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Short running title: Carbohydrate intake enhance lung allergic inflammation  

Word count: 4241 

 

List of abbreviations 

AAI: Allergic airway inflammation 

ALA: alpha-linolenic acid 

APE: Aqueous pollen extract 

BAL: Bronchoalveolar lavage 

FACS: Fluorescence activated cell sorting 

GAE: Gallic acid equivalents 

GINIplus: German Infant study on the Influence of Nutrition Intervention plus environmental and genetic influences on allergy development 

GTT: Glucose tolerance test 

HDM: House dust mite 

HFD: High-fat diet 

LA: linoleic acid 

LF-HA: Low fat, high starch (Amylum) 

LF-HS: Low fat, high sucrose 

LISA: Life-style related factors on the development of the Immune System and Allergies in East and West Germany 

MUFA: monounsaturated fatty acids 

NEFA: non-esterified fatty acids 
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PAS: Periodic acid–Schiff  

PBS: Dulbecco’s phosphate-buffered saline, no calcium, no magnesium 

SFA: saturated fatty acids, linoleic acid=LA, and alpha-linolenic acid=ALA 

TH: T helper 

tIgE: total immunoglobulin E 

Treg: regulatory T cell 

VAT: Visceral adipose tissue 
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Abstract  

Background: Dietary carbohydrates and fats are intrinsically correlated within the habitual diet. We aimed to disentangle the associations of starch and sucrose 

from those of fat, in relation to allergic sensitization, asthma and rhinoconjuctivitis prevalence in humans, and to investigate underlying mechanisms using 

murine models. 

Methods: Epidemiological data from participants of two German birth cohorts (age 15) were used in logistic regression analyses testing cross-sectional 

associations of starch and sucrose (and their main dietary sources) with aeroallergen sensitization, asthma and rhinoconjunctivitis, adjusting for correlated fats 

(saturated, monounsaturated, omega-6 and omega-3 polyunsaturated) and other covariates. For mechanistic insights, murine models of aeroallergen-induced 

allergic airway inflammation (AAI) fed with a low-fat-high-sucrose or -high-starch versus a high-fat diet were used to characterize and quantify disease 

development. Metabolic and physiologic parameters were used to track outcomes of dietary interventions and cellular and molecular responses to monitor the 

development of AAI. Oxidative stress biomarkers were measured in murine sera or lung homogenates. 

Results: We demonstrate a direct association of dietary sucrose with asthma prevalence in males, while starch was associated with higher asthma prevalence in 

females. In mice, high-carbohydrate feeding, despite scant metabolic effects, aggravated AAI compared to high-fat in both sexes, as displayed by humoral 

response, mucus hypersecretion, lung inflammatory cell infiltration and TH2-TH17 profiles. Compared to high-fat, high-carbohydrate intake was associated with 

increased pulmonary oxidative stress, signals of metabolic switch to glycolysis and decreased systemic anti-oxidative capacity.  

Conclusion: High consumption of digestible carbohydrates is associated with increased prevalence of asthma in humans and aggravated lung allergic 

inflammation in mice, involving oxidative stress-related mechanisms.  

 

 

Keywords: carbohydrates, nutrition, asthma, allergic airway inflammation, oxidative stress  
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Introduction  

The incidence of allergic diseases, such as rhinoconjuctivitis and asthma, has been steadily increasing in the last decades, especially in children 1, 2. Currently, an 

interaction of genetic, host, and environmental factors is discussed to be involved in asthma development 3. Westernized countries have experienced a substantial 

increase in asthma incidence, mainly attributed to changes in lifestyle, including diets rich in fats, added sugars, and highly-processed foods 4, 5. Whilst the effects 

of dietary fats have been widely investigated, pointing towards a functional link between obesity and asthma 6-8, the role of digestible carbohydrates (sugars and 

starches) in allergic diseases remains unclear. Addressing this evidence gap is crucial, as the two macronutrients are tightly interrelated, limiting our 

understanding of their isolated effects.  

Indeed, prolonged high-sugar intake has been shown to be associated with obesity, especially if combined with a sedentary lifestyle 9. Additionally, high-sugar 

intake has been linked to the development of cardiovascular diseases, pointing to oxidative stress as one key mechanism in this process 10. With respect to 

allergic airway inflammation (AAI), recent studies have shown associations between sugar-sweetened beverage intake and asthma in both children 11-14 and 

adults 15, 16. However, these effects are believed to result from the excess free fructose present in such beverages 16, 17. The role of sucrose, a common source of 

added sugar in the human diet 18, calls for further research, especially considering that the already elevated consumption of sugar-rich foods has increased even 

further during the COVID-19 pandemic 19. Additionally, starchy foods with a high glycemic load, such as potatoes, or refined grains (processed to remove the 

protein- and fat-rich germ and fibre-rich bran), have also been associated with increased risk of cardiometabolic diseases, and contribute substantially more 

calories to the typical Western diet than do added sugars 20. In addition, while reducing total dietary fat tends to be accompanied by an increased intake of 

carbohydrates 21, many high-fat products are also rich in added sugars, leading to expected correlations between starch and sucrose with fat intake. Therefore, the 

aims of the present study were to disentangle the effects of these two types of digestible carbohydrate from that of dietary fat on the development of aeroallergen-

induced allergic disease. Therefore, we carried out epidemiological analyses among participants of two German birth cohort studies, testing the association of 

sucrose and starch, as well as their major dietary sources, with allergic sensitization, asthma and rhinoconjunctivitis, adjusting for dietary fat intake. Furthermore, 

to investigate possible underlying mechanisms, we used mouse models of aeroallergen-induced AAI and compared lung allergic response following low-fat, 

 13989995, ja, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/all.15589 by H

elm
holtz Z

entrum
 M

uenchen D
eutsches Forschungszentrum

, W
iley O

nline L
ibrary on [30/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



 
 

high-sucrose (or high-starch) with high-fat diet feeding. Here we demonstrate that consumption of a diet rich in digestible carbohydrates is associated with higher 

asthma prevalence in humans and increased risk of AAI in mice. Moreover, mice on a low-fat, high-carbohydrate diet display increased pulmonary oxidative 

stress, signals of metabolic switch favoring glycolysis and decreased systemic anti-oxidative capacity, which may support the increased allergic response. These 

findings call for further dietary intervention studies investigating whether reducing the consumption of digestible carbohydrates  serves to support prevention and  

therapy of asthma.  
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Methods 

 

Epidemiological data 

Data from participants of two German birth cohorts, GINIplus 22 and LISA 23, were obtained through questionnaires or medical examinations carried out at the 

15-year follow-up assessment. Detailed descriptions of the food frequency questionnaire used for dietary assessment, and the assessment of sensitization status, 

asthma, rhinoconjunctivitis and covariates, are provided in the online supplement. 

 

Murine experimental protocols 

C57BL/6J mice were fed a low-fat diet containing high-sucrose (LF-HS), high-starch (LF-HA) or a high-fat diet (HFD) for 11 weeks. Balb/c mice were fed LF-

HA, HFD or a regular chow diet for 20 weeks (Table S2). To induce AAI, Dermatophagoides farinae (HDM) 24 or ragweed aqueous pollen (APE) 25 extracts 

were instilled in C57BL/6J and Balb/c mice, respectively, in the last two weeks of experiments. At sacrifice, serum was tested for total immunoglobulin E (tIgE) 

and metabolites, and lungs were subjected to bronchoalveolar lavage (BAL) analysis 25. Lung and visceral adipose tissue (VAT) were processed for flow 

cytometric analysis and lung tissue for additional RNA/protein isolation and histology. For methodological details see online supplement.  

 

Statistical analysis 

Epidemiological analyses in humans were performed stratified by sex using the statistical software R, version 4.4.1 26. Descriptive characteristics of the study 

population were presented as medians (25th; 75th percentile) for continuous variables, and counts (%) for categorical variables. Dietary variables were presented 

as their relative contribution to total energy intake (%EI). Sex-differences in population characteristics were tested by Wilcoxon rank-sum test or Pearson’s chi-

squared test (for continuous and categorical variables, respectively). Correlations of each carbohydrate variable with total fat, and different fat subtypes 

(saturated=SFA, monounsaturated=MUFA, linoleic acid=LA, and alpha-linolenic acid=ALA) were tested by Spearman’s rank correlation. The association of 
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dietary carbohydrates, namely sucrose, sugary foods, sugary drinks, starch, starchy vegetables, and refined grains (independent variables) with allergic 

sensitization, asthma, and rhinoconjunctivitis (dependent variables), were assessed by logistic regression. In order to determine whether associations with asthma 

were mainly driven by participants with an allergic phenotype (allergic asthma), sensitivity analyses were performed in a subset of the study population with 

positive aeroallergen sensitization (N=715). Unadjusted analyses, then analyses adjusting for pre-selected covariates were performed. For independent variables 

presenting a significant correlation with dietary fats (at p-values<0.001), the respective regression model was further adjusted for the relevant fat subtypes. 

Effects are presented as odds ratios and 95% confidence intervals (OR (95% CI)) for an interquartile range increase in the respective independent variable. 

For murine studies, statistical analyses were performed by one-way or two-way analysis of variance (ANOVA) with Bonferroni's post-hoc test or by Student’s 

unpaired two-tailed t-test. Data were analyzed using Prism software version 6 (GraphPad software Inc., La Jolla, CA, USA). Threshold of significance: P<0.05.   
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Results 

Digestible carbohydrates are associated with increased odds of allergic sensitization and asthma 

Descriptive characteristics of the study population are presented in Table 1A. Males presented significantly higher levels of allergic sensitization (50.7%) and 

asthma (6.9%) than females (40.9% and 4.1%, respectively). There was no sex difference in the prevalence of rhinoconjunctivitis (21.0% in females and 20.2% 

in males). Total sucrose intake represented around 10% of total energy intake (10.6% and 9.98% in females and males, respectively), and total starch intake 

around 27% (27.8% and 26.2% in females and males, respectively). Correlations between carbohydrates and fat variables are presented in Table 1B. Sugary 

drinks were negatively correlated with fat intake in males only, whereas all other correlations were mostly similar in both sexes. While sucrose presented 

significant negative correlations with MUFA and LA, sugary foods were positively correlated with SFA. Starch was negatively correlated with SFA, MUFA and 

ALA, and the same was observed for refined grains (except for ALA in females). Starchy vegetables were positively correlated with LA. The various 

associations with different fat types, each type having unique effects on health, show that simply adjusting analyses for total fat intake would not be sufficient to 

account for the complex interrelations between different dietary carbohydrates and fats. For example, while both starch and sucrose were inversely correlated 

with total fat, LA accounts largely for this association in the case of sucrose, whereas in the case of starch, the correlation is mostly due to SFA.  

Associations of dietary intake variables (sucrose, sugary foods, sugary drinks, starch, starchy vegetables, and refined grains) with allergic sensitization, asthma, 

allergic asthma, and rhinoconjunctivitis, are displayed in Fig.1 and Table S1. A significant positive association was observed between sucrose intake and asthma 

in males (OR=1.68, 95% CI= (1.12;2.51), p=0.011), whereas no significant associations were observed with sugary foods or sugary drinks. In females, total 

starch was positively associated with asthma, (1.80 (1.02;3.15), p=0.041), and starchy vegetables were positively associated with allergic sensitization (1.25 

(1.05;1.49), p=0.013). There were no significant associations with rhinoconjunctivitis in either sex. Sensitivity analyses assessing allergic asthma in the subset of 

aeroallergen sensitized participants indicated similar trends for sucrose in males (1.67 (1.02;2.75), p=0.044), however the OR of starch in females was reduced 

and not significant (1.36 (0.64;2.89), p=0.420). In contrast, sugary foods were significantly associated with allergic asthma in females (2.36 (1.01;5.51), 
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p=0.047). Nevertheless, given the small sample size available for sensitivity analyses and large confidence intervals, these associations must be interpreted with 

caution.   

 

High-sucrose diet exacerbates murine HDM-induced AAI  

To mechanistically explore the results obtained in our epidemiological analyses, we employed a model of HDM-induced AAI in male and female mice fed either 

with a sucrose-rich LF-HS or a HFD as a control (Fig.2A). As expected, HFD-fed males showed a stronger increase in body weight, body fat mass and weight of 

fat pads, and a lower tolerance to injected glucose compared to both LF-HS-fed males and to HFD-fed females (Fig.2B, Fig.S4A-C) 27, 28. Accordingly, liver 

triglycerides, serum levels of insulin and glucose were increased in HFD-fed compared to LF-HS-fed male mice (Fig.S4D). Notably, both LF-HS and AAI had 

no impact on metabolic parameters compared to respective diet- and PBS-controls. The increased body weight (and fat mass) in female HFD HDM should be 

disregarded as it was present from begin of sensitization (Fig.2B, right). FACS analysis of VAT (Fig.S4E) revealed the expected increase of M1 macrophages in 

HFD-fed males 29, their slight decrease following AAI in both sexes, and no diet- or treatment-induced variations in M2 macrophages, CD4+T or CD8+T cells.  

In lungs AAI significantly increased BAL inflammatory cells numbers in LF-HS and HFD. Interestingly, total BAL cells and relative percentage of eosinophils 

were significantly higher in LF-HS compared to HFD in both sexes (Fig.2C, Fig. S5A), whereby female mice showed higher infiltrating macrophages, 

lymphocytes and neutrophils compared to males. Analysis of BAL TH2, TH17, pro-inflammatory cytokines and chemokines revealed HDM-induced increased 

tendencies in both sexes, reaching significance only in few parameters in LF-HS-fed animals (Fig.S5C). BAL protein concentration, a reliable parameter of 

increased lung barrier permeability30 as expected 31 increased significantly following HDM challenge in both sexes (Fig. S5B). Serum tIgE, which in LF-HS-fed 

females was augmented compared to HFD-fed even before AAI induction, after HDM-challenge increased in both sexes, reaching significantly higher levels in 

LF-HS compared to HFD groups (Fig.2D). Lung histopathological analysis revealed increased perivascular and peribronchiolar inflammatory cell infiltration and 

mucus hypersecretion following AAI and, most importantly, both scores were significantly enhanced in LF-HS compared to HFD in both sexes (Fig.2E-I). To 

further characterize the type of lung immune response, we performed FACS analysis of lung tissue, which revealed a clear AAI-induced inflammatory type-2 
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phenotype, highlighted by a significant increase of CD4+T cell percentages in LF-HS HDM of both sexes, especially in females (Fig. 2J). Contrarily, CD8+T cells 

varied minimally in males, but decreased significantly in LF-HS HDM females compared to their diet and PBS controls (Fig.S3B). Whilst the percentage of 

GATA3+ cells strongly increase in in both sexes following AAI, FoxP3+ and RORγt+ cells underwent only minor variations. Furthermore, analysis of M1- and 

M2-BAL macrophages markers indicated an AAI-induced upregulation of both markers in LF-HS, stronger in females compared to males, whereas in HFD only 

Nos2 was upregulated in females (Fig.2K).  

Thus, consumption of high-sucrose diet leads to an aggravated type-2 phenotype compared to HFD in both sexes, but especially in females. 

 

A high-starch diet exacerbates murine HDM-induced AAI 

To clarify if the observed high-sucrose-induced AAI-enhancing effect applied also to starch, we compared AAI outcomes in mice fed a sucrose-rich LF-HS with 

mice fed a low-sucrose, high-starch (Amylum) (LF-HA) diet, using HFD-fed animals as reference (Fig.3A). LF-HA-fed mice gained more weight compared to 

LF-HS mice (Fig.3B), but no difference was observed in their glucose tolerance (Fig.3C). Serum clinical chemistry parameters did not differ between the two 

diets or treatment, only triglycerides and non-esterified fatty acids (NEFA) were slightly higher in LF-HA compared to LF-HS (Fig.S6A). Similarly, no 

difference in macrophage or T cell populations was detected between LF-HA and LF-HS in fat tissue (Fig.S6B). As for the lung response to AAI, no difference 

in BAL cell infiltration (Fig.3D), histopathological alterations and scores (Fig.3E-I), serum tIgE (Fig.3K), BAL protein and cytokines (Fig.S6C) was detected 

between LF-HA and LF-HS, whereby most of these parameters were strongly increased in high-carbohydrate groups compared to HFD. Lung FACS analysis 

revealed an AAI-induced TH2-driven response similar in LF-HA and LF-HS whereas the TH17 response was higher in LF-HA compared to HFD and to LF-HS, 

reflected also by higher IL-17A levels in BAL supernatant in this group (Fig.3L, S6C).  

Herewith, we could demonstrate that a diet rich in starch potentiates a HDM-induced allergic response similarly to sucrose, but favoring mixed TH2-TH17 

profiles. 
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Effects of a high-starch diet are not restricted to a specific allergen 

To evaluate the allergen specificity of our findings, we employed an aero-allergen other than HDM in an AAI model previously established with ragweed-APE in 

female BALB/c mice 25 at the end of a 20-week feeding period with LF-HA or HFD as a control (Fig.4A). Whereas at week 7 LF-HA-fed mice showed, 

additionally to a lower body weight, higher glucose tolerance compared to HFD (Fig.S7A,C), at week 13 also mice fed LF-HA developed glucose intolerance, 

maintaining a lower body weight compared to HFD (Fig.S7B-C). Accordingly, perigonadal fat pads were significantly increased in sham-sensitized HFD- 

compared to LF-HA-fed mice (Fig.S7D-E). Additionally, serum cholesterol, triglyceride, NEFA and glucose were higher in HFD compared to LF-HA (Fig.S7F). 

AAI induction had no impact on the metabolic parameters evaluated. 

APE-challenge increased lung inflammatory cell infiltration of both LF-HA- and HFD-fed mice, dominated by eosinophils and lymphocytes. Total BAL cells 

and eosinophils showed only a higher tendency in LF-HA compared to HFD (Fig.4B, above), BAL total protein was similar in the two challenged groups 

whereas the Th2 cytokines IL-4 and IL-13 were significantly higher in LF-HA- compared to HFD-fed animals, together with no IFN-γ alterations (Fig.4B, 

below). Also histopathological scoring of lungs revealed increased perivascular and peribronchiolar inflammatory cell infiltration and mucus hypersecretion in 

allergic LF-HA compared to HFD (Fig.4C-G). Additionally, BAL macrophages retrieved from LF-HA APE showed a significant upregulation of Nos2, and to a 

higher extent of Arg1 and Ccl17 (Fig.4H). The expression of both Nos2 and Ccl17 was higher in LF-HA compared to HFD, whereas for Retnl1a no diet-related 

difference was shown. Lastly, LF-HA displayed a near-to-significantly stronger increase in serum tIgE compared to HFD (Fig.4I). 

Thus, although the overall allergic response in the APE model was lower compared to HDM, we could confirm that high amounts of digestible carbohydrates 

exacerbates features of AAI in a non-allergen-specific manner. 

 

High-carbohydrate diet increases pulmonary and systemic oxidative stress and induces a metabolic switch to glycolysis  

To obtain insights into the mechanism of how carbohydrate-rich diets can aggravate AAI, and considering the important role of oxidative stress in AAI in both 

mice and humans 32, 33 we measured key indicators of oxidative stress in lung tissue and serum. Our results reveal an allergen-induced increased expression of 
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Gpx in LF-HA and of Sod1 and Sod2 in LF-HS compared to HFD (Fig.5A). On the same line, 8-isoprostane, a key marker of oxidative stress 34, was increased in 

lung homogenates after challenge in both LF-HS and LF-HA and not in HFD. Noticeably, after challenge this marker was near-to-significantly increased in LF-

HS and LF-HA compared to HFD (Fig.5B). Next, we investigated whether a glycolytic reprogramming may play a role in our model. The lung expression of 

Sirtuin 1, HIF-1α and Mct4, important for sensing hypoxia and promoting glycolysis 35, 36, were higher in allergen-challenged LF-HS and LF-HA compared to 

HFD, although for HIF-1α the difference was not significant. Contrarily, lung expression of PGC1α, an indicator of mitochondrial oxidative metabolism 37, was 

slightly downregulated in allergen-challenged LF-HS and LF-HA compared to PBS controls (Fig.5C). To investigate potential systemic effects of the increased 

pulmonary oxidative stress, we quantified serum anti-oxidative capacity in both C57BL/6J (LF-HS, Fig.5D) and Balb/c (LF-HA, Fig.5E) compared to respective 

HFD groups. Whilst peroxyl radical scavenging capacity (trolox equivalents) was not altered by diet, nitrite concentrations were significantly lower in both LF-

HS and LF-HA compared to HFD. Additionally, total phenolic antioxidant content (gallic acid equivalents, GAE) was significantly lower in LF-HA- compared 

to HFD-fed Balb/c animals, whereas no difference was reported between LF-HS- and HFD-fed C57BL/6J mice. Taken together, these results suggest that high 

levels of dietary carbohydrates induce augmented lung oxidative stress, signals of metabolic switch to glycolysis combined to systemic decreased anti-oxidative 

capacity compared to HFD.  
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Discussion 

This study uses epidemiological data from two population-based cohorts of female and male adolescents to evaluate associations of different types of digestible 

carbohydrates with aeroallergen sensitization, asthma and rhinoconjunctivitis, and to investigate underlying mechanisms using murine models.  

The observational study demonstrates associations between higher consumption of starch and sucrose and greater asthma prevalence in females and males, 

respectively. Given the inclusion of correlated dietary fats as covariates, the associations observed appear to be independent of inherent variations in fat intake. 

According to our findings in males, sucrose intake increases the risk for asthma. Except one study reporting increased atopic respiratory outcomes in the 

offspring of mothers consuming more sugar during pregnancy 11, existing literature linking sugar intake to asthma focuses on consumption of sugary drinks 12, 15, 

16, 38, 39. In contrast, we observed no associations of asthma with sugary drinks. The low amount of sugary drink consumption (0.8 %EI in females and 2.8 %EI in 

males) and lower relative fructose content in drinks produced in Europe compared to the US 40 may account for this discrepancy. Furthermore, the weak 

correlation between sugary drinks and total sucrose in our male population (rho=0.09) shows that sugary drinks were not major contributors towards total sucrose 

intake. Additionally, we demonstrate that, among female adolescents, higher total starch intake is associated with asthma, and a similar non-significant trend is 

seen for refined grains (both are highly correlated, rho=0.83). Sensitivity analysis among a subset of aeroallergen sensitized individuals indicated a smaller effect 

magnitude, suggesting that dietary starch increases the odds of having asthma irrespective of allergic sensitization. Nevertheless, given the reduced power due to 

the smaller sample size, this should be interpreted with caution. Our findings on total starch differ from those reported in an ecological study of asthma and 

allergies in 13-14 year-olds 41. However, the analyses in that study were not adjusted for positively-correlated protective foods such as fruit, vegetables, fibers, 

and whole grains, nor for inversely correlated fats. Despite accounting for numerous confounding factors in the present study, including known dietary, lifestyle, 

socioeconomic and anthropometric risk factors of allergic disease development, the possibility of residual confounding through other uncontrolled influences 

remains a limitation common to all epidemiological studies. Furthermore, the cross-sectional nature of our analysis reduces our ability to establish causal 

associations. Firstly, we cannot exclude the possibility of reverse causation, whereby symptomatic individuals might have purposefully altered the composition 

of their diet. Furthermore, dietary behaviors may change in adolescence due to physiological demands resulting from pubertal development, as well as increasing 
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autonomy. Nevertheless, when comparing average carbohydrate intakes among a subset of the study population who also had available dietary data at age 10 

years (shown in Table S5), we observed only small changes over time (≤1.5 %EI). In previous work addressing changes in diet from ages 10 to 15 years in the 

GINIplus cohort, we also found that although average intake changes occurred overall, intake levels relative to the rest of the study population often remained 

constant 42. Interestingly, and in contrast to total starch, starchy vegetables were associated with allergic sensitization in females of our study. Indeed, prevalence 

of sensitization to potato has been reported at around 10%43, and sensitization to cooked potatoes has been considered a risk factor for early development of 

pollen allergy44. Overall, sex-specific relationships were observed in our epidemiological data, but not in the rodent models. These sex differences are difficult to 

explain yet not unexpected, given the age of the cohort participants, and the sex-specific trajectories of allergic diseases evident around the time of puberty, such 

as the known switch in asthma prevalence from male to female dominance 45. Different trajectories of different allergic diseases would also explain the lack of 

consistent associations with other outcomes, since for example, asthma prevalence increases around late childhood, while rhinoconjunctivitis prevalence 

increases steadily over time46.  Besides offering the above reflections, we cannot currently explain why in our cohorts total dietary starch is associated with 

asthma only in females. Given the lack of studies specifically assessing the role of starch in relation to asthma, there is little comparable evidence. Particularly, 

given the prominence of starch in the Western diet, this finding would have important public health implications. Nevertheless, further studies, including human 

intervention trials, are needed to confirm these findings before any definitive conclusions can be reached. The observation that sucrose was associated with 

asthma more clearly in males could be due to sex differences concerning glucose handling, as well as body fat storage and distribution, altering effects on 

systemic metabolism. In this context, males are more sensitive to sucrose and fructose compared to females, who store more lipids and have higher whole-body 

insulin sensitivity than males47. On the other hand, it is also possible that females and males simply differ in the type of foods regularly consumed, the details of 

which may not be fully captured in the epidemiological data, and which obviously cannot be mimicked in mice experiments. Overall, we should also consider 

that the underrepresentation of participants from lower social classes constitutes a non-random loss-to-follow-up, which may limit the generalizability of our 

findings. 
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Rodent models of antigen-driven allergy are successfully used in mechanistic studies for preclinical research, mimicking specific aspects of human disease 48. To 

disentangle the effects of sucrose and starch from that of dietary fat on AAI development, we induced aeroallergen-induced AAI combined with LF-HS or LF-

HA diets, and used HFD as a control, despite existing literature demonstrating controversial effects of HFD on allergies 24, 49, 50. Notably, by using HFD as a 

control we intended to avoid non-digestible carbohydrates contained in regular chow diets 51. Nevertheless, we controlled for response in main allergic 

parameters following APE challenge and depicted no difference between HFD- and regular chow diet-fed animals. Our results show that high dietary sucrose and 

starch enhance typical TH2- or  TH2-TH17-driven lung allergic inflammatory milieu, respectively 48, 52, 53, both comprising increased inflammatory infiltrate, 

mucus hypersecretion and serum tIgE levels compared to HFD. These data are in line with a recent study using an Alternaria alternata allergy model which 

demonstrates increased BAL and eosinophil cytokine content in high-sucrose- compared to high-fat-fed animals 54. High dietary starch, besides enhancing an 

HDM-driven TH17 response compared to high sucrose, affected glucose tolerance, but only after longer-term feeding. Notably, starch possesses a high glycaemic 

index, which can probably explain both inflammatory and metabolic effects 55. Whereas male mice showed the anticipated higher susceptibility to high-fat, but 

not to high-carbohydrate feeding, female mice confirmed their higher susceptibility to allergy 27, 28, 56, 57. Consequently, in female mice, both M1 and M2 alveolar 

macrophages markers significantly increased following AAI in both sensitization models, indicating the presence of a mixed M1/M2 phenotype in the high-

carbohydrate groups 58, consistently with the critical role of both phenotypes in asthma development 59. To shed light on the mechanism responsible for disease 

aggravation, we further investigated which source of excessive energy supply (i.e. sucrose, starch or fat) may lead to an increased oxidative activity that, along 

with insufficient antioxidant defense, causes local or systemic overproduction of reactive oxygen species (ROS) 60, 61. Increased expression of Gpx, Sod1 and 

Sod2 in mouse lungs following high-carbohydrate-feeding indicates increased activation of the antioxidant defense and thus, enhanced lung oxidative challenge 

compared to HFD-feeding. This was confirmed by the measurements of 8-isoprostane, which clearly demonstrate increased oxidative stress in lung tissue of 

high-carbohydrate- compared to HFD-fed animals. Notably, under hypoxic or inflammatory conditions, HIF-1α activity can trigger a shift from oxidative 

phosphorylation to glycolysis, thus supporting immune cell activation and inflammation under high cost of glucose consumption (Warburg effect) 62, 63. The 

slight upregulation of HIF-1α combined to the downregulation of PGC1α, involved in Krebs-Cycle induction and mitochondrial ROS detoxification 37, 64 point to 
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a glycolytic reprogramming in the lungs of LF-HS- and LF-HA-fed animals. Furthermore, the increased expression of both Sirtuin1 and Mct4 in LF-HS- 

compared to HFD further indicate the occurrence of a metabolic switch to glycolysis in lung tissue with consecutive lactate production, a process known to be 

important in allergic asthma 65-68. Furthermore, LF-HA-fed Balb/c mice sera revealed lower GAE, applied as a sum parameter of anti-oxidative capacity 69. 

Contrarily, GAE in C57BL/6J mice was very high concentrated independently of diets. This likely represents a side-effect caused by artificial colorants present 

in the specific diet, some of which possess anti-oxidative capacities 70. Conversely, nitrite concentrations were lower in sera of both LF-HS- and LF-HA-fed 

compared to HFD-fed mice, independently of the mouse strain. Noteworthy, food nitrate/nitrite-derived nitric oxide (NO) is a readily bioavailable 

supplementation of endogenous NO, which possesses protective properties exerted through the attenuation of oxidative stress in immune cells 71, 72 and may 

therefore play an important role in our model. Summing up, a systemic reduction of anti-oxidative capacity in high-carbohydrate-fed mice may increase 

glycolytic reprogramming and susceptibility to oxidative stress, promoting disease exacerbation.  

Taken together, our study demonstrates for the first time a direct association of dietary sucrose and starch with asthma in humans, as well as the harmful effect of 

a diet rich in these carbohydrates on AAI development in mice. Following confirmation in human intervention trials, these findings could have important 

implications for dietary recommendations in the prevention and/or treatment of asthma.   
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Figure legends 

Fig. 1: Association of dietary digestible carbohydrates with allergic sensitization, asthma and rhinoconjunctivitis. Odds ratio (OR) and 95% confidence 

intervals (95%CI) presented for an interquartile range increase in contribution to total daily energy intake. Models adjusted for study (GINIplus 

intervention/observation arm/LISA), study region (Munich, Wesel, Bad Honnef, Leipzig), sex (female/male), age (years), body mass index (kg/m2), parental 

education (high >10 years / med-low ≤10 years), parental allergy (one or both parents reported ever having an atopic disease), moderate-to-vigorous physical 

activity (min/day), fruit and vegetable intake (%EI), whole grain intake (%EI), total energy intake (kcal) and fat intake (%EI, only fat subtypes presenting a 

significant correlation with the independent variable). * p<0.05. 

 

Fig. 2: Impact of LF-HS versus HFD feeding in the development of AAI in mice. Male and female C57BL/6 mice were fed either a low fat-high sucrose (LF-

HS) or a high-fat (HFD) diet for 11 weeks. After 9 weeks, mice were sensitized and challenged with HDM or PBS. (A) Treatment scheme. (B) Change of body 

weight. (C) Total and relative percentages of BAL cells (left, male; right, female). (D) Serum total IgE (tIgE).  (E-H) Representative periodic acid–Schiff (PAS)-

stained lung sections of female mice. Arrows: inflammatory infiltrate; arrowheads: mucus hypersecretion; scale bar: 50µm. (I) Histological scoring. (J) Flow 

cytometric analysis of lung tissue. (K) M1- and M2-markers of alveolar macrophages analyzed by real-time PCR. n=8/group/sex (Fig. 2B, n=16/group until 

week 9; Fig. 3I and 3J, n=5/group/sex); data expressed as boxplots indicating minimum, 25th percentile, median, 75th percentile, and maximum or as 

mean±SEM. (B, D) 2way- and (C,I-K) 1way-ANOVA with Bonferroni test. *p<0.05;**p<0.01;***p<0.001;****p<0.0001 LF-HS PBS vs HFD PBS or as 

depicted; ##p<0.01; ###p<0.001 LF-HS HDM vs HFD HDM; ++p<0.01; ++++p<0.0001 LF-HS HDM vs LF-HS PBS; °°°p<0.001 HFD PBS vs HFD HDM; 

$$$$p<0.0001 HFD female vs HFD male; §§p<0.01; §§§p<0.001 LF-HS female vs LF-HS male. 

 

Fig. 3: Impact of different carbohydrates on the development of AAI. Male C57BL/6 mice were fed either a high-sucrose/no-starch (LF-HS) or a low-

sucrose/high-starch (LF-HA) low-fat diet or a HFD for 10 weeks. At week 8 mice were sensitized and challenged with HDM or PBS. Grey dotted lines: response 
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in HFD-HDM mice as reference. (A) Treatment scheme. (B) Change of body weight. (C) Glucose tolerance test (GTT) before sacrifice. (D) Total (left) and 

relative (right) percentages of BAL cells. (E-H) Representative PAS-stained lung sections. Arrows: inflammatory infiltrate; arrowheads: mucus hypersecretion; 

scale bar: 50µm. (I) Histological scoring. (K) Serum total IgE (tIgE). (L) Flow cytometric analysis of lung tissue. n=8/group (Fig. 3B, n=16/group until week 8; 

Fig. 3I, n=5/group; Fig. 3L, n=6/group); data are expressed as boxplots indicating minimum, 25th percentile, median, 75th percentile, and maximum or as 

mean±SEM. (B, C, K) 2way- and (D, I, L) 1way-ANOVA with Bonferroni test. *p<0.05;**p<0.01;***p<0.001;****p<0.0001 as indicated; ####p<0.0001 vs tIgE 

day0; +p<0.05;++p<0.01;+++p<0.001;++++p<0.0001 vs HFD HDM. 

 

Fig. 4: Analysis of ragweed APE-induced AAI in mice fed with LF-HA versus HFD diet. Female Balb/c mice were fed with LF-HA or HFD for 20 weeks 

and sensitized to ragweed pollen extract (APE) or PBS last 2 weeks of experiment. (A) Treatment scheme. (B) Total BAL cells (upper panel); Th1/Th2 cytokine 

levels in BAL fluid (lower panel). (C) Histological scoring of PAS-stained lung sections as represented in (D-G); arrows: inflammatory infiltrates; arrowheads: 

mucus hypersecretion; scale bar: 100µm. (H) M1- and M2-markers of alveolar macrophages analyzed by real-time PCR. (I) Serum total IgE (tIgE). n=5 

mice/group; data represent one out of two independent experiments and are displayed as boxplots indicating minimum, 25th percentile, median, 75th percentile, 

and maximum or as mean±SEM. (I) 2way- and (B-H) 1way-ANOVA with Bonferroni test. *p<0.05;**p<0.01;***p<0.001;****p<0.0001. 

 

Fig. 5: Analysis of markers of pulmonary oxidative stress, glycolysis & oxidative phosphorylation and serum antioxidant capacity. (A) Enzymes involved 

in antioxidant defense, glutathione peroxidase (Gpx), superoxide dismutase 1 and 2 (Sod 1 and 2) in lung tissue analyzed by real-time PCR. (B) 8-isoprostane 

concentrations in lung tissue. (C) Key enzymes involved in glycolytic reprogramming, Sirtuin 1, hypoxia-inducible factor-1α (Hif-1α) and monocarboxylate 

transporter (Mct4) and of an indicator of mitochondrial oxidative metabolism (PGC1α) in lung tissue analyzed by real-time PCR. (D) and (E) Measurement of 

gallic acid equivalents, trolox equivalents and nitrite in mouse serum of C57/BL6 (D) and Balb/c (E) mice after indicated treatment. Since no difference was 
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detected due to sensitization, for D-E data from allergic and non-allergic mice were pooled. A, C: n=6-13/group; B: n=7-8/group; D: n=16/group; E: n=10/group. 

Data are expressed as boxplots indicating minimum, 25th percentile, median, 75th percentile, and maximum or mean±SEM. (A-C) 1way-ANOVA with 

Bonferroni test, (D-E) Student’s unpaired two-tailed t-test. *p<0.05;**p<0.01;***p<0.001;****p<0.0001. 
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Table 1  
A: Study population descriptive characteristics B: Correlation of dietary carbohydrates with dietary fats 
 Females (N=830) Males (N=743) P-value Females (N=830) Males (N=743) 
Dietary carbohydrates    Total SFA MUFA LA ALA Total SFA MUFA LA AL  
Total sucrose (%EI) 10.6 (8.20; 13.4) 9.98 (7.89; 12.8) 0.028 -0.19* 0.02 -0.26* -0.33* -0.23* -0.19* 0.00 -0.27* -0.30* -0.2  
Sugary foods (%EI) 10.7 (6.60; 15.7) 9.73 (6.58; 14.4) 0.031 0.18* 0.33* 0.10 -0.10 -0.08 0.16* 0.24* 0.08 0.02 0  
Sugary drinks (%EI) 0.79 (0.17; 2.64) 2.24 (0.86; 6.11) <0.01 -0.09 -0.06 -0.11 -0.06 -0.09 -0.19* -0.19* -0.17* -0.11 -0  
Total starch (%EI) 27.8 (22.9; 32.5) 26.2 (21.7; 31.5) 0.001 -0.36* -0.37* -0.33* -0.09 -0.17* -0.41* -0.48* -0.35* -0.03 -0.1  
Starchy vegetables (%EI) 1.87 (1.17; 3.02) 1.70 (1.16; 2.75) 0.057 0.02 -0.03 0.02 0.15* 0.06 -0.02 -0.08 -0.01 0.14* 0  
Refined grains (%EI) 28.1 (22.1; 34.1) 27.1 (20.9; 33.7) 0.019 -0.25* -0.26* -0.24* -0.03 -0.06 -0.36* -0.42* -0.34* -0.06 -0  
Allergic outcomes (yes)    Correlations presented as Spearmans Rho, tested by Spearman’s rank correlation. *Significant correlation (P

value<0.001). Total=total fat. SFA=saturated fat. MUFA=monounsaturated fat. LA=linoleic acid (omega-6). 
ALA=alpha-linolenic acid (omega-3) 

Aeroallergen sensitizationa  340 (41.1) 375 (50.5) <0.01 
Asthma  34 (4.1) 52 (7.0) 0.016 
     Subset: allergic asthmab  23 (6.8) 44 (11.7) 0.032           
Rhinconjunctivitis  172 (20.7) 149 (20.1) 0.790           
Covariates              
Age (years) 15 (14.9; 15.1) 15 (14.9; 15.1) 0.198           
BMI (kg/m2) 20.3 (18.8; 22.1) 20 (18.5; 22.1) 0.058           
Total energy intake (kcal) 1731(1342; 2154) 2348 (1883; 2804) <0.01           
Fruit & vegetables (%EI) 5.87 (3.72; 9.28) 3.73 (2.14; 5.59) <0.01           
Whole grains (%EI) 291 (92.2; 798) 273 (82.9; 716) 0.296           
Meat (%EI) 11.4 (7.1; 15.9) 13.8 (10.0; 19.0) <0.01           
Fish (%EI) 1.01 (0.47; 1.77) 1.19 (0.63; 1.84) 0.001           
Dairy (%EI) 13.9 (9.0; 20.1) 14.8 (9.0; 21.3) 0.142           
MVPA (min/day) 7 (5.0; 10.5) 9 (6.5; 13.0) <0.01           
Study arm              
GINI observation arm 275 (33.1) 247 (33.2) 0.127           
GINI intervention arm 264 (31.8) 205 (27.6)            
LISA 291 (35.1) 291 (39.2)            
Study centre              
Munich 453 (54.6) 425 (57.2) 0.270           
Leipzig 65 (7.8) 71 (9.6)            
Bad Honnef 37 (4.5) 29 (3.9)            
Wesel 275 (33.1) 218 (29.3)            
Parental education  (high) 613 (73.9) 533 (71.7) 0.375           
Parental allergy  (yes) 596 (71.8) 539 (72.5) 0.788           
Values are presented as counts (%) for categorical variables, or median (25th; 75th percentile) 
for continuous variables. Differences between sexes were tested by Chi-squared test or 
Wilcoxon rank-sum test, for categorical or continuous variables, respectively (*Significant 
difference, P-value<0.05). aIgE > 0.35 kU/L bSubset with positive aeroallergen sensitization 
(females=340; males=375). %EI=percentage of total daily energy intake. BMI=body mass 
index. MVPA=moderate to vigorous physical activity. 
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