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Background: Associations between traffic-related air pollution
(TRAP) and allergic rhinitis remain inconsistent, possibly
because of unexplored gene-environment interactions.
Objective: In a pooled analysis of 6 birth cohorts (Ntotal 5
15,299), we examined whether TRAP and genetic
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polymorphisms related to inflammation and oxidative stress
predict allergic rhinitis and sensitization.
Methods: Allergic rhinitis was defined with a doctor diagnosis
or reported symptoms at age 7 or 8 years. Associations between
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Abbreviations used

APMoSPHERE: Air Pollution Modelling for Support to Policy on

Health and Environmental Risk in Europe

BAMSE: Children, Allergy, Milieu, Stockholm,

Epidemiological Survey

CAPPS: Canadian Asthma Primary Prevention Study

GINIplus: German Infant study on the influence of Nutritional

Intervention plus environmental and genetic

influences on allergy development

GSTP1: Glutathione-S-transferase pi 1

LISAplus: Lifestyle related factors, Immune System and the

development of Allergies in Childhood plus the

influence of traffic emissions and genetics study

LUR: Land-use regression

NO2: Nitrogen dioxide

OR: Odds ratio

PIAMA: Prevention and Incidence of Asthma and Mite

Allergy

PM: Particulate matter

SAGE: Study of Asthma, Genes, and Environment

SNP: Single nucleotide polymorphism

TAG: Traffic, Asthma, and Genetics

TLR: Toll-like receptor

TRAP: Traffic-related air pollution
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absorbance, and ozone, estimated for each child at the year of
birth, and single nucleotide polymorphisms within the GSTP1,
TNF, TLR2, or TLR4 genes with allergic rhinitis and
aeroallergen sensitization were examined with logistic
regression. Models were stratified by genotype and interaction
terms tested for gene-environment associations.
Results: Point estimates for associations between nitrogen
dioxide, PM2.5 mass, and PM2.5 absorbance with allergic rhinitis
were elevated, but only that for PM2.5 mass was statistically
significant (1.37 [1.01, 1.86] per 5 mg/m3). This result was not
robust to single-cohort exclusions. Carriers of at least 1 minor
rs1800629 (TNF) or rs1927911 (TLR4) allele were consistently at
an increased risk of developing allergic rhinitis (1.19 [1.00, 1.41]
and 1.24 [1.01, 1.53], respectively), regardless of TRAP exposure.
No evidence of gene-environment interactions was observed.
Conclusion: The generally null effect of TRAP on allergic
rhinitis and aeroallergen sensitization was not modified by the
studied variants in the GSTP1, TNF, TLR2, or TLR4 genes.
Children carrying a minor rs1800629 (TNF) or rs1927911
(TLR4) allele may be at a higher risk of allergic rhinitis.
(J Allergy Clin Immunol 2013;132:342-52.)

Key words: Childhood allergic rhinitis, air pollution, genetics,
interaction, TNF, TLR4

Recent global estimates indicate that 8.5% of children aged 6 to
7 have allergic rhinitis, and the prevalence is higher among 13 to
14 year olds (14.6%).1 The continued increase in prevalence in re-
cent years in a majority of countries is especially concerning.2 Al-
lergen exposure is strongly associated with allergic rhinitis onset.
Early-life factors (young maternal age, multiple gestation, and
low birth weight), family history, ethnicity, and environmental
factors (environmental tobacco smoke, urban living, lifestyle, nu-
trition, air pollution) are also believed to be important.3-5

Substantial experimental and toxicologic evidenceof the adverse
effects of traffic-related air pollution (TRAP) on allergic disease
exists, and epidemiologic evidence is building,6 as summarized in a
recent review.7 Given its association with asthma, TRAP has been
investigated as a potential cause of allergic rhinitis, and several re-
cent large studies support a positive association.8,9 However, some
studies have failed to find an association between the prevalence of
allergic rhinitis symptoms and exposure to air pollution.10-12

Whether TRAP increases the risk of allergic disease develop-
ment and exacerbates symptoms in a genetically vulnerable
subgroup remains largely unknown.7,13 Gene-environment interac-
tions, which have been rarely considered in previous studies of al-
lergic rhinitis, may provide some insight and have thus been
recommended.14Many studies that examined the interplay between
genetic susceptibility and TRAP on respiratory conditions have fo-
cusedongenes in theoxidative stress and inflammationpathways.15

Genetic variants of the glutathione-S-transferase pi 1 (GSTP1)
gene have sparked considerable interest, given the existence of
common functional variants in the general population, the role
of GSTP1 in cellular protection against oxidative stress, and the
presence of the cytosolic glutathione-S-transferase proteins in
the human lung.16 The evidence of a gene-environment interac-
tion appears strongest for the Ile105Val (rs1695) single nucleotide
polymorphism (SNP) within the GSTP1 gene.17-23 Gene-
environment interactions have also been observed for the
G308A (rs1800629) SNP within the TNF gene for passive smoke
exposure and childhood asthma24 and for ozone exposure with
lung function and wheezing.25,26 Furthermore, a gene-gene-
environment interaction between the G-308A TNF variant,
GSTP1 variants, and nitrogen dioxide (NO2) exposure was
documented for allergic outcomes.23 Members of the Toll-like
receptor (TLR) familymay also be important, given their key roles
in controlling innate and adaptive immune responses. Genetic
polymorphisms in TLRs have already been associated with
allergic rhinitis27 and may modify the link between particulate
matter and childhood asthma.28

With the use of a pooled analysis that combined data from
6 birth cohorts with individual-level assessment of air pollution
exposure, we examined the association among TRAP, allergic
rhinitis, and aeroallergen sensitization in children and the influ-
ence of 10 SNPs related to inflammation and oxidative stress
metabolism in the GSTP1, TNF, TLR2, and TLR4 genes.

METHODS

Data sources
The Traffic, Asthma, and Genetics (TAG) study population is composed of

15,299 children recruited in 6 birth cohorts: the Canadian Asthma Primary

Prevention Study (CAPPS),29 the Study of Asthma, Genes, and Environment

(SAGE),30 the Children, Allergy, Milieu, Stockholm, Epidemiological Survey

(BAMSE),31,32 the Prevention and Incidence of Asthma and Mite Allergy

study (PIAMA),33 the German Infant Nutritional Intervention study (GINI-

plus),34 and the Lifestyle related factors, Immune System and the development

of Allergies in Childhood study (LISAplus).35 Data on several health out-

comes, environmental exposures, and covariates were collected via either par-

ent- or self-completed questionnaires at various time points according to each

cohort’s respective information collection strategy. Information across cohorts

was harmonized into common variables. A detailed description of this harmo-

nization process and the recruitment and follow-up of each cohort is provided

elsewhere (MacIntyre et al, submitted 2012).
Assessment of outcomes
The assessment of allergic rhinitis differed slightly across cohorts; the 2

Canadian cohorts (CAPPS and SAGE) relied on a diagnosis during an



TABLE I. Characteristics of participating cohorts

Cohort

(country) Full name of cohort Areas included Study type Recruitment

Sample

size*

Cohort-specific

allergic rhinitis

definition

Available

aeroallergens

BAMSE

(Sweden)

Children, Allergy,

Milieu, Stockholm,

Epidemiological

Survey

Jarfalla, Solna,

Sundbyberg,

Stockholm

Population-based

birth cohort with

wheeze nested

case-control

1994-6 982 Symptoms (sneezing,

runny, or blocked

nose; itchy, red,

and watery eyes)

after exposure to

furred pets or pollen

or a medical

diagnosis of allergic

rhinitis anytime

between 4 and 8 y

of age

Cat, dog, house dust

mites, molds, birch

CAPPS

(Canada)

Canadian Asthma

Primary Prevention

Study

Vancouver,

Winnipeg

Randomized controlled

study with asthma

intervention

1995 545 Medical diagnosis of

allergic rhinitis

assessed at 7-y

follow-up

Cat, dog, house dust

mites, Alternaria,

feathers, grass,

Cladosporium,

weeds, cockroaches,

ragweed, trees

GINIplus

(Germany)

German Infant

Nutritional

Intervention

Munich, Wesel Population-based birth

cohort; subset

selected for

nutritional

intervention

1995-8 5991 Medical diagnosis of

allergic rhinitis or

hay fever during

the past 12 mo

(asked at 8-y

follow-up)

Cat, dog, house

dust mites,

Cladosporium,

birch, grass,

mugwort, rye

LISAplus

(Germany)

Lifestyle-related

factors on the

Immune System

and development

of Allergies in

Childhood

Leipzig, Munich,

Wesel

Population-based birth

cohort

1997-9 3095 Medical diagnosis of

allergic rhinitis or

hay fever during the

past 12 mo (asked at

8-y follow-up)

Cat, dog, house

dust mites,

Cladosporium,

birch, grass,

mugwort, rye

SAGE

(Canada)

Study of Asthma

Genes and the

Environment

Winnipeg Population-based cohort

with asthma nested

case-control

1995 723 Medical diagnosis of

allergic rhinitis

assessed at 8-y

follow-up

Cat, dog, feathers,

grass, ragweed,

trees, weeds

PIAMA (The

Netherlands)

Prevention and

Incidence of Asthma

and Mite Allergy

Communities in the

northern, central,

and western areas

Population-based

birth cohort; subset

selected for mattress

cover intervention

1996-7 3963 Sneezing, runny/blocked

nose during the past

12 mo (asked at

8-y follow-up)

Cat, dog, house dust

mites, birch,

Dactylis, grass,

Alternaria

*Number of children included in the TAG database.
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assessment by a physician at a follow-up visit, the 2 German cohorts

(GINIplus and LISAplus) relied on the report of a doctor’s diagnosis during

the past 12 months, and the PIAMA and BAMSE cohorts required only the

report of symptoms in the past 12 months and 5 years, respectively (Table I).

The 8-year follow-up was selected as the time point of interest because infor-

mation on allergic rhinitis was available for all but 1 cohort at this age. For

CAPPS, the assessment was made at 7 years of age.

Sensitizationwas assessed by skin prick testing at 7 years of age for CAPPS

and SAGE, with a positive reaction defined as having a wheal diameter of >_3

mm. For GINIplus, LISAplus, BAMSE, and PIAMA, sensitization was

assessed by measuring specific IgE levels, with a positive reaction defined

as any value of 0.35 kU/L or greater (at 6 years of age for the former 2 cohorts

and 8 years for the latter 2 cohorts). Birch, Dactylis, timothy grass, mugwort,

ragweed, rye, trees, and weeds were considered as outdoor aeroallergens, and

Alternaria, cats, Cladosporium, dogs, feathers, house dust mites, molds, and

cockroaches were considered as indoor aeroallergens. All available allergens

were included in the overall sensitization analysis. Not all cohorts had infor-

mation on all allergens (Table I).
Air pollution estimates
Unique NO2 concentration estimates were available for 55.4% (8470/

15,299; 6/6 cohorts) of participants’ home address at the time of birth. For all
cohorts except BAMSE, the NO2 estimates were derived with land-use regres-

sion (LUR) modeling. The LUR models developed for the European cohorts

(GINIplus and LISAplus [Munich city only] and PIAMA) were created as part

of the Traffic Related Air Pollution and Childhood Asthma collaboration.36,37

With the use of a similar methodology, LUR models were developed for the 2

Canadian cohorts38,39 and for the cities ofWesel and Leipzig within the GINI-

plus and LISAplus cohorts.40 NO2 estimates for the BAMSE cohort were ob-

tained from a dispersion model, as previously described.41 Particulate matter

2.5 (PM2.5) mass and PM2.5 absorbance concentrations, calculated with the

same methodology as for NO2, are available for 38.5% (5893/15,299; 3/6 co-

horts) and 56.3% (8615/15,299; 4/6 cohorts) of participants, respectively.

Ozone estimates were available for 76.8% (11,757/15,299; 4/6 cohorts) of

participants. These were calculated as part of the Air Pollution Modelling

for Support to Policy on Health and Environmental Risk in Europe (APMo-

SPHERE) project for PIAMA, GINIplus, and LISAplus,42 and with ambient

monitoring network data for the CAPPS cohort, as previously described.43

Unlike for the other pollutants, the ozone estimates were not derived with

any specific traffic components; thus, they represent air pollution in general,

rather than TRAP. The estimated exposures for NO2, PM2.5 mass, and

PM2.5 absorbance were positively correlated (r 5 0.35, 0.81, 0.49 for NO2

and PM2.5 mass, NO2 and PM2.5 absorbance, and PM2.5 mass and PM2.5 ab-

sorbance, respectively). Ozone was negatively correlated (r 5 20.25,

20.18, 20.15 for NO2, PM2.5 mass, and PM2.5 absorbance, respectively).
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Genotyping
In total, 47.3% (7229/15,299) of TAG participants were genotyped for at

least 1 SNP of interest. For CAPPS and SAGE, genotyping was done with the

Illumina BeadArray system (Illumina, San Diego, Calif). Genotyping in

PIAMAwas performed by the Competitive Allele-Specific PCR with the use

of KASParTM genotyping chemistry (K-Biosciences, Herts, United King-

dom). For the 2 German cohorts (GINIplus and LISAplus) and the Swedish

BAMSE cohort, SNPs were genotyped with the iPLEX (Sequenom, San

Diego, Calif) method by means of matrix-assisted laser desorption ionization

time of flight mass spectrometry method (Mass Array; Sequenom, San Diego,

Calif), with the exception of rs1695 which was detected with the restriction

fragment length polymorphism approach (in GINIplus and LISAplus only).44

All SNPs had a genotyping success rate >93%.
Analytic strategy
Associations between a pollutant or an SNP and each outcome were

assessed with logistic regression. The effect of each SNP on allergic rhinitis

was examined in a dominant genetic model (carriers of at least 1 minor allele

vs homozygous major allele carriers). Elevated risks of disease were analyzed

per increase of 10mg/m3 for NO2 and ozone, per increase of 5mg/m
3 for PM2.5

mass, and per increase of 1025/m for PM2.5 absorbance (roughly the interquar-

tile range of each pollutant in the pooled data). All models were adjusted for

covariates selected a priori (city/center, cohort, sex, birth weight, parental his-

tory of atopic disease, maternal smoking during pregnancy, exposure to envi-

ronmental tobacco smoke at the time of follow-up, intervention status [when

applicable], and maternal age at birth). The latter variable was used as a sur-

rogate of socioeconomic status, because women from a higher socioeconomic

background tend to have children at older ages,45 and a positive association

between maternal age at birth and socioeconomic status has been observed

in previous studies of similar populations.46-48 To assess whether the relation-

ship between a pollutant and an outcome differed by genotype, models were

run separately for homozygous major allele carriers and heterozygous/homo-

zygous minor allele carriers. Finally, gene-environment associations were ex-

amined by including interaction terms in the models.

All results are presented by cohort, except for the GINIplus and LISAplus

studies, which are presented separately for Munich and Wesel/Leipzig

because the measurement campaigns for the LUR modeling were conducted

at different time points. Pooled results, which take advantage of the full

available statistical power, are also presented. To assess the influence of each

cohort on our pooled findings, we examined the results after a step-wise

exclusion of each cohort. All results are presented as odds ratios (ORs) and

95% CIs. All statistical analyses were conducted with R version 2.13.1.
RESULTS
The study characteristics of the 6 participating cohorts are

summarized in Table I, one cohort of which (CAPPS) only re-
cruited children with a positive history for parental allergic dis-
ease, and 2 cohorts of which are nested case-control studies (for
asthma [SAGE] and wheeze [BAMSE], respectively). After ex-
cluding children with no information on any of the air pollutants
(n 5 2100) or health outcomes (n 5 4416), 10,023 children re-
mained in the study and are described in Table II. However, not
all children were included in all analyses because of missing co-
variate information. Overall, 1298 children (13.7%) had allergic
rhinitis at the time of follow-up. The 2 Canadian cohorts (CAPPS
and SAGE) that involved an active physician assessment at the
follow-up visit had the highest rates of allergic rhinitis. The cities
in the German cohorts (Munich andWesel/Leipzig) that relied on
the report of a doctor diagnosis of allergic rhinitis in the past 12
months had the lowest prevalences.
In total, 31.7% (1968/6212) of children were sensitized to at least

1 aeroallergen. Among subjects with data on allergic rhinitis and
sensitization, 11.3% (637/5640) had both conditions. Among
children with a doctor diagnosis of allergic rhinitis who also had
available sensitization data, 68.9% (637/925) were sensitized (range
per cohort is 42.7% in SAGE and 91.9% in Wesel/Leipzig). Given
that approximately 30%ofour subjectswith allergic rhinitiswere not
sensitized to any tested allergen, it is likely that our disease definition
includes both children with allergic and nonallergic rhinitis.

The characteristics of each SNP are presented in Table III by
cohort and in the pooled data. All SNPs were in Hardy-
Weinberg equilibrium with the exception of rs4891 in the
GSTP1 gene, which was excluded from the analysis. In this study,
we focused on SNPs related to oxidative stress and inflammation
that were available in at least 3 cohorts.
Main environmental effects
Substantial overlap was observed in the distribution of NO2 and

PM2.5 absorbance between cohorts, but less so for ozone and
PM2.5 mass (Fig 1). In the pooled analysis, the point estimates
for the association between NO2, PM2.5 mass, and PM2.5 absor-
bance and allergic rhinitis at 7 or 8 years of age were elevated,
but only that for PM2.5 mass reached statistical significance after
covariate adjustment (OR [95%CI], 1.37 [1.01-1.86] per 5mg/m3

PM2.5 mass; 1.10 [0.95-1.26] per 10mg/m3 NO2; 1.16 [0.96-1.41]
per 10-5/m PM2.5 absorbance) (Fig 2; see also Table E1 in this
article’s Online Repository at www.jacionline.org). No signifi-
cant associations were observed between any of the pollutants
and aeroallergen sensitization in the pooled analysis. Further-
more, all associations between air pollutants and atopic allergic
rhinitis (allergic rhinitis and sensitization to any allergen) were
null (data not shown).
The elevated risk estimates found between allergic rhinitis and

the air pollutants were heavily influenced by increased risks seen
in the PIAMA cohort, as previously published9 (eg, 1.37 [1.01-
1.86] when all cohorts are included and 1.02 [0.62-1.67] when
PIAMA is excluded, for the association between PM2.5 mass
and allergic rhinitis). This observation is further supported by
the relatively inconsistent trend in the results seen across cohorts.
Main genetic effects
Carriers of at least 1 minor rs1800629 (1.19 [1.00-1.41]) or

rs1927911 (1.24 [1.01-1.53]) allele were at increased risk of
developing allergic rhinitis in the pooled analysis (Fig 3; see also
Table E2 in this article’s Online Repository at www.jacionline.
org). When examining the cohort-specific analyses, the estimates
for rs1800629 and rs1927911 were elevated in 4 of 6 and 4 of 5
cohorts, respectively. Furthermore, during the step-wise exclu-
sion of each cohort, the pooled point estimates remained similar,
although loss of statistical significancewas occasionally observed
(rs1800629 with SAGE, 1.19 [1.00-1.41]; rs1800629 without
SAGE, 1.21 [1.01-1.46]; rs1927911 with SAGE, 1.24 [1.01-
1.53]; rs1927911 without SAGE,: 1.16 [0.94-1.45]).
No significant associations were documented between any of

the SNPs investigated and aeroallergen sensitization in the single
cohort and pooled analyses (Table E2). These results remained
unchanged when the analysis was stratified by indoor and outdoor
allergens. The ORs for atopic allergic rhinitis with rs1800629 and
rs1927911 were elevated but not significant. This loss of signifi-
cance may be due to a drop in sample size because sensitization
data were only available for a subset of the population or may re-
flect a true reduced effect on this outcome (allergic rhinitis, 1.19

http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org


TABLE II. The TAG study population

BAMSE CAPPS Munich Wesel/Leipzig SAGE PIAMA Pooled

Characteristics

Males, no. (%) 919 (52.8) 372 (53.8) 2784 (51.2) 2355 (51.3) 235 (56.2) 3358 (51.4) 10023 (51.6)

Parental history of allergies,

no. (%)

919 (58.1) 372 (92.5) 2779 (53.9) 2354 (34.4) 235 (67.7) 3358 (50.1) 10017 (50.2)

Environmental tobacco smoke

during pregnancy, no. (%)

919 (12.9) 369 (7.9) 2437 (13.4) 2060 (16.4) 227 (11.9) 3316 (16.0) 9328 (14.7)

Environmental tobacco smoke at

home at 7 or 8 y of age, no. (%)

911 (17.8) 372 (18.0) 2566 (14.8) 2107 (26.8) 229 (20.5) 3238 (16.9) 9423 (18.8)

Older siblings, no. (%) 919 (49.5) 372 (54.8) 2781 (42.7) 2348 (50.4) 198 (68.2) 3351 (48.0) 9969 (47.9)

Intervention participation, no. (%) 919 (0) 372 (53.5) 2784 (31.4) 2355 (27.3) 235 (0) 3358 (17.8) 10020 (23.1)

Birth weight (g), mean 6 SD 3500.2 6 577.3 3495.5 6 642.4 3415.2 6 437.5 3527.0 6 478.2 3378.6 6 636.3 3507.2 6 546.1 3489.3 6 513.5

Maternal age at birth (y),

mean 6 SD

30.7 6 4.5 31.8 6 5.0 32.2 6 4.1 30.4 6 3.9 28.9 6 5.3 30.3 6 3.9 31 6 4.1

Health outcomes

Allergic rhinitis at age 7 or 8

follow-up, no. (%)

913 (17.9) 372 (30.1) 2606 (7.7) 2130 (6.3) 190 (40.0) 3240 (18.9) 9451 (13.7)

Sensitization to any aeroallergen,

no. (%)

766 (24.8) 359 (45.1) 1668 (29.2) 1319 (26.2) 234 (37.2) 1866 (37.4) 6212 (31.7)

Sensitization to indoor

aeroallergen, no. (%)

766 (20.6) 359 (36.8) 1668 (17.8) 1319 (18.3) 234 (27.8) 1712 (34.1) 6058 (24.4)

Sensitization to outdoor

aeroallergen, no. (%)

762 (18.1) 358 (21.8) 1668 (21.6) 1319 (19.0) 234 (20.9) 1865 (17.4) 6206 (19.3)

Allergic rhinitis and sensitization,

no. (%)

760 (14.5) 359 (20.6) 1490 (8.9) 1094 (7.2) 189 (16.9) 1748 (12.0) 5640 (11.3)

Allergic rhinitis with available

sensitization data, no. (%)

143 106 148 86 75 367 925

Number indicates number of children with available data for indicated covariate/outcome and for the last row only, the number of children with allergic rhinitis who also have

available sensitization data. Percentage is of children with this covariate/outcome among those with available data.
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[1.00, 1.41] and 1.24 [1.01, 1.53] vs atopic allergic rhinitis, 1.13
[0.91, 1.40] and 1.13 [0.88, 1.46] for rs1800629 and rs1927911,
respectively).
Genotype stratification and interaction effects
Stratified analyses did not show an increased risk of allergic

rhinitis among heterozygous/homozygous minor allele carriers
exposed to TRAP (Table IV). Only the association between aller-
gic rhinitis and PM2.5 mass among rs2737190 (TLR4) homozy-
gous major allele carries was significant (2.77 [1.07-7.15]), but
this association was also driven by the PIAMA cohort. All inter-
action terms were nonsignificant (P values ranged from .06 for
rs10759931 by NO2 to .99 for rs1800629 by NO2).

For aeroallergen sensitization, all results from the stratified
analyses were null (data not shown). Accordingly, all but 1 inter-
action term testing for gene-environment interactions for aero-
allergen sensitization were nonsignificant in the pooled analyses
(P values ranged from .03 [rs1695 by ozone] to .99 [rs2737190 by
PM2.5 absorbance]). After stratification into indoor and outdoor
aeroallergen categories, a significantly elevated risk between in-
door aeroallergen sensitization and NO2 among minor
rs1800629 allele carriers was observed (1.52 [1.09-2.12] per
10 mg/m3 increase in NO2), but no interaction was found
(P 5 .27); the results for outdoor aeroallergens and this SNP
were null (1.01 [0.70-1.45] per 10 mg/m3 increase in NO2).
DISCUSSION
The results of this large collaborative project do not suggest

that TRAP increases the risk of allergic rhinitis in general.
Although the estimate for PM2.5 mass was significantly elevated,
and the estimates for both NO2 and PM2.5 absorbance were also
elevated, these results were mainly driven by only 1 cohort
(PIAMA) and were not replicated in the other 5 cohorts. No asso-
ciations were observed for ozone; however, the spatial scale of the
APMoSPHERE model from which the ozone estimates were es-
timated is relatively broad (13 1 km) and may incorporate more
exposure misclassification than estimates for the other pollutants.
In our study, we found suggestive evidence that children with at

least 1 adenine at the 308 position in the TNF gene (rs1800629)
may be at an elevated risk of allergic rhinitis at 7 or 8 years of
age. To our knowledge, only 3 other studies have investigated
this association. Zhu et al49 found no association between TNF
and the development of atopy, asthma, and rhinitis in a high-
risk population of 373 infants. However, Gentile et al50 found
that among 124 infants, minor allele carriers of the TNF gene var-
iant were at a higher risk of having a parental history of allergic
disease. Moreover, a recent study found a strong association be-
tween the rs1800629 SNP and allergic rhinitis exacerbation in a
population of 269 adult Pakistani patients.51 Our study is the first
to document this association in school-age children, and our re-
sults are based on a substantially larger sample size than those
used in previous studies.
The association between the rs1800629 SNP and allergic

rhinitis is biologically plausible. The rs1800629 SNP is located
within the promoter region of the TNF gene, which is thought to
affect the expression of the pleotropic proinflammatory cytokine
TNF-a.52,53 Elevated levels of TNF-a have been observed in pa-
tients with allergic rhinitis,54,55 and studies in mice suggest that
the lack of this cytokine inhibits allergic rhinitis development.56

Functional and biological studies that elucidate the role of
TNF-a in allergic rhinitis development are required, and future
epidemiologic studies should aim to replicate our result.



TABLE III. SNP characteristics and genotype frequencies of the study population

Gene symbol SNP Alleles* Location

BAMSE, no.

(MAF)

CAPPS, no.

(MAF)

Munich, no.

(MAF)

Wesel/Leipzig,

no. (MAF)

SAGE, no.

(MAF)

PIAMA, no.

(MAF)

Pooled, no.

(MAF)

GSTP1 rs1138272 C/T Exon

(Ala114Val)

861 (9.0) 345 (7.0) 903 (9.4) 1252 (9.3) 183 (8.2) 1926 (9.3) 5470 (9.1)

rs1695 A/G Exon

(Ile105Val)

897 (32.9) 345 (31.2) 1470 (35.0) 1194 (34.7) 181 (31.5) 1909 (36.1) 5996 (34.7)

rs4891� T/C Exon

(synonymous)

873 (30.5) — 740 (49.4) 684 (45.3) — 1949 (36.9) 4246 (39.1)

TNF rs1800629 G/A Promoter 854 (15.5) 346 (14.2) 823 (14.7) 1182 (17.7) 185 (13.0) 1906 (18.9) 5296 (16.9)

TLR2 rs4696480 T/A Intron — — 391 (51.2) 382 (49.5) — 912 (46.9) 1685 (48.8)

TLR4 rs10759930 C/T Promoter — 347 (40.2) 823 (40.3) 1182 (37.1) — — 2352 (38.7)

rs10759931 G/A Promoter — — 824 (40.3) 1183 (37.1) — 891 (40.7) 2898 (39.1)

rs10759932 T/C Promoter — — 387 (13.7) 384 (13.3) — 908 (11.9) 1679 (12.6)

rs1927911 C/T Intron — 347 (26.5) 824 (25.5) 1181 (25.3) 185 (20.5) 909 (24.0) 3446 (24.9)

rs2737190 A/G 59 Untranslated
region

— — 823 (31.2) 1184 (32.6) — 919 (32.2) 2926 (32.1)

rs2770150 T/C Promoter — 347 (25.6) 822 (28.5) 1181 (29.1) 186 (26.9) 896 (29.1) 3432 (28.5)

MAF, Minor allele frequency.

*Major allele/minor allele.

�SNP was not in Hardy-Weinberg equilibrium and subsequently was eliminated from the analysis.

FIG 1. Distribution of air pollutants pooled and by cohort. The interquartile range is indicated by each box

height and median level by each dark line. The number of children with health data that also had available

air pollution data are given along the top of each graph. NA, Not available.
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Our study results also suggest that carriers of the C allele in the
rs1927911 SNP in the intron region of the TLR4 genemay be at an
elevated risk of allergic rhinitis. No other studies have docu-
mented this association. However, 8 other SNPs in the TLRs
have been linked to the prevalence of allergic rhinitis, including
1 in the TLR4 gene (rs4986790).57 Unfortunately, we did not
have data for this SNP in our study. Interestingly, we did not
see an association between allergic rhinitis and the rs4696480
SNP in TLR2, as has been previously documented in European
farmers.58 Both genetic findings of this study were robust to
step-wise exclusion of each cohort.
We found no evidence to support the existence of gene-

environment interactions among NO2, PM2.5 mass, PM2.5 absor-
bance, or ozone and 10 SNPs in the GSTP1, TNF, TLR2, and



FIG 2. Associations between allergic rhinitis (stars) and aeroallergen sensitization (dark squares) and

NO2, ozone, PM2.5 mass, and PM2.5 absorbance. Models were adjusted for city/center, cohort, sex,

birth weight, parental history of atopic disease, maternal smoking during pregnancy, exposure to environ-

mental tobacco smoke at the time of follow-up, maternal age at birth, and intervention status (when appli-

cable). NA, Not available.
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TLR4 genes. We did find a significant risk of sensitization to
indoor aeroallergens among minor rs1800629 allele carriers ex-
posed to NO2; however, this result was not also observed for out-
door aeroallergens. The interaction term between ozone and the
rs1695 SNP was also significant for overall aeroallergen sensiti-
zation. However, neither the main environmental nor genetic
effect estimates were significant for this outcome and SNP.
To date, we are the first to assess the existence of gene-air

pollution interactions for allergic rhinitis. However, gene-
environment interactions have been reported for other environ-
mental exposures.59,60 For sensitization, Mel�en et al23 reported a
significant interaction between NOx and the rs1695 SNP (GSTP1)
with the use of the BAMSE cohort. Although we included this co-
hort in our analysis and examined it individually, we were unable
to replicate this finding. However, in the present analysis, sensiti-
zation was assessed at 8 years of age and included only aeroaller-
gens, whereas Mel�en et al23 examined sensitization to food or
aeroallergens at 4 years of age. A recent publication by the
BAMSE cohort research group suggests that the adverse effects
of air pollution on sensitization may be restricted to gestation
and early childhood time points during which the immune system
is rapidly developing (allergic rhinitis was not considered).61 This
hypothesis, namely that the adverse effects of TRAP may be lim-
ited to early life, may explain why a gene-environment interaction
was observed when the BAMSE population was 4 years old but
not in the present study in which they are 8. However, we cannot
rule out that interaction effects may exist among GSTP1, air pol-
lutants, and allergy-related outcomes. An even larger sample size,
including a complete cover of variants in GSTP1, will likely give
further insights into this complex interplay.
Gilliland et al20,21 also reported positive findings for gene-

environment effects for sensitization: nasal IgE levels were
increased among genetically susceptible allergic persons after ex-
posure to diesel exhaust particles and secondhand smoke. The dis-
crepancy between these positive findings and our null results may
reflect differences in study design, patient populations, and phe-
notypes studied. Most notably, the studies conducted by Gilliland
et al20,21 involved adult patients and an experimental study de-
sign. Furthermore, epigenetic effects were not considered in our
study or the other studies but are likely to have important conse-
quences for disease development, as described in a recent update
on the current literature on air pollution, genetics (and epige-
netics), and allergy.62

One of the main issues of studies that examined gene-
environment interactions, in addition to many other challenges,
is that null findings may simply be due to lack of statistical
power.63 The TAG initiative answers the numerous calls for the
need to increase sample sizes by combining cohorts so that we
are better poised to fully investigate the relationships and
interactions among the genome, the environment, and disease



FIG 3. Associations between allergic rhinitis (stars) and aeroallergen sensitization (dark squares) and single

nucleotide polymorphisms. Po, Pooled; B, BAMSE; C, CAPPS;M, Munich;W/L, Wesel and Leipzig; S, SAGE;

and P, PIAMA. The upper confidence limit in SAGE for rs1927911 and allergic rhinitis is 7.44. Models were

adjusted for city/center, cohort, sex, birth weight, parental history of atopic disease, maternal smoking dur-

ing pregnancy, exposure to environmental tobacco smoke at the time of follow-up, maternal age at birth,

and intervention status (when applicable). NA, Not available.
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development. Nevertheless, we cannot exclude the possibility
that our study may still be underpowered to detect real
gene-environment interactions. For this reason, we also con-
ducted stratified analyses, for which power may be less likely
a concern but can still be limiting. For example, even by com-
bining all available NO2, health, and covariate data available
among minor rs1800629 allele carriers (n 5 1360), we were
only powered to detect associations with an OR >1.36
(calculated with G*Power version 3.1.3,64 assuming a 5
0.05, power 5 0.85). Regardless, this limitation is unlikely to
hinder the main environmental and genetic effect estimates re-
ported in this study, which have traditionally been estimated



TABLE IV. Associations between air pollution and allergic

rhinitis among homozygous major and heterozygous/

homozygous minor allele carriers in the pooled data set

SNP

Homozygous major

Heterozygous/

homozygous minor

No. OR (95% CI) No. OR (95% CI)

NO2

rs1138272 3589 0.97 (0.78-1.19) 756 1.20 (0.77-1.87)

rs1695 1902 1.08 (0.82-1.43) 2581 0.96 (0.75-1.21)

rs1800629 2896 0.97 (0.77-1.23) 1351 1.10 (0.78-1.54)

rs4696480 359 1.01 (0.52-1.95) 960 1.24 (0.88-1.73)

rs10759930 561 0.86 (0.48-1.55) 948 1.37 (0.90-2.10)

rs10759931 753 1.27 (0.82-1.95) 1235 1.07 (0.74-1.54)

rs10759932 1004 1.22 (0.88-1.71) 312 0.98 (0.49-1.94)

rs1927911 1400 1.35 (0.99-1.85) 1081 0.77 (0.54-1.11)

rs2737190 936 1.30 (0.86-1.95) 1078 1.05 (0.73-1.53)

rs2770150 1262 0.87 (0.62-1.21) 1208 1.26 (0.90-1.77)

Ozone

rs1138272 2945 0.92 (0.72-1.18) 639 0.94 (0.51-1.73)

rs1695 1623 0.71 (0.50-1.02) 2266 0.90 (0.68-1.20)

rs1800629 2335 0.81 (0.60-1.09) 1116 0.99 (0.67-1.46)

rs4696480 391 1.54 (0.80-2.94) 1110 0.94 (0.63-1.41)

rs10759930 630 0.95 (0.42-2.15) 1060 0.92 (0.50-1.66)

rs10759931 873 1.21 (0.71-2.04) 1463 1.00 (0.68-1.45)

rs10759932 1141 1.03 (0.69-1.54) 357 1.15 (0.56-2.34)

rs1927911 1422 0.99 (0.67-1.47) 1102 1.10 (0.70-1.72)

rs2737190 1100 1.03 (0.67-1.59) 1262 1.14 (0.75-1.74)

rs2770150 1284 0.99 (0.65-1.50) 1227 1.19 (0.79-1.81)

PM2.5 mass

rs1138272 1903 1.20 (0.76-1.89) 402 1.29 (0.50-3.35)

rs1695 1010 1.72 (0.95-3.13) 1467 0.97 (0.58-1.65)

rs1800629 1514 1.40 (0.87-2.27) 749 0.91 (0.40-2.08)

rs4696480 288 1.52 (0.30-7.58) 721 1.70 (0.81-3.58)

rs10759930 175 0.60 (0.21-1.69) 317 1.41 (0.68-2.95)

rs10759931 419 2.07 (0.74-5.76) 724 1.25 (0.53-2.97)

rs10759932 774 1.74 (0.82-3.69) 231 1.28 (0.26-6.20)

rs1927911 752 1.42 (0.77-2.65) 581 0.94 (0.48-1.82)

rs2737190 550 2.77 (1.07-7.15)* 619 1.07 (0.43-2.66)

rs2770150 676 1.05 (0.57-1.93) 644 1.37 (0.69-2.71)

PM2.5 absorbance

rs1138272 2368 1.02 (0.80-1.31) 505 1.24 (0.70-2.17)

rs1695 1271 1.09 (0.78-1.53) 1828 1.03 (0.77-1.37)

rs1800629 1864 0.99 (0.76-1.30) 932 1.31 (0.85-2.00)

rs4696480 288 1.59 (0.41-6.23) 721 1.56 (0.81-3.00)

rs10759930 390 0.80 (0.52-1.22) 636 1.12 (0.81-1.55)

rs10759931 635 1.62 (0.71-3.72) 1042 1.14 (0.56-2.32)

rs10759932 774 1.66 (0.86-3.18) 231 1.41 (0.35-5.67)

rs1927911 1049 1.14 (0.82-1.60) 818 0.98 (0.71-1.36)

rs2737190 801 1.79 (0.83-3.86) 902 1.11 (0.53-2.33)

rs2770150 948 1.09 (0.82-1.45) 904 0.93 (0.62-1.40)

Models were adjusted for city/center-cohort, sex, birth weight, parental history of

atopic disease, maternal smoking during pregnancy, exposure to environmental

tobacco smoke at the time of follow-up, maternal age at birth, and intervention status

(when applicable).

*Statistically significant result.
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with smaller sample sizes. However, we acknowledge the pos-
sibility remains that the positive results reported here may be
due to chance.
A few limitations should be noted. Common to all studies that

combine data sources, the data were not collected with the use
of identical strategies across all cohorts. This is an especially
relevant concern in this study because differing definitions of
allergic rhinitis were used by each cohort, which may have
affected the study-specific prevalence estimates. For example,
the 2 German cohorts that relied on the report of a doctor
diagnosis in the past 12 months had the lowest prevalence rates
of allergic rhinitis, although these rates were similar to that
reported for Germany in a global study that relied on
questionnaire-based report of symptoms.65 Any misclassifica-
tion of the disease outcome would likely be nondifferential
and would drive the results toward the null. As such, nondiffer-
ential misclassification cannot be ruled out as an explanation for
our findings. Furthermore, not all participating cohorts were
population based, which may influence the prevalence of dis-
ease, such as for the CAPPS cohort of children with hereditary
allergies. However, our results remained stable when we
adjusted for whether a child was a case in the nested case-
control cohorts (BAMSE and SAGE), excluded these cases
completely from the analysis, or removed each cohort sequen-
tially. Second, the panel of SNPs assessed was selective and
may not include other genotypes that could influence the path-
ogenesis and expression of allergic rhinitis and aeroallergen sen-
sitization. In fact, it is quite likely that a complex interaction of
genes is required to determine susceptibility. Our selection was
based on the literature that suggests that genes involved in in-
flammation or oxidative stress metabolism may play a role,
and on the availability of the SNP in at least 3 cohorts. Third,
although all exposure estimates were individually assigned to
each participant, which is a main strength of this study, exposure
misclassification remains possible. Furthermore, our approach
only considered one air pollutant per analysis. This does not re-
flect a person’s true exposure, which is, in reality, a complex
combination of several components. Fourth, we did not have in-
formation on the moving patterns of the children from all co-
horts. Thus, we were unable to assess the percentage of
children for whom an estimation of TRAP exposure at their
home address at birth may not reflect exposures in later child-
hood. A previous examination of this issue found stronger asso-
ciations between TRAP and allergic diseases for children who
had never moved.9 As such, the effect of moving most likely bi-
ased our air pollution results toward the null. Population strati-
fication is also likely of minimal concern because 95.1% of our
study participants were of European descent. Finally, selective
dropout is unlikely to have affected the main genetic results
of this study because it is improbable that a person’s genotype
influenced his or her decision to participate.
In conclusion, a pooled analysis of 6 birth cohorts suggests that

the generally null effect of TRAP on allergic rhinitis and
sensitization is not modified by 10 SNPs in the GSTP1, TNF,
TLR2, and TLR4 genes. Although TRAP increased the risk of al-
lergic rhinitis in the pooled analysis, this result was not robust to
single cohort exclusions. Children with at least 1 minor
rs1800629 allele in their TNF gene or 1 minor rs1927911 allele
in their TLR4 gene may be at a higher risk of allergic rhinitis by
school age. This finding has important public health relevance be-
cause both SNPs are present in a large proportion of the popula-
tion (31.2% and 43.5%, respectively, in this study). The
biological mechanisms behind these possible associations remain
unknown.
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ozone estimates derived from the APMoSPHERE project. Some of the results

of this study have been previously published in the form of an abstract.66

Key messages

d A pooled analysis of 6 birth cohorts suggests that the gen-
erally null effect of traffic-related air pollution on allergic
rhinitis and sensitization is not modified by 10 tested sin-
gle nucleotide polymorphisms in the GSTP1, TNF, TLR2,
and TLR4 genes.

d Traffic-related air pollution did not consistently increase
the risk of allergic rhinitis onset in a pooled analysis of
6 birth cohorts.

d Children with at least 1 minor rs1800629 allele in the
TNF gene or 1 minor rs1927911 allele in the TLR4 gene
may be at a higher risk of developing allergic rhinitis
by school age.
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TABLE E1. Pooled and cohort specific associations between allergic rhinitis and aeroallergen sensitization and air pollutants

BAMSE CAPPS Munich Wesel/Leipzig SAGE PIAMA Pooled

No. OR (95% CI) No. OR (95% CI) No. OR (95% CI) No. OR (95% CI) No. OR (95% CI) No. OR (95% CI) No. OR (95% CI)

Allergic rhinitis

NO2 897 0.79 (0.51-1.23) 368 1.04 (0.67-1.63) 1028 0.94 (0.64-1.40) 1740 1.26 (0.67-2.37) 171 0.34 (0.10-1.12) 3160 1.24 (1.04-1.49)* 7364 1.10 (0.95-1.26)

Ozone — — 186 0.96 (0.32-2.88) 2163 0.86 (0.59-1.26) 1793 0.94 (0.57-1.56) — 3151 0.93 (0.75-1.13) 7293 0.91 0.77-1.08)

PM2.5 mass — — 185 1.08 (0.59-1.96) 1028 0.89 (0.34-2.31) — — — — 3160 1.66 (1.12-2.46)* 4373 1.37 (1.01-1.86)*

PM2.5

absorbance

— — 185 1.08 (0.84-1.40) 1028 0.83 (0.38-1.79) 1339 1.46 (0.40-5.27) — — 3160 1.51 (1.07-2.13)* 5712 1.16 (0.96-1.41)

Aeroallergen

sensitization

NO2 751 0.87 (0.58-1.32) 355 0.94 (0.61-1.44) 617 0.77 (0.57-1.06) 940 1.00 (0.62-1.63) 215 0.47 (0.19-1.17) 1725 1.10 (0.89-1.37) 4603 0.94 (0.82-1.08)

Ozone — — 177 1.99 (0.66-6.06) 1276 1.10 (0.82-1.46) 961 0.97 (0.66-1.41) — — 1718 0.88 (0.70-1.11) 4132 0.95 (0.81-1.12)

PM2.5 mass — — 176 0.78 (0.43-1.42) 617 0.52 (0.24-1.11) — — — — 1725 1.22 (0.77-1.94) 2518 0.92 (0.66-1.27)

PM2.5

absorbance

— — 176 0.94 (0.72-1.21) 617 0.59 (0.32-1.08) 699 0.76 (0.29-1.99) — — 1725 1.17 (0.78-1.76) 3217 0.93 (0.76-1.13)

Models were adjusted for city/center, cohort, sex, birth weight, parental history of atopic disease, maternal smoking during pregnancy, exposure to environmental tobacco smoke at the time of follow-up, maternal age at birth, and

intervention status (when applicable).

*Statistically significant result.
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TABLE E2. Pooled and cohort-specific associations between allergic rhinitis and aeroallergen sensitization, and each SNP

BAMSE CAPPS Munich Wesel/Leipzig SAGE PIAMA Pooled

No. OR (95% CI) No. OR (95% CI) No. OR (95% CI) No. OR (95% CI) No. OR (95% CI) No. OR (95% CI) No. OR (95% CI)

Allergic rhinitis

rs1138272 841 0.89 (0.54-1.46) 344 1.94 (1.01-3.72)* 716 1.10 (0.55-2.21) 913 0.76 (0.39-1.49) 134 0.83 (0.30-2.31) 1791 1.20 (0.88-1.63) 4739 1.09 (0.89-1.35)

rs1695 876 0.81 (0.57-1.16) 344 1.51 (0.93-2.46) 1107 1.28 (0.85-1.93) 843 0.85 (0.51-1.42) 131 0.90 (0.40-2.05) 1776 1.00 (0.79-1.28) 5077 1.02 (0.87-1.20)

rs1800629 833 1.34 (0.90-1.98) 345 0.99 (0.58-1.70) 655 1.11 (0.58-2.12) 860 0.94 (0.55-1.61) 135 1.73 (0.67-4.47) 1773 1.21 (0.95-1.55) 4601 1.19 (1.00-1.41)*

rs4696480 — — — — 349 1.16 (0.41-3.28) 313 0.83 (0.30-2.28) — — 843 0.89 (0.62-1.27) 1505 0.91 (0.66-1.25)

rs10759930 — — 346 0.82 (0.49-1.35) 655 1.44 (0.75-2.76) 861 0.79 (0.48-1.32) — — — — 1862 0.92 (0.68-1.25)

rs10759931 — — — — 655 1.44 (0.75-2.76) 861 0.80 (0.48-1.33) — — 824 1.29 (0.91-1.83) 2340 1.15 (0.88-1.49)

rs10759932 — — — — 346 1.56 (0.63-3.89) 314 0.91 (0.34-2.46) — — 841 1.12 (0.76-1.65) 1501 1.13 (0.81-1.57)

rs1927911 — — 345 1.07 (0.66-1.73) 655 0.94 (0.51-1.71) 858 1.63 (0.99-2.69) 135 3.14 (1.33-7.44)* 841 1.13 (0.81-1.56) 2834 1.24 (1.01-1.53)*

rs2737190 — — — — 654 0.82 (0.45-1.48) 861 1.30 (0.78-2.16) — — 851 0.96 (0.69-1.32) 2366 1.00 (0.78-1.28)

rs2770150 — — 345 0.89 (0.55-1.45) 654 1.08 (0.60-1.96) 859 0.99 (0.60-1.63) 136 1.40 (0.64-3.06) 828 1.05 (0.76-1.46) 2822 1.02 (0.82-1.25)

Aeroallergen sensitization

rs1138272 706 0.87 (0.53-1.40) 332 1.30 (0.68-2.46) 546 1.33 (0.81-2.16) 842 0.68 (0.45-1.03) 169 0.63 (0.25-1.56) 1496 1.01 (0.76-1.33) 4091 0.95 (0.79-1.13)

rs1695 735 1.02 (0.72-1.44) 333 0.70 (0.44-1.10) 1129 1.11 (0.86-1.45) 866 0.82 (0.60-1.11) 167 1.93 (0.99-3.76) 1486 1.02 (0.82-1.27) 4716 1.00 (0.88-1.13)

rs1800629 699 0.88 (0.59-1.30) 333 1.01 (0.61-1.66) 507 1.33 (0.86-2.07) 795 1.18 (0.85-1.65) 171 1.09 (0.51-2.32) 1481 0.95 (0.75-1.19) 3986 1.04 (0.90-1.20)

rs4696480 — — — — 193 0.95 (0.44-2.07) 231 0.72 (0.36-1.45) — — 721 1.14 (0.81-1.60) 1145 1.04 (0.79-1.39)

rs10759930 — — 334 0.98 (0.61-1.57) 507 0.93 (0.61-1.43) 796 1.05 (0.77-1.45) — — — — 1637 0.98 (0.79-1.23)

rs10759931 — — — — 507 0.93 (0.61-1.43) 796 1.05 (0.76-1.45) — — 707 1.01 (0.73-1.37) 2010 1.00 (0.82-1.22)

rs10759932 — — — — 190 1.46 (0.69-3.07) 232 1.06 (0.55-2.05) — — 719 1.07 (0.74-1.54) 1141 1.10 (0.82-1.47)

rs1927911 — — 333 0.84 (0.54-1.32) 507 0.92 (0.61-1.38) 794 0.91 (0.67-1.25) 171 1.00 (0.52-1.92) 720 0.84 (0.61-1.14) 2525 0.89 (0.75-1.06)

rs2737190 — — — — 506 0.86 (0.57-1.29) 796 0.98 (0.71-1.33) — — 727 0.76 (0.56-1.02) 2029 0.85 (0.70-1.03)

rs2770150 — — 333 0.78 (0.49-1.23) 507 1.23 (0.82-1.85) 794 1.07 (0.78-1.46) 172 0.49 (0.26-0.95) 709 1.30 (0.96-1.77) 2515 1.05 (0.89-1.25)

Models were adjusted for city/center, cohort, sex, birth weight, parental history of atopic disease, maternal smoking during pregnancy, exposure to environmental tobacco smoke at the time of follow-up, maternal age at birth, and

intervention status (when applicable).

*Statistically significant result.
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