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Abstract

Background: The association between adiposity and cardiometabolic traits is well known from epidemiological
studies. Whilst the causal relationship is clear for some of these traits, for others it is not. We aimed to determine
whether adiposity is causally related to various cardiometabolic traits using the Mendelian randomization
approach.

Methods and Findings: We used the adiposity-associated variant rs9939609 at the FTO locus as an instrumental
variable (IV) for body mass index (BMI) in a Mendelian randomization design. Thirty-six population-based studies of
individuals of European descent contributed to the analyses. Age- and sex-adjusted regression models were fitted
to test for association between (i) rs9939609 and BMI (n = 198,502), (ii) rs9939609 and 24 traits, and (iii) BMI and 24
traits. The causal effect of BMI on the outcome measures was quantified by IV estimators. The estimators were
compared to the BMI–trait associations derived from the same individuals. In the IV analysis, we demonstrated novel
evidence for a causal relationship between adiposity and incident heart failure (hazard ratio, 1.19 per BMI-unit
increase; 95% CI, 1.03–1.39) and replicated earlier reports of a causal association with type 2 diabetes, metabolic
syndrome, dyslipidemia, and hypertension (odds ratio for IV estimator, 1.1–1.4; all p,0.05). For quantitative traits, our
results provide novel evidence for a causal effect of adiposity on the liver enzymes alanine aminotransferase and
gamma-glutamyl transferase and confirm previous reports of a causal effect of adiposity on systolic and diastolic
blood pressure, fasting insulin, 2-h post-load glucose from the oral glucose tolerance test, C-reactive protein,
triglycerides, and high-density lipoprotein cholesterol levels (all p,0.05). The estimated causal effects were in
agreement with traditional observational measures in all instances except for type 2 diabetes, where the causal
estimate was larger than the observational estimate (p = 0.001).

Conclusions: We provide novel evidence for a causal relationship between adiposity and heart failure as well as between
adiposity and increased liver enzymes.

Please see later in the article for the Editors’ Summary.
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Introduction

The incidence and prevalence of cardiovascular disease (CVD)

are continuously increasing in parallel with the increase in obesity

and metabolic diseases, especially in low- and middle-income

countries [1]. An association between increased body mass index

(BMI) and cardiometabolic diseases has been demonstrated by

many well-designed epidemiological studies, and has previously

been shown to be close to log-linear, at least for BMI.25 kg/m2

[2]. However, confounding, reverse causation, and other issues

with conventional observational studies can seriously impair the

possibility of making causal inference, and lead to imprecision in

estimation of both the direction and magnitude of the effects, as

has been shown for the associations between BMI and mortality

from respiratory disease and lung cancer [3]. Several randomized

clinical trials have found that lifestyle interventions aiming at

weight loss decrease the risk of type 2 diabetes (T2D) and

metabolic syndrome [4–6], whereas the follow-ups of these studies

for CVD outcomes have been underpowered [7,8]. The causal

relationships of long-term obesity to disease are difficult to assess

within conventional randomized clinical trials, necessitating other

study designs.

In the past decade, instrumental variable (IV) analysis has

become widely used for assessing causality using genetic variants

under the name of ‘‘Mendelian randomization’’ (MR) [9]. MR

represents one of the methods to infer causal relationships

between epidemiologically relevant phenotypes. In MR study

designs, a genetic variant associated with an intermediate

phenotype (in the present report, BMI) is used as an IV to

evaluate the causal relationship of the intermediate phenotype

with the outcome of interest (Figure 1). Since genetic variants are

assumed to be randomly distributed within a population, the IV is

regarded as independent of confounders affecting the intermedi-

ate phenotype (BMI)–outcome relationship [10]. In the presence

of confounding and reverse causation, the IV approach is an

alternative for statistical estimation of causal relationships,

especially within large-scale studies, where classical epidemiolog-

ical modeling—fully adjusted for a wide range of covariates and

across numerous outcomes—would be difficult. While acknowl-

edging the issue of observed and unobserved confounding, we

consider MR as a pragmatic tool for elucidating the epidemio-

logical data through utilization of the findings from genetic

association studies on intermediate phenotypes. The strength of

the causal interpretation depends crucially on the validity of

assumptions and caveats within MR experiments, some of which

are difficult to evaluate [11]. If the basic assumptions are violated,

invalid conclusions would be drawn from the experiments. In the

past five years, large-scale collaborative efforts have successfully

identified more than 30 loci associated with BMI and obesity

[12]. The single nucleotide polymorphism (SNP) rs9939609,

within the fat-mass- and obesity-associated gene (FTO) locus, was

the first associated with BMI by genome-wide association studies,

and the association has been extensively replicated in individuals

of European descent and in other ethnic groups [12]. FTO locus

variants alone have been reported to explain 0.34% of the

phenotypic variability in BMI [13], and the rs9939609 variant is

considered a good instrument in MR studies because of its

specificity (lack of known pleiotropy) and decent effect size

[14,15].

Several MR studies using FTO variants have supported the

hypothesis of a causal relationship between adiposity and

cardiometabolic phenotypes, such as ischemic heart disease, C-

reactive protein (CRP), systolic and diastolic blood pressure,

fasting insulin, triglycerides, metabolic syndrome, and decreased

concentrations of high-density lipoprotein cholesterol (HDL-C)

[14–19]. However, the causal relationship between obesity and

increased risk of other CVD and metabolic phenotypes, such as

heart failure, stroke, and non-alcoholic fatty liver disease, is not yet

established using these methods, probably because of power issues,

as large sample sizes are needed for MR studies [15]. Table 1

shows an overview of previous MR studies of adiposity and

cardiometabolic phenotypes, with reported sample sizes and

instruments used.

In the present investigation, which is the largest MR study to

date, we aimed to evaluate the evidence for a causal relationship

between adiposity, assessed as elevated BMI, and a wide range of

cardiometabolic phenotypes including coronary heart disease,

stroke, T2D, and heart failure, as well as a number of intermediate

phenotypes related to future disease end points.

Methods

The study was conducted within the European Network for

Genetic and Genomic Epidemiology (ENGAGE) consortium,

represented here by 36 cross-sectional and longitudinal cohort

studies and up to 198,502 individuals of European descent (Table

S1).

Genotypes
Of the many highly correlated variants within the FTO locus,

we chose the widely confirmed and extensively studied variant

rs9939609 as the index SNP and IV for this study. Whenever

possible, we used direct genotype information for rs9939609 from

participating cohorts (n = 21) that had FTO variant genotypes

available (Table S2). Eleven out of 36 studies performed de novo

genotyping of rs9939609 for the present study, and ten studies

used direct genotype information on rs9939609 from previously

genotyped array data. Whenever rs9939609 was not genotyped

directly, we used either (i) the HapMap II CEU (European)

reference panel–imputed genetic information from genome-wide

association studies (http://hapmap.ncbi.nlm.nih.gov/downloads/

genotypes/2008-10_phaseII/) for rs9939609 (n = 5) or (ii) geno-

type information from a predefined list of proxies that are in high

linkage disequilibrium (LD) with rs9939609 (n = 10, r2.0.9; Table

S3). For the remaining studies, we used the directly genotyped

proxies rs11075989 (n = 5, r2 = 1.0), rs3751812 (n = 4, r2 = 1.0), and

rs1421085 (n = 1, r2 = 0.93). We estimated effects of the BMI-

increasing A allele of rs9939609, or for the corresponding alleles

from proxies (using HapMap II CEU LD data), on phenotypes.

We excluded individuals from analysis when the overall array

sample call rate was ,95%. All studies reported SNPs with Hardy-

Weinberg equilibrium exact p.0.0001, an information content

.0.99 for imputed SNPs, and a call rate.0.95 for genotyped

SNPs.

Outcomes
We studied nine dichotomous cardiometabolic outcomes in up

to 160,347 individuals and 14 quantitative cardiometabolic traits

in up to 147,644 individuals. Only individuals with both BMI and

FTO genotype information available were included in the study.

The CVD dichotomous outcomes of interest were coronary

heart disease (CHD), heart failure, hemorrhagic stroke, ischemic

stroke, all-cause stroke, and hypertension diagnosed at any time

point (ever) during the life course (Table 2). The metabolic

dichotomous outcomes included dyslipidemia, metabolic syn-

drome, and T2D diagnosed at any time point (ever) during the

life course. The diagnoses of CHD, heart failure, hemorrhagic

stroke, ischemic stroke, all-cause stroke, and all-cause mortality

Causality of Adiposity in Cardiometabolic Traits
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were based on health registries and/or validated medical records

(Table S4). Hypertension, dyslipidemia, and T2D diagnoses could

be self-reported or based on biochemical measurement within the

study, in addition to health registries and validated medical

records (Table S4). The diagnosis of metabolic syndrome was

based on a modified National Cholesterol Education Program

Adult Treatment Panel III definition [20]. We analyzed a subset of

individuals with prospectively collected events available for

incident cases of all binary outcomes and for all-cause mortality

as outcome.

We studied the following quantitative phenotypes (Table 3): (i)

measurements of glucose homeostasis in individuals without

diabetes: fasting glucose, 2-h post-load glucose from the oral

glucose tolerance test (OGTT), hemoglobin A1c (HbA1c), and

fasting insulin; (ii) diastolic and systolic blood pressure, with

adjustment for blood pressure medication; (iii) lipid metabolism (in

individuals without lipid-lowering medication): HDL-C, low-

density lipoprotein cholesterol (LDL-C), total cholesterol, and

triglycerides; (iv) liver enzyme activity and leakage: alanine

aminotransferase (ALT) and gamma-glutamyl transferase (GGT);

Figure 1. In a Mendelian randomization framework, genotype–phenotype association is assumed to be independent of
confounding factors. (A) In an example from our study, the IV estimator is calculated as the beta coefficient from the association of FTO with
systolic blood pressure divided by the beta coefficient from the association of FTO with BMI (IV estimator = 0.32/0.36 = 0.89 mm Hg/BMI unit). The IV
estimator is equivalent to what is seen when systolic blood pressure is regressed on BMI. These results are supportive of a causal, non-confounded
relationship. For binary traits, the calculation of the IV estimator is done on the log-odds scale. (B) The relationship of BMI with T2D, where the IV
estimator is ln(ORIV) = ln(1.12)/0.36, which equals a causal OR of BMI for T2D of 1.37. This is larger than what is seen in the standard age- and sex-
adjusted logistic regression of T2D on BMI (p = 0.001), indicating that confounding or reverse causation may be present or that BMI measured once in
adulthood does not fully reflect the effect of lifetime adiposity.
doi:10.1371/journal.pmed.1001474.g001
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and (v) inflammation markers: CRP and interleukin-6 (IL-6). Prior

to analysis the following variables were transformed to the natural

logarithmic scale: fasting insulin, ALT, GGT, CRP, IL-6, and

triglycerides (assay specifications are reported in Table S5).

Statistical Analyses
Association analyses. We assessed associations between the

dichotomous outcomes and (i) FTO and (ii) BMI in each cohort

using sex- and age-adjusted logistic regression models. We used

Cox proportional hazards models to assess FTO and BMI

associations with prospectively collected events [21]. The time

origin in the present analysis was set to the date of first BMI

measurement available. We assumed log-additive genetic effects

on binary traits. We evaluated the associations of (i) FTO and (ii)

BMI with the quantitative traits, as well as the association between

FTO and BMI, using sex- and age-adjusted linear regression in

each cohort, assuming an additive effect of the number of A alleles.

The models are described in detail in Text S1. The software used

for statistical analysis within each cohort is listed in Table S1.

Meta-analyses. As initial attempts at fixed-effects inverse-

variance-weighted meta-analysis indicated considerable between-

cohort heterogeneity, we performed random-effects meta-analyses,

leading to essentially unchanged effect estimates, but somewhat

more conservative confidence intervals (Figure S1). Hence, all

Table 1. Comparison of our study with previous Mendelian randomization studies of adiposity on cardiometabolic phenotypes.

Phenotype Present Study Using FTO as Instrument Previous Studies

N Total N Cases
Evidence for
Causality? N Total N Cases

Evidence for
Causality? Reference

Instrument Other
than FTO Only

CHD 119,630 10,372 2 75,627 11,056 + [16] FTO, MC4R, TMEM18

Heart failure 75,770 6,068 + N.A.

Hemorrhagic stroke 77,020 588 2 N.A.

Ischemic stroke 106,402 4,233 2 N.A.

Stroke 85,175 4,003 2 N.A.

T2D 160,347 20,804 + —a

Dyslipidemia 96,380 33,414 + N.A.

Hypertension 155,191 56,721 + 37,027 24,813 + [18] FTO, MC4R

Metabolic syndrome 49,592 11,608 + 12,555 N.A. + [15]

Mortality 68,762 8,640 2 N.A.

2-h post-OGTT glucose 21,257 + N.A.

Fasting glucose 84,910 2 13,632 + [15]

2,230 + [17]

HbA1c 35,471 2 8,876 2 [15]

Fasting insulin 48,018 + 12,095 + [15]

2,229 2 [17]

Diastolic blood pressure 130,380 + 15,619 2 [15]

37,010 + [18] FTO, MC4R

Systolic blood pressure 147,644 + 15,624 2 [15]

37,011 + [18] FTO, MC4R

2,204 + [17]

HDL-C 132,782 + 13,659 + [15]

2,224 2 [17]

LDL-C 123,026 2 13,476 2 [15]

2,224 2 [17]

ALT 46,754 + 6,171 2 [15]

CRP 91,337 + 21,836 + [18]

2,133 2 [17]

5,804 + [19] FTO, MC4R

GGT 71,118 + 6,596 2 [15]

IL-6 11,225 2 N.A.

Triglycerides 139,241 + 13,651 + [15]

2,228 2 [17]

Total cholesterol 147,619 2 2,226 2 [17]

aNo formal MR study, although the association of FTO and T2D is well known.
N.A, not applicable.
doi:10.1371/journal.pmed.1001474.t001
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results presented are from random-effects meta-analysis. Analyses

were run at two centers in parallel using different software

packages (GWAMA and R) [22,23] and yielding identical results.

Instrumental variable analyses. We used the IV estimators to

quantify the strength of the causal association between BMI and

cardiometabolic traits. The estimate was found as a ratio between

the two regression coefficients determined from association meta-

analyses (Equation 1): estimated FTO effect on the given trait and

estimated FTO effect on BMI in the full study sample

(n = 198,502). For binary traits, the formula is identical to the

Wald estimator [24].

bIV estimator~
bFTO-TRAIT

bFTO-BMI

ð1Þ

For quantitative and binary outcomes with only one SNP as

instrument, the IV estimator derived by Equation 1 is identical to

that derived by the widely used two-stage least squares method

[25]. The standard errors for the IV estimators were estimated

using the delta method (Equation 2), ignoring correlation, based

on a comprehensive sensitivity analysis; see Text S1, Figure S2,

and Tables S6 and Table S7 for further details.

seIV~abs(bIV)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
seFTO-BMI

bFTO-BMI

� �2

z
seFTO-TRAIT

bFTO-TRAIT

� �2
s

ð2Þ

For each trait, we tested the null hypothesis of no difference

between the respective IV estimator and the conventional

regression-based estimator of the effect of BMI on trait via a

classical z-test.

We did not apply correction for multiple testing as the

associations between BMI and multiple cardiometabolic traits

are widely reported [2,5].

Results

Association between FTO Variant and BMI
Random-effects meta-analysis of the association between FTO

variant and BMI in the 36 studies (n = 198,502) showed a positive

effect of the A allele on BMI (b= 0.36 per additional A allele; 95%

CI, 0.31–0.40; p = 4.3610252), with an effect size in line with that

of previous studies [13]. The effect estimates ranged between 0.05

and 0.74 BMI units per copy of A allele, yielding an I2 for

heterogeneity between studies of 55% (p = 3.661025; Figure 2;

Text S1). We assessed potential causes of this heterogeneity in a

meta-regression of the study-specific beta coefficient estimates of

effect sizes for the association between FTO and BMI—including

study-specific mean age and mean BMI as covariates—and

whether the study was exclusively of a diabetes case group or

not. Effect size estimates decreased non-significantly with increas-

ing cohort age in cohorts with mean age.40 y (n = 31, p = 0.07).

Associations between BMI and Cardiometabolic Traits
We observed positive associations (all p,0.05) between BMI

and ever and incident heart failure (Figure 3), ever and incident

CHD, ever all-cause stroke, ischemic stroke, hypertension,

dyslipidemia, metabolic syndrome, T2D, and mortality (Table 2).

We did not observe an association between BMI and ever or

incident hemorrhagic stroke, or incident all-cause stroke. BMI was

associated (all p,1026) with all quantitative phenotypes: (i) fasting

glucose, fasting insulin, 2-h post-OGTT glucose, and HbA1c; (ii)

diastolic and systolic blood pressure; (iii) HDL-C, LDL-C, total

cholesterol, and triglycerides; (iv) ALT and GGT; and (v) CRP and

IL-6 (Table 3).

Associations between FTO Variant and Cardiometabolic
Traits

We detected a novel association between the BMI-increasing

allele of the FTO variant and increased odds/hazard ratios of ever

and incident heart failure (Figure 4;Table 2). Associations (all

p,0.001) were observed between the FTO variant and increased

odds/hazard ratios of ever or incident T2D, ever dyslipidemia,

ever metabolic syndrome, and ever hypertension. The FTO

variant was associated (all p,0.05) with increased levels of 2-h

post-OGTT glucose, fasting insulin, diastolic blood pressure,

systolic blood pressure, triglycerides, ALT, GGT, CRP, and

decreased HDL-C.

Instrumental Variable Analysis
We identified at least nominally significant (p,0.05) causal

estimates for the effect of BMI (IV estimators) on ever and incident

heart failure, ever hypertension, ever and incident T2D, ever

dyslipidemia, and ever metabolic syndrome (Table 2). For other

dichotomous outcomes, we were not able to confirm the presence

of a causal effect of BMI using the IV approach. The estimates

derived from IV analysis based on either logistic regression

modeling or Cox proportional hazards models were similar for our

significant findings.

The IV estimators pointed to a causal effect of higher BMI on

an increase in (i) ALT and GGT levels, a novel finding from the

present study; (ii) 2-h post-OGTT glucose and fasting insulin; and

(iii) diastolic blood pressure and systolic blood pressure. We also

observed an unfavorable effect of BMI on lipid metabolism (in

individuals without lipid medication), as indicated by decreased

levels of HDL-C and increased levels of triglycerides. The IV

estimators pointed to a causal link between BMI and inflamma-

tion, as indicated by increased levels of CRP. We did not observe a

causal effect of BMI on levels of fasting glucose, HbA1c, LDL-C,

IL-6, or total cholesterol (Table 3).

Post hoc power calculation showed that for the binary traits with

non-significant IVs (CHD, ischemic stroke, and all-cause stroke),

we had an 80% chance of detecting an IV estimator odds ratio

(OR) of 1.08–1.09/BMI unit or higher, and a 95% chance of

detecting an OR of 1.13–1.15/BMI unit or higher. For fasting

glucose, we had a 80% chance of detecting a 0.014 mmol/l

change per BMI unit and a 95% chance of detecting a

0.022 mmol/l change, smaller than the effect estimate from

ordinary linear regression of BMI on glucose (0.028; Table 3).

The causal estimate of the relationship between BMI and ever

T2D derived from the MR analysis (the IV estimator) (OR 1.37;

95% CI, 1.23–1.51) was different from the observed association

between BMI and ever T2D (OR 1.15; 95% CI, 1.14–1.17;

p = 0.001).

Discussion

Main Findings
In this large-scale meta-analysis, we used a MR design to

examine causal associations between adiposity, assessed as elevated

BMI, and a number of cardiometabolic outcomes. The present

study is, to our knowledge, the most comprehensive MR study

published to date, including 24 traits in up to 198,502 individuals

with FTO genotype and BMI information available. This analysis

has enabled us to provide evidence for many biologically plausible

causal relationships, such as those between adiposity and

Causality of Adiposity in Cardiometabolic Traits
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hypertension, and between adiposity and dyslipidemia. Further-

more, we demonstrated evidence for a causal relationship between

(i) adiposity and heart failure and (ii) adiposity and increased

concentrations of the liver enzymes ALT and GGT. In addition,

we showed that traditional cross-sectional estimates of the BMI

effect on T2D are smaller than the causal estimates of the BMI–

T2D relationship based on FTO-predicted obesity (IV analyses).

This difference is probably driven by lifetime changes in BMI

affecting T2D risk, and their attenuation introduced by a single

measurement of BMI.

Comparison with Previous MR Studies
In the present population-based investigation, we confirm

earlier findings that FTO-mediated adiposity increases the risk of

metabolic syndrome and of increased CRP, fasting insulin, and

triglyceride levels; increased systolic and diastolic blood pressure;

and decreased concentrations of HDL-C [14,15,17–19].

Using standard regression methods for the association between

BMI and other cardiovascular traits, we confirmed associations

between adiposity and CHD, ischemic stroke, and all-cause stroke,

but did not find an association with hemorrhagic stroke, where we

had relatively few cases available for analyses. We could not

demonstrate a causal relationship via IV methods applied to these

cardiovascular outcomes. The same was true for several metabolic

traits, such as for fasting glucose, HbA1c, IL-6, total cholesterol,

and LDL-C. However, our findings do not exclude causal

relationships as such, since despite the large study sample, the

IV analyses brought estimators with rather wide confidence

Figure 2. Association between FTO variant rs9939609 and BMI in 198,502 individuals. The assigned weight for each study in the meta-
analysis is shown in percent (% Weight). ES, estimate. For cohort abbreviations and references, see Table S1.
doi:10.1371/journal.pmed.1001474.g002

Causality of Adiposity in Cardiometabolic Traits

PLOS Medicine | www.plosmedicine.org 10 June 2013 | Volume 10 | Issue 6 | e1001474



intervals, a common feature when only one genotype is used as an

IV. Our calculations showed low power to detect ORs of less than

1.05 in the present study, observed for several BMI–trait

associations among those with non-significant IV estimators. We

could not find evidence for a causal association between adiposity

and all-cause mortality. While the causal association between these

phenotypes might be absent, nonlinear relationships, potential

survival bias, or low power due to a heterogeneous phenotype

could have also affected the results.

We were not able to replicate the findings by Nordestgaard et

al., who studied the association between adiposity and CHD using

a combined allele score based on FTO, MC4R, and TMEM18

variants as an instrument for adiposity, and demonstrated a causal

link between BMI and CHD risk [16]. Although the sample sizes

and diagnostic criteria were comparable between that study and

the present one, Nordestgaard et al. presented more precise

estimates, which was probably primarily an effect of the stronger

instrument, but the increased precision may also have been

influenced by the notion that the ascertainment of CHD events

was validated in the three cohorts included, and that results

showed low heterogeneity. We found that the IV estimate for the

effect of BMI on T2D was higher than that derived from standard

logistic regression, which is similar to the finding of Li et al.,

conducted in east and south Asians [26]. Possible explanations of

such an observation include the following: the cross-sectional

nature of data that could result in reverse causation (weight loss

due to disease or lifestyle interventions), and the notion that the

lifelong effect of FTO on adiposity is not entirely captured by a

single BMI measurement [27].

Adiposity and Heart Failure
We have provided evidence that the previously suggested

association of adiposity with heart failure [28] may indeed be

causal. A causal relationship may be mediated through effects of

obesity on hypertension, dyslipidemia, and insulin resistance,

associations that are also supported by our study. Hypertension,

insulin resistance, and T2D have been independently associated

with increased risk of heart failure [29,30]. Hypertension, T2D,

dyslipidemia, and insulin resistance are also important risk factors

for myocardial infarction, which often results in heart failure [31].

Additionally, increased BMI is associated with cardiac remodeling

[32], possibly owing to increased hemodynamic load and

increased oxidative stress [33]. Animal models have independently

suggested direct apoptotic effects of adiposity on the myocardium

[34]. Our study estimates the causal impact of a one-unit increase

in BMI as a 17% increase in heart failure incidence. Extrapolating

this estimate to the population level based on incidence rates

reported by the World Health Organization [35] and the

American Heart Association [36], a one-unit increase in BMI

corresponds to roughly 220,000 additional heart failure cases in

Europe and 113,000 additional cases in the US, at extensive costs

for society.

Adiposity and Liver Enzymes
The higher concentrations of liver enzymes observed in the

present study caused by an increased BMI are likely to be related

to non-alcoholic fatty liver disease, which is characterized by lipid

accumulation within hepatocytes as a consequence of increased

levels of fatty acids in insulin-resistant individuals. This accumu-

Figure 3. Association between BMI and incident heart failure in 2,863 cases and 44,400 controls. Estimates (ES) are shown on a hazard
ratio scale for a one-unit increase in BMI. The assigned weight for each study in the meta-analysis is shown in percent (% Weight). For cohort
abbreviations and references, see Table S1.
doi:10.1371/journal.pmed.1001474.g003
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lation predisposes to overproduction of reactive oxygen species,

endoplasmic reticulum stress, and lipotoxicity, all of which are

harmful to the hepatocytes [37].

Strengths and Limitations
The main strengths of the present investigation include the

combination of the very large study sample, prospectively collected

events, and a wide range of cardiometabolic phenotypes. The

limitations of our study are tied to the validity of the assumptions

underlying causal interpretation within MR studies. There are

three main assumptions for a MR study: (i) independence between

the instrument and confounders, i.e., FTO genotypes are

randomized, (ii) a reliable association between the genetic variant

and intermediate phenotype, and (iii) conditional independence

between the genetic variant and the outcome, given the

intermediate phenotype and the confounders, i.e., no pleiotropy

[38]. Possible violations of the first and the third assumptions

include population stratification, pleiotropic effects, canalization,

epigenetic effects, and the presence of genes associated with

confounders and outcomes in LD with the FTO variant. Neither

the first nor the third assumption can be tested statistically in the

observed data using single genotypes as the IV, and conclusions

about such assumptions have to be based on previous biological

knowledge. There are additional assumptions of MR studies

regarding the quantification of the causal effect (as opposed to testing

only; see Text S1).

The random distribution of genotypes in the population is the

very basis of MR and could be violated if separate ethnic groups

with different allele frequencies were analyzed together without

accounting for the population substructure. In the present study,

all association analysis was done within each study (including

individuals from a similar genetic background) separately, and all

studies included only individuals of European ancestry. Hence,

bias from population stratification is deemed unlikely [39].

With regards to the possibility of pleiotropic effects by FTO or

genes in high LD with FTO, we acknowledge that although FTO is

one of the most well-studied obesity loci, and there are credible

hypotheses for its action on adiposity by increasing the appetite

[40,41], the precise mechanism of the FTO polymorphisms is still

unclear, and potential pleiotropy cannot completely be ruled out.

It has, however, been demonstrated previously that FTO is not

associated with the most obvious potential confounders, such as

smoking and drinking habits, income, or education [16]. A

suggested way to assess pleiotropy in IV studies using multiple

genotypes is to compare IV estimates between variants: if they are

similar, it is less plausible that LD or pleiotropy is present [42].

This was done in the study by Nordestgaard and colleagues on the

adiposity effect on CHD, and no difference between FTO, MC4R,

and TMEM18 was seen in effect on CHD risk [16].

Concerning the reliability of the association (second assumption)

between rs9939609 and BMI, this association has been widely

replicated in many studies and populations [13,43,44]. While

having the largest effect on BMI among known common variants,

FTO constitutes a relatively weak instrument and thus results in

wide confidence intervals for the IV estimators, despite the very

large sample size. An approach to increase power in future studies

would be to use multiple genetic variants as an instrument. In the

present study, there is a possibility of introduction of a bias by

Figure 4. Association between FTO and incident heart failure in 2,863 cases and 44,400 controls. Estimates (ES) are shown on a hazard
ratio scale per number of effect alleles. The assigned weight for each study in the meta-analysis is shown in percent (% Weight). For cohort
abbreviations and references, see Table S1.
doi:10.1371/journal.pmed.1001474.g004
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using weak instruments in the calculation of the Wald estimator of

dichotomous traits [25]. Our sensitivity analysis (Text S1)

estimated that in the settings of our study, the estimator is possibly

biased towards the null, and the extent of the bias is modest.

Conclusion
The present MR study addressing the role of BMI in 24 traits in

up to 198,502 individuals provides novel insights into the causal

effect of obesity on heart failure and increased liver enzymes levels.

Furthermore, to our knowledge for the first time in a well-powered

sample, this study provides robust support for a causal relationship

between obesity and a number of cardiometabolic traits reported

previously. These results support global public prevention efforts

for obesity in order to decrease costs and suffering from T2D and

heart failure.
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Editors’ Summary

Cardiovascular disease (CVD)—disease that affects the heart
and/or the blood vessels—is a major cause of illness and
death worldwide. In the US, for example, coronary heart
disease—a CVD in which narrowing of the heart’s blood
vessels by fatty deposits slows the blood supply to the heart
and may eventually cause a heart attack—is the leading
cause of death, and stroke—a CVD in which the brain’s
blood supply is interrupted—is the fourth leading cause of
death. Globally, both the incidence of CVD (the number of
new cases in a population every year) and its prevalence (the
proportion of the population with CVD) are increasing,
particularly in low- and middle-income countries. This
increasing burden of CVD is occurring in parallel with a
global increase in the incidence and prevalence of obesity—
having an unhealthy amount of body fat (adiposity)—and of
metabolic diseases—conditions such as diabetes in which
metabolism (the processes that the body uses to make
energy from food) is disrupted, with resulting high blood
sugar and damage to the blood vessels.

Why Was This Study Done? Epidemiological studies—
investigations that record the patterns and causes of disease
in populations—have reported an association between
adiposity (indicated by an increased body mass index
[BMI], which is calculated by dividing body weight in
kilograms by height in meters squared) and cardiometabolic
traits such as coronary heart disease, stroke, heart failure (a
condition in which the heart is incapable of pumping
sufficient amounts of blood around the body), diabetes, high
blood pressure (hypertension), and high blood cholesterol
(dyslipidemia). However, observational studies cannot prove
that adiposity causes any particular cardiometabolic trait
because overweight individuals may share other character-
istics (confounding factors) that are the real causes of both
obesity and the cardiometabolic disease. Moreover, it is
possible that having CVD or a metabolic disease causes
obesity (reverse causation). For example, individuals with
heart failure cannot do much exercise, so heart failure may
cause obesity rather than vice versa. Here, the researchers
use ‘‘Mendelian randomization’’ to examine whether adipos-
ity is causally related to various cardiometabolic traits.
Because gene variants are inherited randomly, they are not
prone to confounding and are free from reverse causation. It
is known that a genetic variant (rs9939609) within the
genome region that encodes the fat-mass- and obesity-
associated gene (FTO) is associated with increased BMI. Thus,
an investigation of the associations between rs9939609 and
cardiometabolic traits can indicate whether obesity is
causally related to these traits.

What Did the Researchers Do and Find? The researchers
analyzed the association between rs9939609 (the ‘‘instru-
mental variable,’’ or IV) and BMI, between rs9939609 and 24
cardiometabolic traits, and between BMI and the same traits
using genetic and health data collected in 36 population-
based studies of nearly 200,000 individuals of European
descent. They then quantified the strength of the causal
association between BMI and the cardiometabolic traits by
calculating ‘‘IV estimators.’’ Higher BMI showed a causal
relationship with heart failure, metabolic syndrome (a
combination of medical disorders that increases the risk of

developing CVD), type 2 diabetes, dyslipidemia, hyperten-
sion, increased blood levels of liver enzymes (an indicator of
liver damage; some metabolic disorders involve liver
damage), and several other cardiometabolic traits. All the
IV estimators were similar to the BMI–cardiovascular trait
associations (observational estimates) derived from the same
individuals, with the exception of diabetes, where the causal
estimate was higher than the observational estimate,
probably because the observational estimate is based on a
single BMI measurement, whereas the causal estimate
considers lifetime changes in BMI.

What Do These Findings Mean? Like all Mendelian
randomization studies, the reliability of the causal associa-
tions reported here depends on several assumptions made
by the researchers. Nevertheless, these findings provide
support for many previously suspected and biologically
plausible causal relationships, such as that between adipos-
ity and hypertension. They also provide new insights into the
causal effect of obesity on liver enzyme levels and on heart
failure. In the latter case, these findings suggest that a one-
unit increase in BMI might increase the incidence of heart
failure by 17%. In the US, this corresponds to 113,000
additional cases of heart failure for every unit increase in BMI
at the population level. Although additional studies are
needed to confirm and extend these findings, these results
suggest that global efforts to reduce the burden of obesity
will likely also reduce the occurrence of CVD and metabolic
disorders.

Additional Information. Please access these websites via
the online version of this summary at http://dx.doi.org/10.
1371/journal.pmed.1001474.

N The American Heart Association provides information on
all aspects of cardiovascular disease and tips on keeping
the heart healthy, including weight management (in
several languages); its website includes personal stories
about stroke and heart attacks

N The US Centers for Disease Control and Prevention has
information on heart disease, stroke, and all aspects of
overweight and obesity (in English and Spanish)

N The UK National Health Service Choices website provides
information about cardiovascular disease and obesity,
including a personal story about losing weight

N The World Health Organization provides information on
obesity (in several languages)

N The International Obesity Taskforce provides information
about the global obesity epidemic

N Wikipedia has a page on Mendelian randomization (note:
Wikipedia is a free online encyclopedia that anyone can
edit; available in several languages)

N MedlinePlus provides links to other sources of information
on heart disease, on vascular disease, on obesity, and on
metabolic disorders (in English and Spanish)

N The International Association for the Study of Obesity
provides maps and information about obesity worldwide

N The International Diabetes Federation has a web page that
describes types, complications, and risk factors of diabetes
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