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Abstract: The article deals with the easily verifiable necessary dmrdiof the
preservation of the nonnegativity of the solutions of a eysbf parabolic equa-
tions in the case of the mixed diffusion when the standarddagn in the firstn
variables is added to the Laplace operator in the rest ofdahables in a fractional
power in the space of an arbitary dimension. This necessargitton is crucial for
the applied analysis community since it imposes the nepgésian of the system
of equations that must be treated mathematically.
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1. Introduction

The solutions of various systems of convection-diffusieaetion equations arising
in biology, physics or engineering describe such quastaipopulation densities,
pressure or concentrations of nutrients and chemicalscéjennatural property to
require for the solutions is their nonnegativity. Modelattdo not guarantee the
nonnegativity are not valid or break down for small valuethef solution. In many

situations, showing that a particular model fails to pres¢he nonnegativity leads
to the better understanding of the model and its limitati@rse of the first steps in
analyzing ecological or biological or bio-medical modelathematically is to test
whether solutions originating from the nonnegative ihidiata remain nonnegative
(as long as they exist). In other words, the model under denstion ensures that
the nonnegative cone is positively invariant. We recalt théhe solutions (of a



given evolution PDE) which correspond to the nonnegatiiteirdata remain non-
negative as long as they exist, we say that the system saitikBenonnegativity
property.

For scalar equations the nonnegativity property is a diceasequence of the
maximum principle (see [2] and the references therein). &l@wn for systems of
equations the maximum principle is not valid. In the pafacicase of monotone
systems the situation resembles the case of scalar egsiasiofficient conditions
for preserving the nonnegative cone can be found in [9], .[E@} systems includ-
ing the standard diffusion, transport and general intewaderms (not necessarily
monotone) the necessary and sufficient conditions for pregethe nonnegative
cones were obtained in [2].

In the present work we aim to prove a simple and easily vetéiahterion,
that is, the necessary condition for the nonnegativity d@itsmns of systems of
nonlinear convection-mixed diffusion-reaction equasi@rising in the modelling
of life sciences. We believe that it could provide the modeligh a tool, which is
easy to verify, to approach the question of positive invareof the model.

The present article deals with the preservation of the ngauingty of solutions
of the system of reaction-diffusion equations in the spd@narbitrary dimension
d €N, d > 2, namely

8u , 0

where the Laplace operators
02 0?
Ay = —, Apg_m = —, 1<m<d-1, 0<s<l1,
lz; o2 p > <m< s

A, T! 1 <[ < dareN x N matrices with constant coefficients, which is relevant to
the cell population dynamics in Mathematical Biology. Hetre} > 0 are constants
as well. The case of = 0 corresponds to the normal diffusion treated in [2]. The
situation whernv = 0 corresponds to the anomalous diffusion studied recently in
[3]. As distinct from the present article, the power of thgaéve Laplace operator

in [3] was restricted t® < s < — due to the solvability conditions for the Poisson

type equation involving the fractional Laplacian in one dimsion (see [14]). Note
that the model analogous to (1.1) can be used to study sunbh®s of science as
the Damage Mechanics, the temperature distribution inmbdynamics. In the
present work the space variableorresponds to the cell genotypg,«x, t) stands
for the cell density distributions for various groups oflseds functions of their
genotype and time,

u(z,t) = (uy(z,1), ug(, t), ..., un(z, 1))’
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The operatof—A, 4_,,)° in system (1.1) describes a particular case of the anoma-
lous diffusion actively treated in the context of differeaytplications in plasma
physics and turbulence [1], [4], surface diffusion [5],,[3¢miconductors [8] and so
on. Anomalous diffusion can be described as a random pratgsaticle motion
characterized by the probability density distributionajp length. The moments
of this density distribution are finite in the case of normé#éldion, but this is not the
case for the anomalous diffusion. Asymptotic behavior ity of the probability
density function determines the valsief the power of the negative Laplacian [6].
The operatof—A, 4_,,)® is defined by virtue of the spectral calculus. Front propa-
gation problems with anomalous diffusion were treatedrattiin recent years (see
e.g. [11], [12]). The solvability of the single equationatving the Laplacian with
drift relevant to the fluid mechanics was studied in [13]. ustassume here that
(1.1) contains the square matrices with the entries cohstapace and time

(A = ar;, (Fl),w- = ’yﬁw—, 1<k j<N, 1<Ii<d

and that the given matrix is an N x N matrix with a positive symmetric part
A+ A* > 0 (parabolicity assumption) for the sake of the well posediéproblem
(1.1). HereA* denotes the adjoint of matri. Hence, system (1.1) can be rewritten
in the form

au d N
k Zak] aA:rm_ ( z,d—m U]+ZZ’Yk]a Fk( ) (12)

=1 j=1

wherel < k < N and0 < s < 1. In the present article the interaction of species
term

F(u) = (Fy(u), Fy(u), ..., Fx(u))?,
which in principle can be linear, nonlinear or even nonlochét us assume its
smoothness in the theorem below for the sake of the well pessdof our problem
(1.1), although, we are not focused on the well posedness isghe present work.
From the perspective of applications, the space dimensinibe chosen arbitrarily,
d € N, d > 2 since the space variable here corresponds to the cell genbtyt not
to the usual physical space. Let us denote the inner product a

(). @)oo i= [ Fl)gla)d, (13)
R
As for the vector functions, their inner product is defineshgsheir components as
N
(uvv)LQ(Rd,RN) = Z(Uk,’l}k)LQ(Rd). (14)
k=1

Obviously, (1.4) induces the norm

||u||%2(]Rd,RN) = Z ||uk||%2(Rd)'
k=1



By the nonnegativity of a vector function below we mean thanmegativity of the

each of its components. Our concern is not the study of tretenge of solutions
but their qualitative behavior. Hence, in the sequel we mssthat for any initial

data

uy € K= {u:R* = RY |uy(2,t) > 0ae.in R i=1,... N}

there exists a unique solution (satisfying the appropeateanates) to carry out our
calculations. Our main proposition is as follows.

Theorem 1.LetF : RY — R¥, suchthat" € C!, the initial condition for problem
(1.1)isu(z,0) = up(x) > 0 andug(z) € L*(R4,RY), d,N € N, d, N > 2. Then
in order to preserve the non-negative cone for system (helipécessary condition
is that the matrices! andI” are diagonal and for alll < £ < N
Fk(sla---75k—1>075k+17---75N) <0 (15)

holds , wheres; > 0and 1 <[ < N, [ # k.

Remark 1. In the case of the linear interaction of species, namely whén) =
Lu, whereL is a matrix with elements ;, 1 <4, j < N constantin space and time,
our necessary condition leads to the condition that the mdtimust be essentially
nonpositive, thati; ; < 0fori # j, 1 <4,j < N.

Remark 2. Our proof yields that, the necessary condition for presegwhe non-
negative cone is carried over from the ODE (the spatially bgemeous case, as
described by the ordinary differential equatief{t) = —F'(u)) to the case of the
anomalous diffusion and the convective drift term.

Remark 3. In the forthcoming papers we intend to consider the follgriases:
a) the necessary and sufficient conditions of the preserik,wor

b) the density-dependent diffusion matrix,

c) the stochastic perturbation of the deterministic case,

d) the effect of the delay term in the cases a), b) and c).

Remark 4. Note that in the present work as distinct from [3] we do notess the
nonnegativity of the off diagonal elements of the matkix

We proceed to the proof of our main statement.
2. The preservation of the nonnegativity of the solution ofthe system with mixed diffusion

Proof of Theorem 1.We note that the maximum principle actively used for the
studies of solutions of single parabolic equations doespply to systems of such



equations. Let us consider a time independent, squareafitieg nonnegative vec-
tor functionv(z) and estimate

0 . 1) —
ou LU = | im0+ u@,t) = uo(w) ,u(x) .
ot t

t=0 L2(R4,RN) L2(R4,RN)

By virtue of the continuity of the inner product, the rightlsiof the equality above
is equal to

(@, t), (@) p@eeyy | (uo(@), v()) 2@y
—lim;_o+ )

t t (2.6)

lim,_ o+

We choose the initial condition for our system(z) > 0 and the constant in time
vector functionw(x) > 0 to be orthogonal to each otherid(R?, RY). This can be
achieved, for example for

ug(x) = (U1 (), ..., p—1(2), 0, g1 (), ..., un(2)), vj(x) =0(x)djp, (2.7)

with 1 < j < N, whered;;, is the Kronecker symbol antd < k£ < N s fixed.
Hence, the second term in (2.6) vanishes and (2.6) is equal to

Zi\;l fRd ug(x, t)vg(x)de -0
t pu—

||mt_)0+

by means of the nonnegativity of all the components, t) andvy(z) involved in
the formula above. Hence, we obtain

Z/Rd(?u]

By means of (2.7), only the th component of the vector functierizx) is nontrivial.
o(x)dx > 0.

This gives us
/ Ou
R4 at =0

Therefore, by means of (1.2) we derive

x)dx > 0.

N . ol
L] 5 alotin s+ 3o 5 o420
Rd Pl I=1 j=1, j#k :

—Fp(ty(x), .oy Ug—1(2), 0, Ugr 1 (), ..., ﬂN(x))] o(x)dx > 0.



Since the nonnegative, square integrable funciiar) can be chosen arbitrarily, we
arrive at

N d N il
S akslodem = B-Buaw)lisl@) + >0 30 -
=1, j#k I=1 j=1, jk !

—Fi(ty(x), ..., tg_1(2),0, g1 (), ..., an(z)) >0 a.e. (2.8)

For the purpose of the scaling, we replace alliher) by @,

—) in the inequality
£

above, where > 0 is a small parameter. This gives us
N d N 1 ~
o 15} o ~ kg OU;(y)
Z Q. j 6—2Ay,m - g(—Ay,d—m) ]u](y) + Z Z ?J 6] -
J=1, j#k ‘ o

—Fe(u1(y), ooy Up—1(y), 0, Ugs1(y), ..., un(y)) >0 a.e. (2.9

. 1 : . , ,
Obviously, theg—2 term in the left side of (2.9) is the leading onesas~ 0. In

the case ofi,; < 0 we can choose herg;(y) = ¢*" in a neighborhood of the
origin, smooth and decaying to zero at the infinity. A trivcalculation yields that
A, mi;(y) > 0 near the origin. Ifa;; > 0, then we can consider;(y) = ¢ ¥
around the origin, smooth and tending to zero at the infiity.easy computation
shows that\, ,,,%;(y) < 0in a neighborhood the origin. Thus, the left side of (2.9)
can be made as negative as possible which will violate inégya.9). Note that
the last term in the left side of (2.9) will remain boundedefiéfore, for the matrix
A involved in system (1.1), the off diagonal terms should shnsuch that

ar; =0, 1<k j<N, k#j

Hence, from (2.9) we arrive at

_Fk<ﬂ’1(y)7 "'7ak*1(y)707ak+1(y)7 77]N(y)) >0 ae. (210)
In the case ofy,lw. < 0 involved in the sum in the left side of (2.10), we can choose

u,(y) = eV ¥*+1 in a neighborhood of the origin, smooth and decaying to zéro a
the infinity, such that

ot /2
Uj(y) — Y e y*+1 > 0’ yl > O

oy Viyi+1




near the origin. Ify}g’j > 0, we considefi;(y) = e”V v*+1 near the origin, smooth
and decaying to zero at the infinity, such that

ou; [
1@(3/) — yl e~ y?+1 < 07 yl > 0
oy Vi +1

in a neighborhood of the origin. By making the parametsufficiently small, we
can violate the inequality in (2.10). This yields fo [ < d that

N =0, 1<kj<N, k#j
Therefore, by virtue of (2.8) we arrive at
Fr(ty (), ..., up—1(x), 0, @1 (x), ..., un(2)) <0 a.e.,
whered;(z) > 0 andi;(z) € L*(RY) with1 < j < N, j # k. |

Remark 5. Let us assume that the components of the reaction termyséirsall
1<kE<N
Fk(t, S1y vy Sk—1, 0, Sk4+1y -+ SN) S 0,

wheres; > 0with1 <1 < N, I # kandF € C},, t € [0,7], « € R? for some
7 > 0. Then itis not difficult to see that the analog of Theorem H#$wol
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