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Abstract
The work deals with the existence of solutions of an integro-differential equation in the case
of the normal diffusion and the influx/efflux term proportional to the Dirac delta function
in the presence of the drift term. The proof of the existence of solutions relies on a fixed
point technique. We use the solvability conditions for the non-Fredholm elliptic operators
in unbounded domains and discuss how the introduction of the transport term influences the
regularity of the solutions.

Keywords Integro-differential equations · Dirac delta function · Non-Fredholm operators ·
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1 Introduction

In the present article we establish the existence of stationary solutions of the following
nonlocal reaction-diffusion equation

∂u

∂t
= D

∂2u

∂x2
+ b

∂u

∂x
+

∫ ∞

−∞
K (x − y)g(w(y)u(y, t))dy + αδ(x), (1.1)

where the constants b, α ∈ R are nontrivial and w(x) is the cut-off function. The conditions
on it will be stated further down. The equations of this kind are used in the cell population
dynamics. The solvability of the problem analogical to (1.1) without the transport term
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was studied in [35]. Emergence and propagation of patterns in nonlocal reaction-diffusion
equations arising in the theory of speciation and containing the transport termwere discussed
in [33]. The space variable x here corresponds to the cell genotype, u(x, t) stands for the cell
density as a function of their genotype and time. The right side of (1.1) describes the evolution
of the cell density via the cell proliferation, mutations and the cell influx/efflux. The diffusion
term here corresponds to the change of genotype by means of the small random mutations,
and the nonlocal term describes large mutations. The function g(w(x)u(x)) denotes the
rate of cell birth which depends on u, w (density dependent proliferation), and the kernel
K (x − y) gives the proportion of newly born cells, which change their genotype from y
to x . Let us assume that it depends on the distance between the genotypes. Finally, the last
term in the right side of our equation, which is proportional to the Dirac delta function is the
influx/efflux of cells for different genotypes. A similar equation on the real line in the case of

the standard negative Laplace operator raised to the power 0 < s <
1

4
in the diffusion term

was discussed recently in [42]. But in the article [42] it was assumed that the influx/efflux term
f (x) ∈ L1(R)∩ L2(R). Thus, in the present work we address the more singular situation. In
neuroscience, the integro-differential problems describe the nonlocal interaction of neurons
(see [9] and the references therein).

We set D = 1 and demonstrate the existence of solutions of the equation

d2u

dx2
+ b

du

dx
+

∫ ∞

−∞
K (x − y)g(w(y)u(y))dy + αδ(x) = 0. (1.2)

Let us discuss the situationwhen the linear part of such operator does not satisfy the Fredholm
property. As a consequence, the conventional methods of the nonlinear analysis may not be
applicable. We use the solvability conditions for the non-Fredholm operators along with the
method of contraction mappings.

Consider the problem

− �u + V (x)u − au = f , (1.3)

where u ∈ E = H2(Rd) and f ∈ F = L2(Rd), d ∈ N, a is a constant and the scalar
potential function V (x) is either trivial or tends to 0 at infinity. For a ≥ 0, the essential
spectrum of the operator A : E → F , which corresponds to the left side of Eq. (1.3) contains
the origin. As a consequence, such operator does not satisfy the Fredholm property. Its image
is not closed, for d > 1 the dimension of its kernel and the codimension of its image are not
finite. The present article is deals with the studies of the certain properties of the operators of
this kind. Note that the elliptic equations involving the non-Fredholm operators were treated
actively in recent years. Approaches in weighted Sobolev and Hölder spaces were developed
in [4–8]. The non-Fredholm Schrödinger type operators were studied with the methods of the
spectral and the scattering theory in [17, 20, 30, 32, 36, 37]. Fredholm structures, topological
invariants and their applications were covered in [13]. The article [14] deals with the finite
and infinite dimensional attractors for the evolution problems of the mathematical physics.
The large time behavior of the solutions of a class of fourth-order parabolic equations defined
on unbounded domains via the Kolmogorov ε-entropy as a measure was investigated in [15].
The attractor for a nonlinear reaction-diffusion system in an unbounded domain in R

3 was
studied in [22]. The works [24, 29] are important for the understanding of the Fredholm and
properness properties of quasilinear elliptic systems of the second order and of the operators
of this kind on R

N . The exponential decay and Fredholm properties in the second-order
quasilinear elliptic systems were covered in [25]. The Laplace operator with drift from the
point of view of the non-Fredholm operators was considered in [29, 39] and the linearized
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Cahn-Hilliard equations in [32, 40]. The nonlinear non-Fredholm elliptic problems were
considered in [16, 18–21, 31, 38, 41, 42]. The interesting applications to the theory of the
reaction-diffusion equations were developed in [11, 12]. The non-Fredholm operators arise
also when studying wave systems with an infinite number of localized traveling waves (see
[2]). The standing lattice solitons in the discreteNLSproblemwith saturationwere considered
in [3]. In particular, when a = 0 our operator A is Fredholm in certain properly chosen
weighted spaces (see [4–8]). However, the case of a �= 0 is considerably different and the
method developed in these works cannot be used. The existence, stability and bifurcations of
the solutions of the nonlinear partial differential equations involving the Dirac delta function
potentials were treated actively in [1, 23, 26, 27].

Let us set K (x) = εK(x) with ε ≥ 0. When our nonnegative parameter ε is trivial, we
arrive at the linear Poisson type equation with drift, namely

− d2u

dx2
− b

du

dx
= αδ(x), (1.4)

where b, α ∈ R and b, α �= 0 are the constants. It can be trivially checked that problem
(1.4) admits a continuous solution, which vanishes on the negative semi-axis. It is given by

u0(x) :=
{

α
b (e−bx − 1), x ≥ 0

0, x < 0
(1.5)

Clearly, u0(x) does not belong to H1(R). It is bounded for b > 0 and it is unbounded if
b < 0. Let us recall the analogous situation described in [35]. The solution of the Poisson
equation without the drift term considered there was proportional to the ramp function. It
was unbounded and it did not belong to H1(R). In [42] the authors were dealing with the
Poisson type equation involving the fractional Laplacian and the transport term. Its bounded
solution was contained in H1(R). Let us suppose that the assumption below is fulfilled.

Assumption 1.1 Let K(x) : R → R be nontrivial, so that K(x), xK(x) ∈ L1(R) and
orthogonality relation (4.2) is valid. We also assume that the cut-off function w(x) : R → R

is such that w(x)u0(x) is nontrivial and w(x)u0(x) ∈ H1(R). Furthermore, w(x) ∈ H1(R)

and for b, α ∈ R, b, α �= 0 the inequality

‖w(x)u0(x)‖H1(R) ≤ 1 (1.6)

holds.

It can be trivially checked that w(x) = e−2|b||x |, x ∈ R satisfies the conditions above.
Thus, it can be used as our cut-off function. Note that in the argument of [42] such cut-off
function was not needed due to the more regular behaviour of the solution of the Poisson
type equation. In our work we choose the space dimension d = 1, which is related to the
solvability of the linear Poisson type Eq. (1.4) discussed above. From the point of view of
the applications, the space dimension is not restricted to d = 1 because the space variable
corresponds to the cell genotype but not to the usual physical space. We use the Sobolev
space

H1(R) :=
{
u(x) : R → R | u(x) ∈ L2(R),

du

dx
∈ L2(R)

}
.

It is equipped with the norm

‖u‖2H1(R)
:= ‖u‖2L2(R)

+
∥∥∥du
dx

∥∥∥2
L2(R)

. (1.7)
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Obviously, by means of the standard Fourier transform (2.1), this norm can be expressed as

‖u‖2H1(R)
= ‖û(p)‖2L2(R)

+ ‖pû(p)‖2L2(R)
. (1.8)

By virtue of the Sobolev inequality in one dimension (see e.g. Sect. 8.5 of [28]), the upper
bound

‖u(x)‖L∞(R) ≤ 1√
2
‖u(x)‖H1(R). (1.9)

holds. We seek the resulting solution of nonlinear Eq. (1.2) as

u(x) = u0(x) + u p(x). (1.10)

Evidently, we arrive at the perturbative equation

− d2u p(x)

dx2
− b

du p(x)

dx
= ε

∫ ∞

−∞
K(x − y)g(w(y)[u0(y) + u p(y)])dy. (1.11)

Let us use a closed ball in our Sobolev space

Bρ := {u(x) ∈ H1(R) | ‖u‖H1(R) ≤ ρ}, 0 < ρ ≤ 1. (1.12)

We look for the solution of Eq. (1.11) as the fixed point of the auxiliary nonlinear problem

− d2u(x)

dx2
− b

du(x)

dx
= ε

∫ ∞

−∞
K(x − y)g(w(y)[u0(y) + v(y)])dy (1.13)

in ball (1.12). For a given function v(y) this is an equation with respect to u(x). The left side
of (1.13) contains the operator

Lb := − d2

dx2
− b

d

dx
(1.14)

acting on L2(R). By means of the standard Fourier transform, it can be trivially checked that
the essential spectrum of Lb is given by

λb(p) := p2 − ibp, p ∈ R. (1.15)

Since (1.15) contains the origin, Lb does not satisfy the Fredholm property, such operator has
no bounded inverse. The similar situation in the context of the integro-differential equations
occurred also in works [38, 41]. The problems studied there also required the application
of the orthogonality relations. The contraction argument was used in [34] to estimate the
perturbation to the standing solitary wave of the Nonlinear Schrödinger (NLS) equation
when either the external potential or the nonlinear term in the NLS were perturbed but the
Schrödinger operator involved in the nonlinear equation there satisfied the Fredholm property
(see Assumption 1 of [34], also [10]). Let us introduce the interval on the real line

I :=
[

− 1√
2

− 1

2
‖w(x)‖H1(R),

1√
2

+ 1

2
‖w(x)‖H1(R)

]
(1.16)

along with the closed ball in the space of C1(I ) functions, namely

DM := {g(z) ∈ C1(I ) | ‖g‖C1(I ) ≤ M}, M > 0. (1.17)

In this context the norm

‖g‖C1(I ) := ‖g‖C(I ) + ‖g′‖C(I ), (1.18)
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where ‖g‖C(I ) := maxz∈I |g(z)|. From the biological point of view, the rate of cell birth
function is nonlinear and is trivial at the origin.

Assumption 1.2 Let g(z) : R → R, such that g(0) = 0. It is also assumed that g(z) ∈ DM

and it does not vanish identically on the interval I .

We recall the article [42]. The function g(z) there was assumed to be twice continuously
differentiable on the corresponding interval I . Let us use the following positive auxiliary
expression

Q := max

{∥∥∥∥ K̂(p)

p2 − ibp

∥∥∥∥
L∞(R)

,

∥∥∥∥ K̂(p)

p − ib

∥∥∥∥
L∞(R)

}
. (1.19)

We introduce the operator Tg , so that u = Tgv, where u is a solution of Eq. (1.13). Our
first main statement is as follows.

Theorem 1.3 Let Assumptions 1.1 and 1.2 hold. Then equation (1.13) defines the map Tg :
Bρ → Bρ , which is a strict contraction for all

0 < ε ≤ ρ

2
√

πQM
(
1 + 1√

2
‖w(x)‖H1(R)

) . (1.20)

The unique fixed point u p(x) of this map Tg is the only solution of problem (1.11) in Bρ .

Clearly, the resulting solution of equation (1.2) given by formula (1.10) will not vanish
identically on the real line, because g(0) = 0 and α �= 0 due to our assumptions.

Our secondmain proposition is about the continuity of the cumulative solution of problem
(1.2) given by (1.10) with respect to the nonlinear function g. We introduce the following
positive, auxiliary quantity

σ := √
2πQM‖w(x)‖H1(R). (1.21)

Theorem 1.4 Let j = 1, 2, suppose that the assumptions of Theorem 1.3 hold, such that
u p, j (x) is the unique fixed point of the map Tg j : Bρ → Bρ , which is a strict contraction
for all the values of ε satisfying (1.20) and the resulting solution of problem (1.2) with
g(z) = g j (z) is given by

u j (x) = u0(x) + u p, j (x). (1.22)

Then for all values of ε, which satisfy inequality (1.20), the estimate

‖u1(x) − u2(x)‖H1(R)

≤
2
√

πεQ
(
1 + 1√

2
‖w(x)‖H1(R)

)

1 − εσ
‖g1(z) − g2(z)‖C1(I ) (1.23)

is valid.

We proceed to the proof of our first main result.
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2 The Existence of the Perturbed Solution

Proof of Theorem 1.3 Let us choose arbitrarily v(x) ∈ Bρ and denote the term contained in
the integral expression in the right side of problem (1.13) as

G(x) := g(w(x)[u0(x) + v(x)]).
The standard Fourier transform is defined as

φ̂(p) := 1√
2π

∫ ∞

−∞
φ(x)e−i pxdx, p ∈ R. (2.1)

Evidently, the inequality

‖φ̂(p)‖L∞(R) ≤ 1√
2π

‖φ(x)‖L1(R) (2.2)

is valid. We apply (2.1) to both sides of problem (1.13). This gives us

û(p) = ε
√
2π

K̂(p)Ĝ(p)

p2 − ibp
, pû(p) = ε

√
2π

K̂(p)Ĝ(p)

p − ib
,

so that

|̂u(p)| ≤ ε
√
2πQ|Ĝ(p)|, |pû(p)| ≤ ε

√
2πQ|Ĝ(p)|, (2.3)

where Q is defined in (1.19). Note that under the stated assumptions Q < ∞ by means of
Lemma 4.1 below. By virtue of (1.8) along with (2.3) we easily estimate the norm as

‖u(x)‖2H1(R)
≤ 4πε2Q2‖G(x)‖2L2(R)

. (2.4)

It can be trivially checked that for v(x) ∈ Bρ , we have

|w(x)[u0(x) + v(x)]| ≤ 1√
2

+ 1

2
‖w(x)‖H1(R). (2.5)

Indeed, the left side of (2.5) can be bounded from above using inequalities (1.6) and (1.9) by

‖w(x)u0(x)‖L∞(R) + ‖w(x)‖L∞(R)‖v(x)‖L∞(R)

≤ 1√
2
‖w(x)u0(x)‖H1(R) + 1√

2
‖w(x)‖H1(R)

1√
2
‖v(x)‖H1(R)

≤ 1√
2

+ 1

2
‖w(x)‖H1(R).

Similarly, for v(x) ∈ Bρ the estimate

‖w(x)[u0(x) + v(x)]‖L2(R) ≤ 1 + 1√
2
‖w(x)‖H1(R) (2.6)

holds. Clearly, the left side of (2.6) can be estimated from above by virtue of (1.6) and (1.9)
by

‖w(x)u0(x)‖L2(R) + ‖w(x)v(x)‖L2(R) ≤ ‖w(x)u0(x)‖H1(R)

+‖w(x)‖L∞(R)‖v(x)‖L2(R) ≤ 1 + 1√
2
‖w(x)‖H1(R).
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Obviously,

G(x) =
∫ w(x)[u0(x)+v(x)]

0
g′(z)dz.

Hence,

|G(x)| ≤ maxz∈I |g′(z)||w(x)[u0(x) + v(x)]| ≤ M |w(x)[u0(x) + v(x)]|, (2.7)

with the interval I is defined in (1.16). By means of (2.7) along with (2.6) we arrive at

‖G(x)‖L2(R) ≤ M‖w(x)[u0(x) + v(x)]‖L2(R) ≤ M
(
1 + 1√

2
‖w(x)‖H1(R)

)
. (2.8)

Upper bounds (2.4) and (2.8) give us

‖u(x)‖H1(R) ≤ 2
√

πεQM
(
1 + 1√

2
‖w(x)‖H1(R)

)
≤ ρ (2.9)

for all the values of the parameter ε, which satisfy (1.20). Thus, u(x) ∈ Bρ as well.
Let us suppose that for a certain v(x) ∈ Bρ there exist two solutions u1,2(x) ∈ Bρ of

problem (1.13). Their difference w(x) := u1(x) − u2(x) ∈ L2(R) solves the homogeneous
equation

−d2w(x)

dx2
− b

dw(x)

dx
= 0.

The operator Lb defined in (1.14) and considered on the whole real line does not have any
nontrivial square integrable zero modes, such thatw(x) vanishes identically onR. Therefore,
problem (1.13) defines a map Tg : Bρ → Bρ for all the values of ε, which satisfy inequality
(1.20).
Let us demonstrate that under the stated assumptions this map is a strict contraction. We
choose arbitrarily v1,2(x) ∈ Bρ . By virtue of the argument above u1,2 := Tgv1,2 ∈ Bρ as
well for ε satisfying inequality (1.20). By means of (1.13), we have precisely

−d2u1(x)

dx2
− b

du1(x)

dx
= ε

∫ ∞

−∞
K(x − y)g(w(y)[u0(y) + v1(y)])dy, (2.10)

−d2u2(x)

dx2
− b

du2(x)

dx
= ε

∫ ∞

−∞
K(x − y)g(w(y)[u0(y) + v2(y)])dy. (2.11)

Let us introduce

G1(x) := g(w(x)[u0(x) + v1(x)]), G2(x) := g(w(x)[u0(x) + v2(x)])
and apply the standard Fourier transform (2.1) to both sides of problems (2.10) and (2.11).
This gives us

û1(p) = ε
√
2π

K̂(p)Ĝ1(p)

p2 − ibp
, û2(p) = ε

√
2π

K̂(p)Ĝ2(p)

p2 − ibp
,

so that

û1(p) − û2(p) = ε
√
2π

K̂(p)[Ĝ1(p) − Ĝ2(p)]
p2 − ibp

,

p[û1(p) − û2(p)] = ε
√
2π

K̂(p)[Ĝ1(p) − Ĝ2(p)]
p − ib

.
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Thus, the upper bounds

|û1(p) − û2(p)| ≤ ε
√
2πQ|Ĝ1(p) − Ĝ2(p)|,

|p[û1(p) − û2(p)]| ≤ ε
√
2πQ|Ĝ1(p) − Ĝ2(p)|

hold. This enables us to estimate the norm via (1.8) as

‖u1(x) − u2(x)‖2H1(R)
=

∫ ∞

−∞
|û1(p) − û2(p)|2dp +

∫ ∞

−∞
|p(û1(p) − û2(p))|2dp

≤ 4πε2Q2‖G1(x) − G2(x)‖2L2(R)
,

so that

‖u1(x) − u2(x)‖H1(R) ≤ 2
√

πεQ‖G1(x) − G2(x)‖L2(R). (2.12)

Clearly, we have the equality

G1(x) − G2(x) =
∫ w(x)[u0(x)+v1(x)]

w(x)[u0(x)+v2(x)]
g′(z)dz,

such that |G1(x) − G2(x)| ≤
≤ maxz∈I |g′(z)||w(x)(v1(x) − v2(x))| ≤ M |w(x)(v1(x) − v2(x))|. (2.13)

Let us obtain the upper bound on the right side of (2.13) using (1.9) as

M‖w(x)‖L∞(R)|v1(x) − v2(x)| ≤ M√
2
‖w(x)‖H1(R)|v1(x) − v2(x)|.

This allows us to estimate the norm as

‖G1(x) − G2(x)‖L2(R) ≤ M√
2
‖w(x)‖H1(R)‖v1(x) − v2(x)‖L2(R)

≤ M√
2
‖w(x)‖H1(R)‖v1(x) − v2(x)‖H1(R). (2.14)

By means of (2.12) along with (2.14) we derive

‖u1(x) − u2(x)‖H1(R) ≤ √
2πεQM‖w(x)‖H1(R)‖v1(x) − v2(x)‖H1(R). (2.15)

Evidently,

ρ

2
√

πQM
(
1 + 1√

2
‖w(x)‖H1(R)

) <
1√

2πQM‖w(x)‖H1(R)

.

By virtue of inequality (1.20) for our parameter ε we have

0 < ε <
1√

2πQM‖w(x)‖H1(R)

,

so that the constant in the right side of upper bound (2.15) is less than one. This implies that
our map Tg : Bρ → Bρ defined by problem (1.13) is a strict contraction for all the values
of ε satisfying (1.20). Its unique fixed point u p(x) is the only solution of Eq. (1.11) in the
ball Bρ . We easily deduce from (2.9) that ‖u p(x)‖H1(R) → 0 as ε → 0. The resulting u(x)
given by formula (1.10) is a solution of problem (1.2). �


We turn our attention to the demonstration of the validity of the second main proposition
of our work.
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3 The Continuity of the Cumulative Solution

Proof of Theorem 1.4 Clearly, for all the values of ε, which satisfy inequality (1.20), we have

u p,1 = Tg1u p,1, u p,2 = Tg2u p,2.

Thus,

u p,1 − u p,2 = Tg1u p,1 − Tg1u p,2 + Tg1u p,2 − Tg2u p,2.

We obtain

‖u p,1 − u p,2‖H1(R) ≤ ‖Tg1u p,1 − Tg1u p,2‖H1(R) + ‖Tg1u p,2 − Tg2u p,2‖H1(R).

By means of bound (2.15), we have

‖Tg1u p,1 − Tg1u p,2‖H1(R) ≤ εσ‖u p,1 − u p,2‖H1(R),

where σ is defined in (1.21). Evidently, εσ < 1, since the map Tg1 : Bρ → Bρ is a strict
contraction under the stated assumptions. Hence, we arrive at

(1 − εσ )‖u p,1 − u p,2‖H1(R) ≤ ‖Tg1u p,2 − Tg2u p,2‖H1(R). (3.1)

Evidently, for our fixed point Tg2u p,2 = u p,2. We introduce ξ(x) := Tg1u p,2. Therefore,

−d2ξ(x)

dx2
− b

dξ(x)

dx
= ε

∫ ∞

−∞
K(x − y)g1(w(y)[u0(y) + u p,2(y)])dy, (3.2)

−d2u p,2(x)

dx2
− b

du p,2(x)

dx
= ε

∫ ∞

−∞
K(x − y)g2(w(y)[u0(y) + u p,2(y)])dy. (3.3)

Let us designate

G1,2(x) := g1(w(x)[u0(x) + u p,2(x)]),G2,2(x) := g2(w(x)[u0(x) + u p,2(x)]).
We apply the standard Fourier transform (2.1) to both sides of Eqs. (3.2) and (3.3) above.
This gives us

ξ̂ (p) = ε
√
2π

K̂(p)Ĝ1,2(p)

p2 − ibp
, û p,2(p) = ε

√
2π

K̂(p)Ĝ2,2(p)

p2 − ibp
,

so that

ξ̂ (p) − û p,2(p) = ε
√
2π

K̂(p)

p2 − ibp
[Ĝ1,2(p) − Ĝ2,2(p)],

p[̂ξ(p) − û p,2(p)] = ε
√
2π

K̂(p)

p − ib
[Ĝ1,2(p) − Ĝ2,2(p)].

This allows us to derive the estimates from above

|̂ξ(p) − û p,2(p)| ≤ ε
√
2πQ|Ĝ1,2(p) − Ĝ2,2(p)|, (3.4)

|p[̂ξ(p) − û p,2(p)]| ≤ ε
√
2πQ|Ĝ1,2(p) − Ĝ2,2(p)|. (3.5)

By means of (3.4), we have

‖̂ξ(p) − û p,2(p)‖2L2(R)
=

∫ ∞

−∞
|̂ξ(p) − û p,2(p)|2dp

≤ 2πε2Q2‖G1,2(x) − G2,2(x)‖2L2(R)
. (3.6)
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Similarly, using (3.5) we obtain

‖p[̂ξ(p) − û p,2(p)]‖2L2(R)
=

∫ ∞

−∞
|p[̂ξ(p) − û p,2(p)]|2dp

≤ 2πε2Q2‖G1,2(x) − G2,2(x)‖2L2(R)
. (3.7)

By virtue of (1.8) along with inequalities (3.6) and (3.7), the norm can be easily bounded
above as

‖ξ(x) − u p,2(x)‖2H1(R)
= ‖̂ξ(p) − û p,2(p)‖2L2(R)

+ ‖p[̂ξ(p) − û p,2(p)]‖2L2(R)

≤ 4πε2Q2‖G1,2(x) − G2,2(x)‖2L2(R)
,

so that

‖ξ(x) − u p,2(x)‖H1(R) ≤ 2
√

πεQ‖G1,2(x) − G2,2(x)‖L2(R). (3.8)

Clearly,

G1,2(x) − G2,2(x) =
∫ w(x)[u0(x)+u p,2(x)]

0
[g′

1(z) − g′
2(z)]dz.

Hence,

|G1,2(x) − G2,2(x)| ≤ maxz∈I |g′
1(z) − g′

2(z)||w(x)[u0(x) + u p,2(x)]|
≤ ‖g1(z) − g2(z)‖C1(I )|w(x)[u0(x) + u p,2(x)]|.

This enables us to estimate the norm by means of (2.6) as

‖G1,2(x) − G2,2(x)‖L2(R) ≤ ‖g1(z) − g2(z)‖C1(I )‖w(x)[u0(x) + u p,2(x)]‖L2(R)

≤ ‖g1(z) − g2(z)‖C1(I )

(
1 + 1√

2
‖w(x)‖H1(R)

)
. (3.9)

Using (3.8) along with (3.9) we obtain ‖ξ(x) − u p,2(x)‖H1(R) ≤

≤ 2
√

πεQ‖g1(z) − g2(z)‖C1(I )

(
1 + 1√

2
‖w(x)‖H1(R)

)
. (3.10)

By virtue of (3.1) and (3.10) we arrive at ‖u p,1(x) − u p,2(x)‖H1(R) ≤

≤
2
√

πεQ
(
1 + 1√

2
‖w(x)‖H1(R)

)

1 − εσ
‖g1(z) − g2(z)‖C1(I ). (3.11)

Equalities (1.22) along with inequality (3.11) imply the validity of (1.23). �


4 Auxiliary Results

Let us obtain the conditions under which the expression Q introduced in (1.19) is finite. We
denote the inner product as

( f (x), g(x))L2(R) :=
∫ ∞

−∞
f (x)ḡ(x)dx, (4.1)

with a slight abuse of notations when the functions involved in (4.1) do not belong to L2(R),
like for instance the ones present in orthogonality relation (4.2) of Lemma 4.1 below. Indeed,
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if f (x) ∈ L1(R) and g(x) ∈ L∞(R), then the integral in the right side of (4.1) is well
defined. The proof of Lemma 4.1 was partially given in the part b) of Lemma A1 of [16]. Let
us present it here for the convenience of the readers.

Lemma 4.1 LetK(x) : R → R be nontrivial, so thatK(x), xK(x) ∈ L1(R) and the constant
b ∈ R, b �= 0. Then Q < ∞ if and only if the orthogonality condition

(K(x), 1)L2(R) = 0 (4.2)

is valid.

Proof It can be trivially checked using (2.2) that
K̂(p)

p − ib
∈ L∞(R). Indeed, we have

∣∣∣∣ K̂(p)

p − ib

∣∣∣∣ = |K̂(p)|√
p2 + b2

≤ 1√
2π |b| ‖K(x)‖L1(R) < ∞

as assumed. Note that when the drift constant b vanishes, the situation here becomes more
singular. Clearly, we can write

K̂(p) = K̂(0) +
∫ p

0

dK̂(q)

dq
dq,

so that

K̂(p)

p2 − ibp
= K̂(0)

p2 − ibp
+

∫ p
0

dK̂(q)
dq dq

p2 − ibp
. (4.3)

From the definition of the standard Fourier transform (2.1) it can be easily derived that

∣∣∣dK̂(p)

dp

∣∣∣ ≤ 1√
2π

‖xK(x)‖L1(R).

Hence,

∣∣∣∣
∫ p
0

dK̂(q)
dq dq

p2 − ibp

∣∣∣∣ ≤ 1√
2π |b| ‖xK(x)‖L1(R) < ∞

via the one of our assumptions. By virtue of definition (2.1), we have

K̂(0) = 1√
2π

(K(x), 1)L2(R).

Therefore, the first term in the right side of (4.3) is given by

(K(x), 1)L2(R)√
2π(p2 − ibp)

. (4.4)

Obviously, expression (4.4) is bounded if and only if orthogonality relation (4.2) is valid. �

Note that as distinct from the similar proposition in the situation without a drift term

discussed in [35], the statement of Lemma 4.1 above relies only on a single orthogonality
condition (4.2) and the argument of the proof is less cumbersome. The argument of [42] does
not use the orthogonality relations at all.
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