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PARP14 is a novel target in STAT6 mutant follicular lymphoma
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The variable clinical course of follicular lymphoma (FL) is determined by the molecular heterogeneity of tumor cells and complex
interactions within the tumor microenvironment (TME). IL-4 producing follicular helper T cells (TFH) are critical components of the FL
TME. Binding of IL-4 to IL-4R on FL cells activates JAK/STAT signaling. We identified STAT6 mutations (STAT6MUT) in 13% of FL
(N= 33/258), all clustered within the DNA binding domain. Gene expression data and immunohistochemistry showed upregulation
of IL-4/STAT6 target genes in STAT6MUT FL, including CCL17, CCL22, and FCER2 (CD23). Functionally, STAT6MUT was gain-of-function
by serial replating phenotype in pre-B CFU assays. Expression of STAT6MUT enhanced IL-4 induced FCER2/CD23, CCL17 and CCL22
expression and was associated with nuclear accumulation of pSTAT6. RNA sequencing identified PARP14 -a transcriptional switch
and co-activator of STAT6- among the top differentially upregulated genes in IL-4 stimulated STAT6MUT lymphoma cells and in
STAT6MUT primary FL cells. Quantitative chromatin immunoprecipitation (qChIP) demonstrated binding of STAT6MUT but not
STAT6WT to the PARP14 promotor. Reporter assays showed increased IL-4 induced transactivation activity of STAT6MUT at the
PARP14 promotor, suggesting a self-reinforcing regulatory circuit. Knock-down of PARP14 or PARP-inhibition abrogated the
STAT6MUT gain-of-function phenotype. Thus, our results identify PARP14 as a novel therapeutic target in STAT6MUT FL.

Leukemia; https://doi.org/10.1038/s41375-022-01641-x

INTRODUCTION
Follicular lymphoma (FL) is among the most common malignant
lymphomas worldwide. Most patients present with advanced stage
disease and are still considered incurable [1]. Although considered
the prototype of indolent lymphoma, FL is a highly heterogenous
disease and a subset of patients has early treatment failure,
aggressive clinical course and remarkably short overall survival
[2, 3]. Treatment of relapsed, refractory or transformed FL remains a
major clinical challenge [4]. Molecular-targeted therapies hold
promise to improve treatment outcome if tailored toward the
individual disease biology of distinct patient subsets.
The molecular hallmark of FL is the rearrangement of chromo-

some 18q21 resulting in overexpression of anti-apoptotic BCL2 [5].

Dozens of additional recurrent gene mutations have been reported
in FL, many of which are likely to have distinct implications on the
biology and the clinical course of the disease (reviewed in [6]). In
addition to tumor cell intrinsic alterations, features of the tumor
microenvironment (TME) have also been shown to be associated
with treatment outcome [7–11].
FL cells retain a remarkable dependency on the TME, orchestrat-

ing a tumor-permissive immune niche (reviewed in [12]). The FL
TME is enriched with T follicular helper (TFH) cells which express
higher levels of IL-4 compared to TFH cells from healthy lymph
nodes [13, 14]. Binding of IL-4 to its receptor (IL-4R) on lymphoma
cells recruits JAK1/3 and activates STAT6 by phosphorylation of
Y641. This promotes the formation of STAT6 homodimers, which
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translocate to the nucleus and bind to regulatory elements of STAT6
target genes via the DNA-binding domain. In the presence of IL-4,
transcriptional repressors are released (e.g., HDAC2 and HDAC3) and
transcriptional coactivators are recruited (e.g., EP300, NCOA1 and
NCOA2) in a process that involves PARP14, a member of the poly
ADP-ribose polymerases (PARP) family, thereby forming the STAT6
enhanceosome that drives STAT6-dependent gene expression
[9, 15–17].
Others and we have previously reported that STAT6 is

recurrently and significantly mutated in FL and other B cell
lymphomas [18–23]. In-vitro studies and crystal structure analyses
have suggested that these mutations might enhance the ability of
STAT6 to bind to canonical DNA binding sites of STAT6 [23, 24].
However, the underlying mechanism of how STAT6 mutations
(STAT6MUT) contribute to FL biology remains incompletely under-
stood. Moreover, potential therapeutic vulnerabilities have not yet
been explored. Here we describe a therapeutically targetable
PARP14-mediated self-reinforcing regulatory circuit that amplifies
IL-4 induced STAT6-dependent gene expression in STAT6MUT

lymphoma cells.

MATERIALS AND METHODS
Cell lines and reagents
OCI-Ly1and OCI-Ly8 cells were cultured in IMDM (PAN Biotech, Aidenbach,
Germany). 293 T HEK cells and HeLa cells were cultured in Dulbecco’s
Modified Eagle Medium. All cells were cultured with 10% FBS (PAN), 37 °C
5% CO2. Cell lines were authenticated by short tandem repeat analysis
(Eurofins, Val Fleuri, Luxembourg) and tested negative for mycoplasma by
PCR. Of note, we confirmed that OCI-Ly1 harbors a variant (G375R) in the
STAT6 DNA-binding domain [23] that, to the best of our knowledge, has
not been reported in any other cell line or primary tumor sample. Cells
were stably transduced with a CMV-driven cDNA expression construct
(pHAGE-CMV-MCS-IRES-ZsGreen; PlasmID, EvNO00061605) encoding for
Flag-tagged mutant (MUT) STAT6 (D419G, D419N, N421K, or D519V) or
wild type (WT) STAT6 (PlasmID, HsCD00365550) as previously described [7],
and stimulated with human recombinant IL-4 (Miltenyi Biotec, Cologne,
Germany) as indicated.

Human ex vivo FL-like co-culture model
Briefly, we isolated germinal center (GC) cells from human tonsils and
immortalized them by transduction of BCL2 and BCL6 as previously
described [25]. In addition, we stably expressed STAT6WT, STAT6D419G or EV
control. These FL-like cells were grown on the follicular dendritic cell (FDC)
feeder cell line YK6-CD40lg-IL21, which stably expresses CD40L and IL-21.

Immunoblotting
Western blot and immunoprecipitation (IP) experiments were performed
as previously described [7]. Technical details and antibodies are listed in
the supplementary methods. Subcellular fractions were prepared using the
Qproteome Nuclear Protein Kit (Qiagen, Hilden, Germany).

Pre-B CFU assay
Emu-BCL2 (B6.Cg-Tg(BCL2)36Wehi/J) mice were sacrificed and femurs were
flushed with phosphate buffered saline (PBS). 1 × 106 bone marrow cells were
retrovirally transduced with STAT6WT, STAT6D419G or empty vector (EV) (all
cloned into pMSCV-IRES-GFP) as previously [7] described, incubated for 4 h (5%
CO2, 37 °C) and plated onto methylcellulose (0.3 × 106 cells/mL) that supports
the growth of pre-B colony-forming-units (CFUs) (M3630, Stem Cell
Technologies, Vancouver, British Columbia, Canada). Pre-B CFUs were counted
according to themanufacturer’s guidelines. Cells from each plate were washed
off and replated entirely onto fresh M3630methylcellulosemedia every 7 days.

RNA sequencing
OCI-Ly1 cells stably expressing either STAT6WT (N= 9) or STAT6MUT (D419G,
D419N, N421K, each N= 3) were stimulated with IL-4 (10 ng/ml for 20min),
washed and replated in IL-4 free media. RNA sequencing libraries were
prepared from mRNA isolated at 2, 4, and 8 h (Direct-zol RNA MiniPrep
Plus, Zymo Research, Irvine, California, USA), respectively, using the prime-
seq protocol as previously described and sequenced on an Illumina HiSeq

1500 system [26]. Raw sequence data was processed following the Drop-
seq data pipeline. Differential gene expression analysis was performed
using DESeq2 package [27]. Raw and processed RNA sequencing data have
been made available via the Gene-Expression-Omnibus platform under the
accession number GSE208031.
We re-analyzed previously published single cell RNA sequencing data

[28] from eight primary FL with known STAT6 genotypes using the R
package Seurat (version 3) [29].

Proximity ligation assay (PLA)
Briefly, 2 µm cytoblock sections of OCI-Ly8 cells (STAT6WT vs STAT6MUT with
or without IL-4 stimulation [10 ng/ml for 20min]) were co-stained with
mouse anti-STAT6 (LSBio, LS-B6154, 1:800) and rabbit anti-PARP14 (Sigma,
HPA012063, 1:100). Images were acquired on a Vectra Polaris imaging
system using inForm automated image analysis software (Akoya). PLA
spots (TexasRed channel) per cell were counted in five representative view
fields (40×) using HALO Image Analysis Platform version 3.2.

Luciferase reporter assay
PARP14 was cloned into pGL3 basic vector as detailed in the supplement
following the manufacturer’s guidelines (Promega, Madison, Wisconsin, USA).
The PARP14-pGL3 vector (200 ng) was co-transfected with pRL-CMV Renilla
luciferase control reporter (40 ng, Promega) and 10 or 50 ng STAT6 expression
vector (pHAGE CMV-STAT6MUT vs pHAGE-CMV-STAT6WT) into 293 T HEK cells
using ViaFectTM (Promega). After 24 h, cells were stimulated with IL-4 (10 ng/
ml) for 6 h and analyzed by Dual-Glo® Luciferase Assay (Promega). The PARP14
knock-down experiment was performed in HeLa cells since these express high
levels of endogenous PARP14. Two shRNA constructs were used to knock-
down PARP14 (SHC016-1EA, TRCN0000053158, TRCN0000053159, Sigma
Aldrich, St. Louis, Missouri, USA), a non-targeting shRNA construct was used
as control (see supplementary methods). PJ34 (Selleckchem, Munich,
Germany) was used as a PARP inhibitor (50 µM, 30min prior to IL-4
stimulation). Viability was measured by Vi-Cell XR, cell viability analyzer
(Beckman Coulter).

Quantitative chromatin immunoprecipitation (qChIP)
qChIP was performed in OCI-Ly8 expressing STAT6WT, STAT6D419G or EV
stimulated with IL-4 (10 ng/ml for 24 h). Cells were washed in PBS and
double crosslinked with EGS (Sigma Aldrich) and formaldehyde (1%,
Thermo Fisher Scientific, Waltham, Massachusetts, USA). 15 µg of sheared
chromatin was used for each IP of 3x Flag-tagged STAT6 (STAT6WT or
STAT6D419G), H3 or IgG as previously described [30].
Additional methods are provided in the supplement.

RESULTS
STAT6 mutations cluster within the DNA binding domain
In a cohort of 258 patients with advanced stage FL, we identified
35 STAT6 mutations in 33 diagnostic biopsies (13%; Fig. 1A). All
mutations clustered within the DNA binding domain, mostly at
D419 (N= 16, 43%). In addition, 3 patients harbored a known (yet
rare) polymorphic D419N variant at this position (rs11172102,
Fig. 1A). The variant allele frequencies (VAF) of two of these cases
were suggestive of somatically acquired mutations (Supplemen-
tary Fig. 1A). Two FL harbored two mutations each, both located
within the DNA binding domain, respectively. Manual review of
the sequencing reads spanning the mutations demonstrated that
these mutations were located in cis on the same allele
(Supplementary Fig. 2A).

STAT6MUT FL are enriched for IL-4 linked gene expression
To identify gene expression patterns associated with STAT6MUT, we re-
analyzed the available genome-wide RNA profiling data from 106
diagnostic biopsies from our cohort, comprising 17 and 89 cases with
and without STAT6MUT, respectively (details provided in Supplemen-
tary Methods). Unsupervised hierarchical clustering distinguished two
groups that were enriched for the respective STAT6 genotypes (MUT
vs WT, p < 0.0001; Fig. 1B). Gene set enrichment analysis (GSEA)
demonstrated that STAT6MUT cases were significantly enriched for two
previously described IL-4 gene expression signatures [31, 32] (Fig. 1C).
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The top differentially expressed genes included known IL-4 regulated
genes such as CCL17, CCL22, and FCER2 (Fig. 1D), which encodes for
the low-affinity cell surface receptor for IgE (FcεRII), alias CD23.

We validated increased FCER2 gene expression in STAT6MUT FL in
another 138 diagnostic biopsies from the GLSG cohort with known
mutation profile and available digital multiplexed gene expression
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data (nCounter, NanoString) (Fig. 1E). To validate enhanced CD23
protein expression and STAT6 pathway activation in STAT6MUT FL, we
performed immunohistochemistry (IHC) of primary patient samples.
We indeed observed increased CD23 expression in STAT6MUT FL
compared to STAT6WT FL (Fig. 1F, left panel). Moreover, we confirmed
that pSTAT6 positive lymphoma cells formed prominent clusters in
STAT6MUT FL in the vicinity of IL-4 producing TFH cells (Fig. 1F, right
panel) as previously described [33].

DNA binding site mutations are gain-of-function and require
IL-4 for increased STAT6 activation
To functionally test whether STAT6 DNA binding site mutations
are gain-of-function, we utilized a modified pre-B colony-
formation-unit (CFU) assay and analyzed the serial replating
capacity. Specifically, bone marrow cells from mice expressing a
BCL2-transgene in B-cells only (Emu-BCL2) were retrovirally
transduced with STAT6WT, STAT6D419G or EV control and plated
on methylcellulose supplemented with cytokines that support the
growth of pre-B CFUs plus additional mouse IL-4 (mIL-4). Beyond
passage 3, only STAT6D419G conferred a serial replating phenotype
(Fig. 2A).
To study the molecular mechanisms of this IL-4 induced gain-of-

function phenotype, we stably expressed STAT6MUT (D419G,
D419N, N421K, or D519V), STAT6WT or EV control in OCI-Ly1 and
OCI-Ly8 cells, two B cell lymphoma cell lines that harbor the FL
hallmark translocation t(14;18). Upon IL-4 stimulation, we
observed significantly increased FCER2 gene expression in cells
stably expressing STAT6D419G (Fig. 2B), STAT6D419N, STAT6N421K, or
STAT6D519V (Supplementary Fig. 3A) as compared to STAT6WT.
Likewise, IL-4 induced expression of CD23 on cell surfaces and
soluble CD23 (sCD23) in cell supernatants was significantly
increased in STAT6MUT vs STAT6WT cells (Fig. 2C, D). Importantly,
we did not see any differences of STAT6MUT vs STAT6WT in the
absence of IL-4 (Fig. 2B–D, Supplementary Fig. 3A–C).

DNA binding site mutations promote aberrant IL-4 induced
nuclear accumulation of pSTAT6
To study the mechanism of increased IL-4 induced transcriptional
activation of STAT6MUT, we determined pSTAT6 levels in
cytoplasmic and nuclear fractions. Following IL-4 stimulation, we
observed higher nuclear pSTAT6 levels in cells expressing
STAT6D419G (Fig. 2E, F) or STAT6D419N (Supplementary Fig. 4A) as
compared to STAT6WT. Accordingly, cytoplasmic fractions were
more depleted of pSTAT6 in STAT6MUT vs STAT6WT cells. Total
STAT6 and pSTAT6 levels in whole cell lysates were not different
(Supplementary Fig. 4B, C).
To determine the STAT6 signaling kinetics, we stimulated OCI-

Ly1 and OCI-Ly8 cells with IL-4 for 20 min only, and then cultured
the cells for an additional 8 h in the absence of IL-4 (“pulse
stimulation” (P)), modeling the transient exposure of FL cells to IL-
4 within the dynamic TME. Following IL-4 pulse stimulation, we
detected higher levels of nuclear pSTAT6 in STAT6MUT cells as
compared to STAT6WT cells (Fig. 2E, F, Supplementary Fig. 4C).
Similar results were obtained when these cells were analyzed for

pSTAT6 by IHC (Fig. 2G). IL-4 pulse simulation also led to
significantly enhanced expression of FCER2 mRNA and
membrane-bound CD23 in STAT6MUT vs STAT6WT cells (Supple-
mentary Fig. 3D, E). Thus, DNA binding site mutations in STAT6
lead to increased accumulation of pSTAT6 within the nucleus, and
increased transcription and expression of STAT6 target genes.

PARP14 is strongly upregulated in IL-4 stimulated STAT6MUT

cells
We performed RNA sequencing of OCI-Ly1 cells expressing
STAT6MUT (D419G, D419N, or N421K, N= 3 each) or STAT6WT

(N= 9) at different time points following IL-4 stimulation (2, 4, and
8 h, respectively; Supplementary Fig. 5A). We selected OCI-Ly1
cells because of their marked responsiveness to IL-4. Principal
components analysis revealed tight clustering of STAT6D419G,
STAT6D419N, and STAT6N421K, mirroring the highly similar gain-of-
function phenotype across the different mutations. This justified
pooling of data from all STAT6MUT cells for comparative analyses.
In contrast, STAT6WT was clearly separated from STAT6MUT by PC2
(Supplementary Fig. 5B). Transcriptional changes over time were
mostly represented by shifts in PC1 (Supplementary Fig. 5B). The
expression levels of 54 genes were significantly different across all
analyzed time points. Differential gene expression was skewed
toward upregulation in STAT6MUT vs STAT6WT, both by fold change
and number of genes (Fig. 3A). Supplementary Fig. 5C shows the
top differentially expressed genes for each time point and
unsupervised clustering robustly separated STAT6MUT from
STAT6WT cells. Reassuringly, we found FCER2 to be differentially
upregulated at the 8 h time point (log2 fold change 0.65,
p= 0.0007). Other known STAT6 target genes such as IRF4 and
SOCS1 were also significantly upregulated in STAT6MUT vs STAT6WT

cells at one or more time points. Of note, Poly(ADP-Ribose)
Polymerase Family Member 14 (PARP14) was among the top most
differentially upregulated genes across all time points (Fig. 3A,
Supplementary Fig. 5C). We confirmed that IL-4 induced increased
PARP14 expression by qPCR (Fig. 3B) and by Western blot (Fig. 3C)
in STAT6MUT cells, whereas levels were not different in STAT6WT

cells. PARP14 has been reported to function as a transcriptional
switch for STAT6-dependent gene activation [16]. Specifically, in
the presence of IL-4 the catalytic activity of PARP14 facilitates
STAT6 binding to the promoter, and release of transcriptionally
repressive HDACs. We could indeed confirm direct interaction of
PARP14 and STAT6 in IL-4 stimulated lymphoma cells by IP of
3xFlag-tagged STAT6 and immunoblotting for PARP14 (Fig. 3D).
Furthermore, we performed proximity ligation assays (PLA) in OCI-
Ly8 cells and showed significantly increased STAT6-PARP14
interaction upon IL-4 stimulation (Supplementary Fig. 6) and in
IL-4 stimulated STAT6D419G cells as compared to STAT6WT cells
(Fig. 3E).

PARP14 is significantly upregulated in STAT6MUT tumor cells in
human FL
To test whether that PARP14 is indeed upregulated in STAT6MUT

human FL, we analyzed single cell RNA sequencing data from

Fig. 2 STAT6 DNA binding site mutations are gain-of-function and require IL-4 for increased STAT6 activation. A Hematopoietic stem and
progenitor cells (HSPCs) from Emu-BCL2 mouse cells transduced with either STAT6WT, STAT6D419G or empty vector (EV) and serially replated on
cytokine-supplemented methylcellulose (MethoCult, M3630) that supports the growth of mouse pre-B colony-forming units (CFUs) plus
additional mouse IL-4 (mIL-4) (N= 3, mean ± SD). B FCER2 mRNA levels (by qPCR) in OCI-Ly1 and OCI-Ly8 cells expressing either STAT6WT,
STAT6D419G or EV control after IL-4 stimulation (10 ng/mL, 24 h; 2−dCt values relative to STAT6WT, N= 3, mean ± SD). C CD23 cell surface
expression (by FACS) on OCI-Ly1 and OCI-Ly8 expressing either STAT6WT, STAT6D419G or EV control after IL-4 stimulation (10 ng/mL, 24 h;
geometric mean, N= 3, mean ± SD). D Soluble CD23 (sCD23) levels (by ELISA) in cell culture supernatants of OCI-Ly1 and OCI-Ly8 cells
expressing either STAT6WT, STAT6D419G or EV control after IL-4 stimulation (10 ng/mL, 72 h by ELISA (N= 3, mean ± SD). E Immunoblots of
subcellular fractions (cytoplasmic vs nuclear) of OCI-Ly1 and F OCI-Ly8 cells expressing either STAT6WT or STAT6D419G. “−“ indicates no IL-4
stimulation, “+” indicates IL-4 stimulation (10 ng/mL for 20 min), and “P” indicates IL-4 pulse stimulation (IL-4 10 ng/mL for 20min, then wash
& withdrawal of IL-4 and incubation for another 8 h in fresh media without IL-4). G Representative immunohistochemistry (IHC) stain for
phosphorylated STAT6 (pSTAT6) in OCI-Ly1 cells expressing STAT6WT or STAT6D419G with or without IL-4 pulse stimulation.
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human FL biopsies with known mutation status (N= 8, Supple-
mentary Fig. 7) from Haebe et al. [28]. In fact, tumor cells from FLs
harboring any STAT6MUT (N= 2), and STAT6D419G in particular
(N= 1), had significantly higher PARP14 expression compared to
STAT6WT tumor cells (Fig. 3F). Of note, this difference in PARP14
expression was only seen in a subpopulation of tumor cells,
consistent with our hypothesis that this phenotype is restricted to
FL cells that harbor the STAT6 mutation and are exposed to TME-
derived IL-4, i.e., localized in spatial proximity to IL-4 producing
TFH cells.

Validation in a human ex vivo FL-like co-culture system
We wanted to validate our findings in an ex vivo model that more
closely resembles human FL. Therefore, we immortalized human
tonsil-derived GC B cells by stably expressing BCL2 and BCL6,
along with either STAT6WT, STAT6D419G or EV (Fig. 4A, B).
Importantly, these cells maintain a GC phenotype (Fig. 4C) and
absolutely require FDC support plus IL21 and CD40L (YK6-CD40lg-
IL21) for sustained growth, mirroring the TME-dependence of FL.
Using this FL-like co-culture we could indeed confirm our

previous findings, including increased IL-4 induced nuclear levels
of pSTAT6 and PARP14 in STAT6D419G cells compared to STAT6WT

cells (Fig. 4D), significantly increased IL-4 induced gene expression
of the known STAT6 target genes FCER2, CCL17, and CCL22
(Fig. 4E), as well as significantly increased PARP14 expression only
in IL-4 stimulated STAT6D419G cells (Fig. 4F).

PARP14 per se is a novel target of mutant STAT6
We hypothesized that PARP14 per se could be a novel (aberrant)
target gene of STAT6MUT, but not of STAT6WT. To directly assess
and quantify its binding to the PARP14 promotor, we performed
cross-linked chromatin IP for 3x Flag of IL-4 stimulated lymphoma
cells (OCI-Ly8) stably expressing either 3x Flag-tagged STAT6MUT

(D419G) or 3xFlag-tagged STAT6WT followed by quantitative PCR
for the PARP14 promotor region. This indeed demonstrated
increased binding of STAT6D419G to the PARP14 promoter,
whereas STAT6WT was not different compared to EV control
(Fig. 5A). We identified several putative STAT6 binding sites in the
PARP14 promotor by bioinformatic prediction (Fig. 5B). To
functionally validate our finding of increased binding of STAT6MUT

to the PARP14 promotor, we cloned a 621 bp fragment containing
two potential STAT6 binding sites in close proximity to the
PARP14 start codon into a luciferase reporter construct. The
reporter construct was then expressed in HEK 293 T cells, along
with either STAT6D419G or STAT6WT. We used HEK 293 T cells as
they express the IL-4 receptor but no endogenous STAT6. In the
presence of IL-4, STAT6D419G indeed showed significantly
increased transactivation activity compared to STAT6WT (Fig. 5C)
in a dose-dependent manner.

Inhibition of PARP blocks the mutant STAT6 gain-of-function
phenotype
We wanted to exploit the potential of targeting PARP14 to block
the STAT6MUT phenotype. Since 293T cells do not express
endogenous PARP14 we used HeLa cells. We first expressed two
different shRNAs to knock-down PARP14 and again quantified

STAT6-activated transcriptional activity by luciferase assay. In fact,
knock-down of PARP14 significantly reduced transactivation
activity of both STAT6D419G and STAT6D419N, correlating with the
efficiency of PARP14 knock-down (Supplementary Fig. 8). In
contrast, STAT6WT showed no baseline transcriptional activity and
was unaffected by PARP14 knock-down (Supplementary Fig. 8).
Next, we knocked-down PARP14 in OCI-Ly1 and OCI-Ly8 stably

expressing either STAT6WT, STAT6D419G or EV. In both cell lines
shRNA-mediated knock-down of PARP14 (sh4) resulted in
significant reduction of IL-4 induced CD23 expression compared
to scrambled control (scr) and completely abrogated the
STAT6MUT gain-of-function phenotype (Fig. 5D, E).
Finally, we sought to inhibit PARP14 pharmacologically. For this,

OCI-Ly1 and OCI-Ly8 cells stably expressing STAT6MUT or STAT6WT

were treated with the PARP inhibitor PJ34, in the absence or
presence of IL-4, and assayed for STAT6 activation by CD23
expression. PARP inhibition completely blocked IL-4 induced
expression of CD23 in cells expressing STAT6D419G down to levels
observed with STAT6WT (Fig. 5F). Vice versa, we did not observe a
significant effect of PJ34 treatment in the absence of IL-4 or in
cells expressing STAT6WT.

DISCUSSION
Re-education of the TME has been identified as a hallmark of FL,
actually enabling its pathogenesis and progression [34]. Further-
more, the composition of the TME has been shown to impact
clinical outcome of patients with FL [10, 11, 35, 36]. However, the
molecular mechanisms that orchestrate and maintain this re-
education process in genetically defined subsets of FL often
remain elusive, yet they hold great potential as therapeutic targets.
Here, we add novel and clinically relevant aspects to seminal

studies that established TFH-derived IL-4 [13, 37, 38] and STAT6
mutations [23] as drivers in FL. Specifically, we describe a
therapeutically targetable PARP14-mediated self-reinforcing reg-
ulatory circuit that amplifies IL-4 induced transcriptional activity of
STAT6MUT (Fig. 6).
Conceptually, we propose that this IL-4 driven re-education

process of the TME is composed of at least two self-reinforcing
regulatory circuits, an intracellular and an extracellular route
(Fig. 6). The extracellular route has been well described and
involves cytokines like CCL17 and CCL22 in the FL TME [39]. Both
chemokines are produced by FL cells in response to IL-4
stimulation (and CD40L) and promote recruitment of Tregs and
further accumulation of IL-4 producing TFH cells [39]. Our data
shows that these cytokines are indeed among the top upregu-
lated genes in primary patient biopsies of STAT6MUT FL, supporting
the concept that STAT6 mutations amplify the IL-4 driven re-
education process of the FL TME. In this work, we focused on the
molecular mechanisms of the intracellular route (the microcircuit)
and identified several aspects of clinical-translational relevance.
First, the gain-of-function phenotype of STAT6MUT was strictly

dependent on the presence of IL-4 stimulation. Hence, the
biological and clinical relevance of STAT6 mutations in patients
may only be adequately evaluable in the context of the TME
composition, specifically including TFH abundance and distribution

Fig. 3 PARP14 is strongly upregulated in IL-4-stimulated STAT6MUT lymphoma cells. A Volcano plot of differentially expressed genes from
whole transcriptome sequencing of OCI-Ly1 cells expressing STAT6WTor STAT6MUT (D419G, D419N, N421K) across all time points (i.e., 2, 4, and
8 h, respectively). Dashed lines indicate log2FC ±1.0, adj. p value 0.0001. B PARP14 expression validated by quantitative PCR (qPCR) in OCI-Ly1
cells. C Immunoblot analysis of PARP14 protein expression in OCI-Ly1 and OCI-Ly8 expressing STAT6WT or STAT6D419G after IL-4 stimulation
(10 ng/mL, 24 h). D Immunoprecipitation of 3xFlag-tagged STAT6 and immunoblotting for PARP14 and STAT6 (3xFlag) in OCI-LY8 after IL-4
stimulation (10 ng/mL, 24 h). E Proximity ligation assay (PLA) of STAT6 and PARP14. Representative images of OCI-Ly8 cells expressing STAT6WT

or STAT6D419G after IL-4 stimulation (left); TexasRed channel used to detect red amplification signal. Box plots display the percentage of
TexasRed positive cells per total cell number for each analyzed microscopic view field (N= 5, right). F Single-cell RNA sequencing analysis.
Violin plot showing PARP14 expression in tumor cells from 8 FL patients with wild type STAT6 (STAT6WT, N= 6) vs any STAT6 mutation (MUT,
N= 2) vs STAT6 mutation at position D419 (D419MUT, N= 1).
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and IL-4 levels. This could explain why the STAT6 mutation status
per se has not yet been found to be associated with differences in
the clinical course of the disease or treatment outcome [21]. In
fact, when we performed an exploratory analysis of our previously
reported cohort of patients, who received standard immuno-
chemotherapies (R-CHOP or R-CVP) for advanced stage FL [21], we

observed only a trend toward shorter failure-free survival for
patients with STAT6MUT FL, but this did not reach statistical
difference (data not shown). We hypothesize that combined
biomarkers, e.g., integrating the TFH abundance/TME composition
and/or IL-4 levels with STAT6 mutation status, will help to further
refine patient stratification [36].
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Interestingly, an alternative mechanism of constitutive IL-4
signaling and STAT6 activation independent of external IL-4
stimulation has been reported for another B cell lymphoma
subtype, primary mediastinal B cell lymphoma (PMBL). Specifically,
up to a quarter of PMBL harbor gain-of-function mutations in the
IL-4R alpha chain, which, of note, frequently co-occur with
additional mutations in the JAK/STAT pathway, including STAT6
[40], further supporting the concept that STAT6mutations function
primarily as amplifiers of this signaling cascade. While we did not
find IL-4R mutations in our previously reported cohort of patients
with untreated FL (N= 112, GLSG2000 cohort) [21], this may have
to be re-addressed in larger cohorts including patients with
variant histologies that indicate less dependence on the TME, such
as diffuse FL or histologically transformed FL [18–20, 41, 42].
Furthermore, we notice that STAT6D419N, which is annotated as a

missense germline polymorphism (rs11172102) exerts a gain-of-
function phenotype similar to all other somatic STAT6 mutations
affecting the DNA binding domain. In the absence of matched
germline control, we cannot ultimately distinguish between rare
germline polymorphisms and somatically acquired mutations in each
of these cases. Importantly however, irrespective of its acquisition, our
data indicates that this amino acid change in the DNA binding
domain similarly contributes to the distinct biology of STAT6MUT FL.
Thus, caution should be taken when sequencing data is analyzed
using standard pipelines, which frequently filter out putative or
confirmed germline variants.

Finally and importantly, we identified PARP14 as a novel
STAT6MUT-specific target gene. PARP14 was previously found to
associate with STAT6 [43] and function as a transcriptional switch
and activator of STAT6-dependent gene expression in the
presence of IL-4 [44]. Our data support a model in which increased
PARP14 levels drive a self-reinforcing microcircuit that promotes
the assembly of the STAT6 enhanceosome complex in IL-4
stimulated STAT6MUT lymphoma cells, thereby further amplifying
STAT6-dependent gene activation. Of note, the catalytic activity of
PARP14 has been shown to be essential for the transcriptional
enhancement function of PARP14 [15]. In fact, we show that
pharmacological inhibition of the PARP enzymatic activity was
able to completely abrogate the STAT6MUT gain-of-function
phenotype.
Our study also raises some interesting successive hypotheses that

should be addressed in future studies. It is, for instance, intriguing to
speculate that increased PARP14 levels may have additional
functional consequences. As such, PARP14 has been implicated in
mediating IL-4 induced attenuation of caspase-3 activation [45], i.e.,
increased PARP14 levels could contribute to protection against
apoptosis and provide a survival advantage to STAT6MUT lymphoma
cells. Furthermore, our study provides proof-of-principle that the
identification and functional characterization of aberrant targets of
STAT6MUT, potentially not limited to PARP14, as well as aberrant
targets of other recurrently mutated transcription factors holds
promise for developing individualized treatment strategies.

Fig. 5 PARP14 per se is a target gene of mutant (STAT6MUT) but not wild type STAT6 (STAT6WT). A Cross-linked chromatin
immunoprecipitation (ChIP) of 3xFlag-tagged STAT6WT or STAT6D419G in OCI-LY8 cells after IL-4 stimulation (10 ng/mL, 24 h) followed by
quantitative PCR for the PARP14 promoter region (qChIP). B Schematic of the PARP14 promotor region, indicating predicted / putative STAT6
binding sites and the 641 bp region that was cloned into pGL3. C PARP14 promoter luciferase assay (pGL3) with increasing amounts of co-
transfected STAT6WT or STAT6D419G in 293 T cells in the presence of IL-4 (24 h after transfection, 10 ng/mL for 6 h). Shown are fold changes (FC)
of luciferase activity (relative light unit, RLU) normalized to 1 ng STAT6WT (N= 6, mean ± SD). D CD23 cell surface expression (by FACS) on OCI-
Ly1 and E OCI-Ly8, each expressing either STAT6WT or STAT6D419G with shRNA-mediated knock-down of PARP14 (sh4) or a non-targeting
(scrambled) control (scr), respectively. Immunoblot of respective cells as indicated below. F CD23 cell surface expression by FACS on OCI-Ly1
and OCI-L8 expressing STAT6WT or STAT6D419G with or without IL-4 stimulation (10mg/mL, 24 h) and treatment with the PARP inhibitor PJ34
(50 µM, 15 min prior to IL-4 stimulation) or vehicle, respectively. (N= 3, mean ± SD). Cell viability of cells as indicated below (N= 3, mean ± SD).
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Fig. 6 Model of a PARP14-mediated self-reinforcing regulatory circuit that amplifies IL-4 induced transcriptional activity in STAT6MUT FL.
STAT6 mutations amplify IL-4 induced STAT6-dependent gene activation via an intracellular self-reinforcing regulatory microcircuit that
involves aberrantly increased PARP14 levels in IL-4 stimulated STAT6MUT FL cells. Increased STAT6-dependent gene expression involves
cytokines (e.g., CCL17 and CCL22) which contribute to the re-education of the tumor microenvironment, including increased recruitment of IL-
4 producing T follicular helper (TFH) cells. Details see text. Yellow star indicates STAT6 mutation. Figure created with BioRender.com.
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In summary, we show that STAT6 mutations amplify IL-4 induced
STAT6-dependent gene activation via a self-reinforcing regulatory
circuit that involves aberrantly increased PARP14 levels, and
therefore represents a novel therapeutic target in STAT6MUT FL.
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