been added to the 
plot. CpGs that cross the FDR threshold are marked in the Manhattan plot. There are no DMPs that cross the Bonferroni correction threshold. 
Quantile–quantile (Q–Q) plot shows the expected and the observed quantiles and has a lambda 1.01

https://version-11-5.string-db.org/cgi/network?taskId=bMnf9hIgSYrT&sessionId=bl9Pry04KzyB
https://version-11-5.string-db.org/cgi/network?taskId=bMnf9hIgSYrT&sessionId=bl9Pry04KzyB
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top pathway identified from the KEGG pathways was the 
Hippo signaling pathway.

As the next step, we used the SFARI gene database [26] 
to extract information for the genes annotated to CpGs 
specific to ASD [27]. SFARI gene is a database centered 
on genes involved in autism and has up-to-date infor-
mation on all human genes associated with ASD. Of all 
the genes looked up in this database [26], only CSMD1 
appeared with a score of three indicating strong relevance 
to ASD (gene.sfari.org/database/human-gene/CSMD1).

Differentially methylated regions (DMRs)
DMRs are genomic regions that have consistently differ-
ent DNA methylation across multiple adjacent CpGs [28]. 
The DMRs mapped to or near the genes that are enriched 
for the biological process of the regulation of sequence-
specific DNA binding transcription factor activity sug-
gest that these genes are involved in regulation of gene 
expression. Regional analysis identified associations with 
maternal stress measures (PDQ and Cortisol). All DMRs 
identified by DMRcate as well as the DMPs overlapped 
with the DMRs identified by comb-p. Results are shown 
in Table 4.

DMRcate identified two DMRs related to maternal 
stress measures PDQ and cortisol. One DMR associated 
with PDQ was found to be located in the DAXX locus 
(death-associated protein 6) on chromosome 6. The other 
DMR, associated with cortisol, was found to be located 
in the ARL4D (ADP-ribosylation factor 4D) on chromo-
some 17.

Discussion
Most of the maternal stress studies in the past have been 
limited to targeted DNA methylation analyses in candi-
date genes [29, 30]. It is only in the recent years that epi-
genome-wide studies of DNA methylation have gained 
popularity allowing to evaluate locus-specific meth-
ylation across the entire genome [31–34]. These differ-
ent approaches have been recently summarized in two 
reviews and a meta-analysis [18, 35, 36]. When analyzing 
these studies, a general conclusion on what type of epige-
netic signature is observed in prenatally stressed infants 
is difficult to draw since many methodological differences 
are still observed in terms of the type and timing of the 
prenatal insult studied, the age of the child and the tissue 
employed to detect DNA methylation. This makes com-
parison among studies very difficult leading to inconclu-
sive evidence on the association between PS and DNA 
methylation in the neonate. To bridge this gap, we have 
examined the association between psychological, molec-
ular and biophysical maternal–fetal stress measures and 
the genome-wide methylation profile in newborn saliva. 
Our findings validate the hypothesis that PS biomarkers 
are associated with epigenome–wide DNA methylation 
in newborn saliva across multiple CpG sites, in particu-
lar, those relevant to neuronal, immune and endocrine 
homeostasis.

Maternal stress measures and DNA methylation patterns
In our study, PDQ, but not PSS, and cortisol showed a 
significant association with five CpG sites. Out of these 
five CpGs, three were annotated to YAP1, TOMM20 and 

Table 3 Epigenome-wide results of the Interaction analysis between gender and stress measures

The table shows top two CpGs from the EWAS of the interaction analysis that are associated with the stress measures

NA Not available
a Cohen Perceived Stress Scale
b Prenatal Distress Questionnaire
c Fetal Stress Index
d Regression coefficients from the statistical model
e Significance from the statistical model
f False discovery rate
g Chromosome

Stress measures Probe Coefd p  Valuee FDRf Chrg Illumina gene annotation

PSSa cg09723184 0.03 6.23E-06 0.87 chr8 FBXO43

cg27293447 −0.04 7.25E-06 0.87 chr2 LOC102800447

PDQb cg03756940 −0.05 1.10E-07 0.08 chr2 NA

cg00008621 −0.04 2.06E-07 0.08 chr14 HIF1A

Cortisol cg18197866 0.003 2.55E-07 0.16 chr12 PXN

cg20460797 −0.006 4.17E-07 0.16 chr4 NSG1

FSIc cg24715106 0.54 2.51E-07 0.2 chr11 AQP11

cg23782719 −0.42 2.54E-06 0.56 chr6 RNF182
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CSMD1; two CpGs were not annotated to any gene but 
lay within 50 kb of SSBP4, SCAMP1 and LRRC25. We 
discuss the functional implications of these associations 
in the following paragraphs.

YAP1 and its related protein WWdomain-containing 
transcription regulator 1 (WWTR1; also known as TAZ) 
(YAP/TAZ) are the main effectors of the Hippo signal-
ing pathway [37]. This evolutionarily conserved signal-
ing cascade regulates cell proliferation, stemness, organ 

size control and regeneration. Its dysregulation has been 
associated with multiple forms of cancers, the immunity 
response and cardiovascular diseases [37, 38]. Although 
widely expressed in several tissues, YAP is selectively 
expressed in astrocytes and neural stem cells in the 
mouse developing brain and its deletion causes reactive 
astrogliosis and astrocyte-driven microglial activation 
[39]. Moreover, Passaro et al. [40] demonstrated that the 
transient downregulation of YAP in mouse embryonic 

Fig. 5 Network plot of significant hits from the EWAS analysis. STRING-Db network analysis for significant hits from the association for PDQ and 
cortisol. Protein–protein interaction (PPI) enrichment p value: 3.47e-06. PPI legend by string-db.org. The permanent link is: https:// versi on- 11-5. 
string- db. org/ cgi/ netwo rk? taskId= bvfqN rZYaH e6& sessi onId= bjK7X vqNxM Xe

https://version-11-5.string-db.org/cgi/network?taskId=bvfqNrZYaHe6&sessionId=bjK7XvqNxMXe
https://version-11-5.string-db.org/cgi/network?taskId=bvfqNrZYaHe6&sessionId=bjK7XvqNxMXe
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stem cells disrupts cellular homeostasis altering the abil-
ity to differentiate properly. In our study, the hypermeth-
ylated CpG cg06542869 annotated to YAP1 is associated 
with specific pregnancy worries (PDQ score). The func-
tional consequence of the hypermethylation of one sin-
gle CpG site in the open sea of the YAP1 gene is highly 
speculative without evaluating the translated protein. 
However, it has been demonstrated that the methylation 
of one single CpG can impact on the methylation levels 
of neighboring CpG sites [41]. Assuming that hyper-
methylation is generally associated with transcriptional 
silencing of genes, the modification of methylation sta-
tus of the YAP1 gene might potentially lead to alterations 
in cell proliferation, cell differentiation and astrogliosis. 
In fact, the network analysis of the protein encoded by 
YAP1 using STRING-db showed an interaction with sev-
eral proteins of the Hippo signaling pathway such as the 
TEAD family of transcription proteins. The phosphoryla-
tion and inhibition of YAP/TAZ activate the Hippo path-
way limiting tissue growth and cell proliferation. Upon 
dephosphorylation, YAP/TAZ translocate to the nucleus, 
binding to TEAD and inducing transcriptional programs 
related to cell proliferation, survival and migration [37].

TOMM20 (translocase of outer mitochondrial mem-
brane 20) is involved in glucose/energy metabolism and 
deubiquitination. Together, TOMM22 functions as a 
transit peptide receptor at the surface of the mitochon-
drial outer membrane and facilitates the movement of 
preproteins [42, 43]. Diseases associated with TOMM20 
include Optic Atrophy 1 and 11. Our results show that 
the hypermethylated CpG site cg25252839 is associated 
with cortisol levels and annotates to TOMM20.

The CSMD1 gene has been proposed to have brain 
specificity since it encodes a cell adhesion molecule 
highly expressed in membrane-associated proteins in the 
CNS, with almost no detection in other tissues [44]. The 
CSMD1 protein is related to immune function playing 
a crucial role in regulating complement activation and 
inflammation in the developing brain [44, 45] and may 

also play a role in growth cone function [46]. The CSMD1 
protein is predominantly expressed in neurons mainly in 
the cerebral cortex and the hippocampus and has been 
involved in brain circuits development, neurotransmis-
sion, axon guidance, regeneration and plasticity [44]. 
CSMD1 protein coding gene has been previously associ-
ated with autism spectrum disorders (ASD) [47, 48]. Cor-
roborating the above statement, CSMD1 also appears on 
the SFARI database listing genes associated with ASD. It 
scored as level 3, meaning there is suggestive evidence 
from significant but non-replicated association studies. 
Moreover, CSMD1 has been associated with post-trau-
matic stress disorder [49, 50], schizophrenia [44, 45, 51, 
52], and bipolar disorders [53].

In our study, we found that the hypo-methylated CpG 
cg05306225 annotates for the gene CSMD1 and is asso-
ciated with high maternal cortisol levels. Although it is 
difficult to predict the functional consequences of this 
single site hypomethylation as mentioned above, it is 
interesting to observe that the probable destabilization 
of the methylation status of flanking CpGs mentioned 
before, is in a gene with high brain specificity and associ-
ated with several neuropsychiatric disorders. In particu-
lar, the association of this gene with ASD refers back to 
several reports showing that the risk for ASD is linked to 
PS [11, 54].

The two other CpGs that were significantly associated 
with cortisol levels but are not annotated to any gene are 
cg11409463 and cg20905655, both hypermethylated. The 
nearest gene to the CpG site cg11409463 is SCAMP1 
whose protein is involved in secretion and transporta-
tion. Diseases associated with this gene include Child-
hood Kidney Cell Carcinoma and Branchiootorenal 
Syndrome 1. This same CpG site overlaps with several 
transcription factor binding sites from the AP-1 family 
(the Jun, the Fos and ATF-2 subfamily) such as JUNB, 
FOS, SETDB1, ATF3, CBX3, TRIM28, ZNF143. The 
AP-1 family is responsible for cell growth, differentiation 
[55] and apoptosis [56]. The nearest genes to CpG site 

Table 4 Differentially methylated regions (DMRs) in salivary DNA associated with stress measures in FELICITy study

Marked in bold are significant
a Prenatal Distress Questionnaire
b Chromosome
c Physical position (basepair)
d Number of probes in the region
e Statistical significance
f p of Sidak multiple testing correction

Stress measures Chrb Start  (bpc) End(bp) CpGsd p  valuee Sidak  Pf Gene

PDQa 6 33,288,180 33,288,600 8 0.000166981 8.67E-08 DAXX
Cortisol 17 41,476,044 41,476,457 11 6.50E-10 1.27E-06 ARL4D
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cg20905655 are SSBP4 and LRRC25, the latter related to 
autophagic degradation. So far, not much is known about 
the functional role of SSB4 and its relation to stress yet.

Of interest, cortisol-associated methylation disbalances 
in several genes found in neonatal saliva suggest that 
the transplacental barrier might be impaired and abnor-
mally permeable to steroid hormones. In fact, it has been 
described that the metabolizing enzymes that lay within 
trophoblasts and protect the fetus from overexposure to 
glucocorticoids, are sensitive to maternal stress [57, 58]. 
For example, the glucocorticoid-inactivating enzyme, 
11β-hydroxysteroid dehydrogenase type-2 (11βHSD2), 
showed a reduced placental expression in relation to 
maternal anxiety and depressed mood in humans [59, 60]. 
The reduced placental expression of 11βHSD2 will poten-
tially lead to a fetal glucocorticoid overexposure affecting 
developmental events such as fetal growth restriction, 
altered HPA axis development, impaired offspring brain 
function, permanent changes in the expression of spe-
cific transcription factors and early development of pro-
liferative neural precursors [57, 61]. Our observation 
that the newborn saliva shows cortisol-associated epi-
genetic changes in genes related to energy metabolism, 
cell differentiation and function of the developing brain 
might be highlighting that one of the underlying mecha-
nisms linking maternal stress with childhood outcomes 
is through transplacental mediated methylation disbal-
ances in specific genes, among other mechanisms, such 
as transcriptional regulation of placental gene expression 
as suggested by Aushev et al. [62].

To expand the search of epigenetic signatures associ-
ated with stress measures during pregnancy we consid-
ered DMRs. Two DMRs were detected, one associated 
with PDQ (DAXX) and the other to cortisol (ARL4D). 
DAXX gene encodes for a protein that resides in multi-
ple locations in the nucleus and cytoplasm. Pathways 
related to Daxx are apoptosis and survival caspase cas-
cade as well as TGF-β signaling pathways [63]. Diseases 
associated with DAXX include Gastric neuroendocrine 
neoplasm, intellectual disability and alpha-thalassemia. 
Interestingly, ATRX gene which has been previously 
linked with ASD, interacts with DAXX in histone chap-
erone complex and influences DNA methylation [64–66]. 
Moreover, DAXX is known to be an extended Class II, 
non-antigen binding HLA (human leukocyte antigen) 
gene associated with autoimmune diseases that inter-
acts with death receptor Fas related to ASD [67]. ARL4D 
belongs to ADP-ribosylation factors (ARFs), members of 
the Ras family of small GTPases, involved in membrane 
transport, membrane lipid modifications and mainte-
nance of organelle integrity [68]. Interestingly, the tran-
scription of Arl4d was found to be consistently regulated 
by glucocorticoids such as cortisol [69]. So far, not much 

is known about its function, but it has been shown that 
Arl4D is involved in neurite growth [70], adipogenesis 
[71] and actin remodeling [72]. In adult mice, Arl4d is 
expressed in neocortical layer 1 and hippocampus, mostly 
in cortical interneurons (CIN), whose loss or altera-
tion have been related to neurological disorders such as 
autism, schizophrenia, and epilepsy [73]. Interestingly, 
both DMRs are directly or indirectly related to neurologi-
cal disorders such as ASD. To the best of our knowledge, 
this is the first report showing significant DMRs in the PS 
context in newborn saliva samples. Previously, Drzymalla 
et al. [74] have identified DMRs related to maternal stress 
but using cord blood.

Previous studies employing EPIC array on neonatal 
tissues in association with maternal stress and/or anxi-
ety are limited to one study by Kallak et  al. [75]. These 
authors investigated DNA methylation in cord blood of 
newborns exposed to maternal depression and anxiety. 
They found two DMPs: one upstream of the ATP Bind-
ing Cassette Subfamily F Member 1 gene (ABCF1) and 
the other upstream of Homo sapiens integrator com-
plex subunit 10 gene (INTS10). Although the maternal 
stress model is different from ours, it is interesting to 
note that ABCF1 was previously associated with ASD in 
a multi-omics data analysis [76]. Other comparable stud-
ies employing Illumina Infinium 450 BeadChip found 
mismatching results when studying DNA methylation in 
infant tissues in relation to maternal stress. Rijlaarsdam 
et  al. [77] showed no associations between PS exposure 
and neonatal cord blood DNA methylation, whereas 
Wikenius et al. [78], studying maternal depressive symp-
toms, found no significant association with 6-week 
infant’s saliva DNA methylation. In contrast, Non et  al. 
[33] reported the identification of CpGs located in a clus-
ter of genes related to transcription, translation and cell 
division processes in cord blood of neonates exposed to 
non-medicated depression or anxiety.

To summarize these results, we conclude that these 
genes have been related to several regulatory processes of 
tissue and cellular homeostasis that, when disturbed, can 
elicit a stress response [79]. Moreover, dysregulation of 
the expression of CSMD1 and YAP1 has been related to 
disorders of the immune system as well as of the central 
and autonomic nervous systems.

Biophysical signature of chronic stress in mother–fetus 
dyad and DNA methylation
No significant CpG sites were observed in association 
with FSI. This may be either due to insufficient study 
power or reflect an underlying mechanism. Namely, it is 
possible that regardless of the non-specific chronic stress 
perceived by the mother (PSS) and the ANS response of 
the fetus (FSI), what most impacts the fetal epigenetic 
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profile is the stress generated by specific worries related 
to pregnancy (captured by PDQ) and the associated high 
circulating levels of cortisol that is crossing the mater-
nal–fetal placental barrier and impacting the fetal physi-
ology on the scale of epigenome. It is possible that FSI is 
not the appropriate biophysical correlate of epigenome-
level alterations due to PS. In future studies, to investi-
gate this relationship further we intend to analyze in 
more depth the relationships between the neonatal epig-
enome and the biophysical features of ANS derived from 
maternal and fetal HRV.

Strengths and limitations
In the present study, we report the findings of the larg-
est prospectively followed cohort of its kind to date. Sev-
eral strengths are to be highlighted. Firstly, saliva cells are 
easy and noninvasive to obtain in newborns. Even though 
epigenetic changes like DNA methylation are cell and tis-
sue-specific, some CpG sites show cross-tissue relevance. 
Changes in peripheral tissues such as saliva could serve 
as potential biomarkers for disease risk while also giving 
an advantage of being noninvasively obtainable. Since the 
primary organ affected by stress is not available in human 
studies and postmortem brain tissue samples cannot cap-
ture the fluid state of the epigenome [80], more accessible 
samples such as saliva and blood are often used as sub-
stitutes. Binder and colleagues showed that saliva reflects 
better DNA methylation patterns of the brain than meth-
ylation in blood, highlighting that saliva is the sample 
medium of choice for epigenetic studies of psychiatric 
traits, especially in small children [81].

Secondly, we believe that our study’s findings can be 
generalized to the population of pregnant women in 
most clinics, as this study includes mothers experiencing 
typical daily stress situations rather than extreme stress 
exposures.

Limitations to our study are as follows. Our study has 
a relatively small sample size, which makes identifying 
subtle differences in methylation difficult. Originally, we 
powered the study based on the primary outcome in this 
project: a difference in the child’s mental developmental 
index at 24 months of age between infants from stressed 
mothers and controls. With this in mind, assuming a rel-
evant difference in means of 5 with a SD of 10 [82] (alpha 
5% and power [1-beta] 80%), we needed to include 63 
stressed mothers in our analyses. To account for 15% 
dropout, we aimed at for 75 stressed women. Given the 
figures in the literature [83], we expected around 10% 
screen-positives on the anxiety screener. As we show in 
Additional File 1: Fig. S2, 2000 patients received the ques-
tionnaires and 728 patients were screened upon return-
ing the questionnaires.

Since there is no other available study with cohorts of 
pregnant women and newborn saliva samples obtained, 
we have not yet been able to verify our findings in an 
independent cohort. The only way to validate that one 
EWAS study compares to another is to use the same psy-
chological tests in a similar population. Comparison with 
other studies is difficult since we have used a more nar-
rowly defined chronic stress paradigm, saliva medium, 
and a newer Infinium array that may have together 
increased our chances in discovering meaningful CpG 
associations. However, the novel findings of DMPs and 
DMRs related to these stress measures in newborn saliva 
should be considered as hypothesis-generating and 
requires further validation in larger cohorts.

Assessing the DNA methylation levels as soon as the 
baby is born in association with four stress measures 
shows the impact of maternal stress on epigenetic marks 
during the fetal life. However, to serve as early neurode-
velopmental biomarkers these marks have to be related 
to the corresponding neurodevelopmental appraisals. 
Since epigenetic marks are not fixed at birth and meth-
ylation patterns change with age, we are presently car-
rying out a longitudinal study in this cohort. The DNA 
methylation status at 2 years of age will allow us to detect 
the epigenetic drift defined as the difference in the DNA 
methylation status over time [78]. Moreover, the 2 years 
of time point will allow us to test for an association with 
the neurodevelopmental outcome showing the influence 
of the environment during the first two years of life on 
the epigenetic traits and whether the present early neo-
natal epigenetic differences can serve as biomarkers for 
early interventions to help restore optimal neurodevelop-
mental trajectories [23].

Conclusions
In this study, we identified novel associations between 
newborn epigenome-wide methylation levels measured 
noninvasively in saliva and chronic psychosocial stress 
experienced by the mother during pregnancy. The epi-
genetic changes are mostly related to genes involved in 
secretion and transportation, nuclear signaling, Hippo 
signaling pathways, apoptosis, intracellular trafficking 
and neuronal signaling. Most strikingly, we found that 
both DMP (such as CSMD1) and DMRs (DAXX and 
ARL4D) are annotated to genes related to neurological 
disorders such as ASD, PTSD and schizophrenia, point-
ing out to the potential risk of these children to suffer 
from these disorders.

Taken together, our findings demonstrate that new-
borns exposed to chronic stress during gestation show 
DNA methylation signatures related to neuronal, 
immune and endocrine homeostases.
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Materials and methods
Study design
Women with singleton pregnancies, between ages 18 
and 45 in their third trimester (at least 28-week gesta-
tion) were recruited at the Department of Obstetrics and 
Gynecology at ‘Klinikum rechts der Isar’ of the Technis-
che Universität München (TUM). Exclusion criteria were 
serious placental alterations, fetal malformations and 
maternal severe illness during pregnancy or use of recre-
ational drugs [24]. Between June 2016 and July 2019, 164 
women were recruited. Due to methodological problems 
with saliva sampling, methylation data was available for 
114 subjects.

Measures
Exposure: Maternal stress during pregnancy
Stress can be assessed using general self-report instru-
ments designed for pregnant women and these maybe 
more predictive of the perinatal outcome than generic 
stress inventories and able to assess pregnancy-related 
stress. We used psychosocial stress assessment instru-
ment (PSS and PDQ) and also measured stress as chroni-
cally accumulated cortisol using maternal hair samples.

(a) Psychosocial stress assessment Maternal psychosocial 
stress was measured using the validated German version 
of Cohen Perceived Stress Scale (PSS-10) [84]. PSS-10 is 
a widely used psychological instrument to measure non-
specific perceived chronic stress and measures the degree 
to which a situation in a person’s life is appraised as stress-
ful. It has been validated in German-speaking population 
and is a quick tool for screening chronic stress among 
prospective subjects [85]. In addition, the validated Ger-
man version of the Prenatal Distress Questionnaire 
(PDQ) was also administered to the participants to assess 
specific pregnancy worries and concerns [24, 86–89]. PSS 
score and PDQ score were correlated using the Spearman 
method in R studio.

(b) Hair cortisol assessment After delivery, maternal hair 
strands (~ 3 mm diameter) were collected from the pos-
terior vertex region on the head as close to the scalp as 
possible. The hair samples were sent to the Department 
of Biochemistry (Endocrinology section) of the Faculty of 
Pharmacy and Biochemistry (University of Buenos Aires, 
Argentina) for cortisol measurement using an automated 
chemiluminescent immunoassay. This method was vali-
dated, and putative confounders such as dye, washing or 
dandruff shampoo were shown to not interfere with cor-
tisol measurements [90] Based on the hair growth rate 
of 1 cm per month, the 3 cm long hair segment reflects 
the integrated hormone secretion over the three-month 

period prior to sampling. The cortisol was extracted and 
measured according to Iglesias et al. [91]. This procedure 
has been validated with the standard method of mass 
spectrometry and was patented by University of Buenos 
Aires [90].

Exposure: fetal stress
Fetal stress assessment
The detailed fetal assessment is described elsewhere 
[24]. In brief, bivariate PRSA (bPRSA) was used to assess 
the coupling between maternal (mHR) and fHR result-
ing in Fetal Stress Index (FSI). The fHR was measured 
by taECG. Fetal ECG extraction algorithm SAVER [92] 
was applied to detect the fetal R-peaks and the mater-
nal R-peaks in the taECG separately. With the fetal and 
maternal R-peaks, the fetal and maternal RR interval 
time series were obtained. Mean fHR and mean maternal 
heart rate were calculated. Generally, bPRSA identifies 
and quantifies the relationship between two simultane-
ously recorded signals. Here, the two signals are mHR as 
the trigger signal and fHR as the target signal. FSI meas-
ures the response of fHR to decreases in mHR.

Outcome: DNAm measurement from newborn saliva
Sample and data acquisition
Newborn saliva sampling Immediately after delivery, 
the midwife obtained the newborn saliva/buccal sample 
by gently rubbing the gums on both sides with the sponge 
of the Oracollect-DNA kit (DNA Genotek, Canada) and 
stored it at room temperature. Throughout the manu-
script and for ease of reading, we have referred as ‘saliva’ 
to the sample containing both the saliva fluid plus leuko-
cytes and squamous epithelial cells from the oral cavity 
[93].

DNA extraction DNA was extracted from 1  ml saliva 
samples using the PrepIT kit (DNA Genotek). A 1 µl ali-
quot of the extracted samples was checked on 0.8% Aga-
rose gel and measured via NanoDrop for quality. A 2 µl 
aliquot of DNA extract from the samples was used to run 
PCR to check for the sex of the newborn.

Illumina MethylationEPIC BeadChip array Bisulfite 
conversion of DNA and processing of methylation arrays 
were accomplished in collaboration with the Institute of 
Epidemiology (Complex diseases group) at Helmholtz 
Zentrum Munich. For each sample, 500 ng of the extracted 
salivary DNA was treated with sodium bisulfite using the 
EZ–DNA methylation kit following the manufacturer’s 
protocol. DNAm was assessed using the Illumina Infin-
ium Human MethylationEPIC BeadChip array (Illumina 
Inc., San Diego, CA, USA) according to the manufactur-
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er’s instructions. This array measures over 850,000 loci 
at a single-nucleotide resolution. The BeadChip includes 
probe types of two different chemistries: [1] Type I probes, 
in which two different probe types interrogate each CpG 
site, one which targets methylated DNA and one that tar-
gets unmethylated DNA. [2] Type II probes binding to the 
nucleotide just before the target site, and create a single 
base extension of G or A complementary to the methyl-
ated C or unmethylated T.

Data processing
Quality control
The arrays were scanned using an Illumina iScan reader 
and processed using GenomeStudio software (Illu-
mina, Inc.). The raw data (idat files) were imported into 
R using the Bioconductor minfi package [94] and CpGs 
that have below-background expression levels in more 
than six samples were filtered out. Concordance between 
the reported sex and methylation predicted sex was con-
firmed. Probes with common single-nucleotide polymor-
phism (SNPs) near the methylation binding site were 
identified and filtered out. To simplify the analysis, probes 
were restricted to those on autosomal chromosomes. The 
remaining probes were background-corrected using the 
out-of-bound probes [95], and normalized using a func-
tional normalization procedure, which uses two principal 

components of a set of control probes in order to remove 
technical variability [96]. The β-values (proportion of 
methylated probes at each CpG) were then converted to 
M-values (logit base 2 of the β-values), which were used 
for all linear modeling. To account for unobserved vari-
ability or potential batch effects, models were addition-
ally adjusted with three surrogate variables (SV) that 
were generated from the M-values, using the Bioconduc-
tor ‘SVA’ package [97]. The surrogate variables were used 
as covariates in the statistical analysis. The final analysis 
included 808,554 probes. Linear regression was used to 
examine the associations of each CpG site with stress 
measures. Probes were considered significantly differ-
entially methylated at a false discovery rate (FDR) < 0.05 
[98].

Covariates Figure 6 shows the proposed DAG that dis-
plays the covariates used in our analysis. We included 
covariates such as newborn sex, gestational age at birth, 
maternal smoking, autoimmune diseases and gestational 
diabetes. The sex of the newborn was obtained from the 
clinical history of the patient. Gestational age was cal-
culated from the first day of the woman’s last menstrual 
cycle to the date of delivery. Maternal smoking was cat-
egorized into two categories: ‘never smoked’ and ‘smoking 
during pregnancy.’ Covariates signifying autoimmune dis-

Fig. 6 Direct acyclic graph (DAG) displaying the hypothesized associations between maternal and fetal stress and infant salivatory DNA 
methylation
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eases and gestational diabetes were categorized into two 
categories: ‘Yes’ and ‘No.’

We adjusted for technical covariate, i.e., Illumina plate 
factor. It should be noted that the cellular DNA source of 
saliva is heterogeneous. While there is much literature 
dealing with saliva cell type composition in infants, chil-
dren and adults [78, 93, 99], to date, there are no stud-
ies indicating the cell mixture composition of the saliva 
of the newborn. Housemann et al., in 2014 [100], intro-
duced the reference-free cell type method to estimate cell 
types in tissues such as saliva, placenta and adipose tissue 
[100], which is closely related to surrogate variable analy-
sis (SVA) [101]. We have therefore used SVA directly to 
estimate for all the unobserved variability including cell 
types. It has been shown that using SVA increases the 
biological accuracy and reproducibility by identifying 
the sources of heterogeneity and correctly accounting for 
them in the analysis [101]. Three surrogate variables that 
were generated in the quality control step, using the SVA 
package, were also used as covariates in the main model.

Data analysis
We conducted a series of analyses on the genome-wide 
microarray data, with each technique designed to cap-
ture potentially different patterns of DNA methylation. 
The first analysis conducted was EWAS analysis for the 

DMPs (CpG or site-by-site regression analysis), which 
analyzed each CpG site individually. Second, we per-
formed a sex interaction EWAS analysis for the DMPs to 
compare methylation patterns in terms of sex. The Illu-
mina database (‘IlluminaHumanMethylationEPICanno.
ilm10b4.hg19’) was primarily used for identifying gene 
annotations for the significant hits. The UCSC genome 
browser was used to verify genes identified with Illumina 
database and, where genes were missing in the Illumina 
database, was searched to augment genes within 50 kb of 
the CpG site. Third, the biological exploration and net-
work analysis for each CpG annotating to specific genes 
was conducted using the online software STRING-DB 
[25] and SFARI [26]. Fourth, we conducted DMR analysis 
(or regional analysis), which captures an average pattern 
of DNA methylation among neighboring sites. Figure  7 
shows a summary of the methodological study design.

Differentially methylated positions (DMPs) analysis
Each CpG site or DMP was separately tested for asso-
ciation with exposure to stress. Three sets of EWAS 
analyses were run to identify CpG sites associated with 
either PSS, PDQ, FSI or cortisol. All the statistical analy-
ses were done in R version 3.5.2. We used the following 
linear regression model in ‘limma’ R package to test for 
DMPs:—DNA methylation ~ Stress measures + Newborn 

Fig. 7 Overall methodological study design. Illumina measured salivary DNA methylation using the EPIC microarray platform. The raw data were 
processed and quality-controlled using array-specific algorithms in R studio. Data visualization and statistical analysis identified relevant associations 
and derived a list of differentially methylated positions and regions
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sex + Gestational age + Smoking + Autoimmune 
diseases + gestational diabetes + Illumina plate 
factor + SVAs. We visualized the epigenome-wide asso-
ciations study results using Manhattan plots and quan-
tile–quantile (QQ plots). Genomic inflation factor was 
calculated for each association. We corrected the p val-
ues for inflation if lambda was above 1.1, using a Bayes-
ian method for estimation of empirical null distribution 
as implemented in R/Bioconductor package ‘bacon’ [102].

Sex interaction analysis
Sex interaction analysis was performed in the FELICITy 
cohort for each CpG/DMP site association with the stress 
measures. The model was identical to the adjusted model, 
but with a ‘Sex * methylation’ interaction term (male as a 
reference sex). Statistical significance threshold was set at 
FDR < 0.05.

Exploratory analysis of DMPs
To investigate whether specific biological processes and 
networks are overrepresented in our EWAS results, 
network analyses were performed for the DMPs using 
STRING-db. The protein encoding genes that were anno-
tated to significant DMPs were analyzed using STRING-
DB. STRING-DB is an unsupervised statistical network 
analysis database that has known proteins and their phys-
ical and functional interaction networks [25]. We used 
the KEGG database in STRING-DB to explore whether 
annotated genes have been related to neurobiological and 
neuronal processes or diseases. We also used the SFARI 
gene database [26] to extract information for the genes 
annotated to CpGs specific to ASD [27].

Differentially methylated regions (DMRs) analysis
DMRs were initially identified using the Bioconductor 
DMRcate package [103] and verified using comb-p [104]. 
These packages are consistently reported to have the best 
sensitivity and highest control of false positive rate when 
compared to other DMR tools [105]. A significant DMR 
can be detected even if there is no genome-wide signifi-
cant DMP in the region. DMRcate identifies DMRs from 
the tunable kernel smoothing process of association sig-
nals [103].

DMRcate was used on the results of the limma analy-
sis to test for DMRs. The parameters for DMRcate 
(lambda = 1000, C = 2) were set, and a FDR cutoff of 0.05 
was used to determine significance. Further Comb-p was 
used to verify DMRs identified by DMRcate. For comb-
p, identified DMRs consisting of at least two probes and 
having a Sidak-corrected p value < 0.05 were considered 
statistically significant [104]. DMRs were annotated to 
gene symbols according to genome assembly (hg19). 
p value for each DMR was adjusted for multiple testing 

with Sidak correction method as implemented by default 
in the ‘comb-p’ tool.
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