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Abstract: Lung epithelial organoids for the hazard assessment of inhaled nanomaterials offer a 8 

promising improvement to in vitro culture systems used so far. Organoids grow in three-dimen- 9 

sional (3D) spheres and can be derived from either induced pluripotent stem cells (iPSC) or primary 10 

lung tissue stem cells from either human or mouse. In this perspective we will highlight advantages 11 

and disadvantages of traditional culture systems frequently used for testing nanomaterials and 12 

compare them to lung epithelial organoids. We also discuss the differences between tissue and iPSC 13 

derived organoids and give an outlook, in which direction the whole field could possibly go with 14 

these versatile tools. 15 
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 18 

1. Background 19 

Inhalation is by far the most important route of exposure for airborne pollutants and 20 

particles. Pulmonary particle exposure comprises airborne pathogens, including viruses 21 

or bacteria, but also ambient particulate matter, such as combustion derived particles, and 22 

even engineered nanomaterials (NM); the latter mainly at occupational settings during 23 

production, processing or decomposition. Depending on their aerodynamic diameter, air- 24 

borne particles bigger than a few micrometers are deposited along the surface covered 25 

with mucus of the conducting airways by impaction, where they are rapidly removed via 26 

mucociliary clearance. Inhaled nanoparticles (NP) smaller than 100 nm in diameter can 27 

efficiently deposit in the most distal and fragile parts of the lung, the alveoli [1].  While 28 

the alveolar region possesses over 90% of the lung's surface area, it also represents the 29 

most susceptible tissue interface to the environment with only a few 100 nm thickness of 30 

the alveolar walls, protected only by a thin liquid layer [2]. The primary interaction during 31 

inhalation of particles occurs therefore with either mucus covering the conducting air- 32 

ways or alveolar lining fluid of the respiratory tract. Pulmonary surfactant as the major 33 

component of the lining fluid, consists of a unique composition of 80-90% phospholipids, 34 

5-10% neutral lipids and 10% surfactant-associated proteins (SP-A, B, C and D) [3]. The 35 

surfactant acts as a surface tension lowering film covering the alveolar surface, thereby 36 

protecting the alveoli from collapse during exhalation and reduces the effort of breathing 37 

[2]. In addition, any deposited material or particle is immersed into the lining fluid. The 38 

interaction between lining fluid and particles may also dramatically change the physical- 39 

chemical properties of alveolar deposited, inhaled particles, causing immobilization or 40 

aggregation, and modifies their surface chemistry. Particle clearance is facilitated by ei- 41 

ther removal via the mucociliary escalator in conducting upper airways or phagocytosis 42 

by alveolar macrophages (AMs) roaming the alveolar surface. Ineffective clearance, repet- 43 

itive inhalation as well as hotspots of deposition formed at the bifurcations of terminal 44 

bronchioles and alveolar ducts, can lead to accumulation and high particle burden at spe- 45 
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cific areas of the respiratory tissue, and may thus increase the per cell delivered dose dra- 46 

matically [4]. Furthermore, and in dependence of particle chemistry, its deposition may 47 

damage the surfactant function of the layer itself [5] and lead to a local inflammation [6]. 48 

Once reaching the alveolar surface, particles can lead to serious health consequences 49 

such as attenuated lung development for children exposed to combustion derived traffic 50 

emissions [7,8], cardiovascular effects in susceptible adults as for diesel exhaust particles 51 

[9], metal fume and polymer fume fever as for specific metal oxides and fluorinated pol- 52 

ymers [10]. Depending on the pulmonary delivered dose, basically all materials can cause 53 

local inflammatory responses, in this context a variety of toxicological rodent studies sup- 54 

port the respiratory toxicity of particles with particle surface area as the most valuable 55 

predictor for acute lung inflammation [11]. Detrimental long-term consequences includ- 56 

ing chronic inflammation, fibrosis and even tumor formation in lung tissue have been 57 

associated with inhalation of certain types of fiber shaped, high aspect ratio NP [12]. De- 58 

spite this knowledge, the ever-growing field of nanotechnology associated nanomaterial 59 

toxicology requires smarter approaches for NM fabrication, grouping and testing espe- 60 

cially considering high throughput approaches, the ethical commitment and at the same 61 

time replace and reduce animal testing [13].  62 

To achieve a smarter and more ethical approach to NM testing, the Adverse Outcome 63 

Pathway (AOP) framework has been established, which incorporates mechanistic 64 

knowledge generated from in vivo experiments to connect measured toxicological end- 65 

points with a pathological consequence by a sequence of molecular initiating events 66 

(MIEs), consecutive key events (KEs) and the final adverse outcome (“disease”; AO). Sev- 67 

eral AOPs have been identified and shown to have strong correlation across published in 68 

vivo datasets [14]. Furthermore, this AOP approach facilitates the design of superior in 69 

vitro testing strategies with the ultimate goal to reflect MIEs or KEs robustly in vitro, which 70 

would ultimately unburden safe-by-design strategies and reduce animal testing in the fu- 71 

ture. Recently, for the AOP ‘chronic inflammation’, an in vitro based test system has been 72 

demonstrated with highly specialized methods to reach superior predictive power for an 73 

ample set of NMs (metal oxide-based materials) [14]. AOPs are especially helpful for de- 74 

ciding which New Approach Methodology (NAM) could be used regarding NM toxicol- 75 

ogy studies [15]. With appropriate NAMs, toxicity testing is evidence-based, more predic- 76 

tive and reproducible. Hence, more and more predictive alternative and tissue specific in 77 

vitro models have to emerge based on AOPs. These will enable reliable and high through- 78 

put applicable cell-based studies, covering information from the molecular onset to the 79 

development of pathology, namely the identification of MIEs and KEs leading to AOPs in 80 

vivo.  81 

In the following section, we will 1) portrait the difficulties of current in vitro models 82 

especially for specified AOP based testing, 2) introduce different lung organoid cultures 83 

as an alternative method and 3) give an outlook on these NAMs in the field of research. 84 

2. Culture Methods for NM hazard assessment 85 

Numerous studies display adverse effects of NM on the lung or lung cells, including 86 

oxidative stress [16,17], DNA damage [18], pro-inflammatory [19,20] and pro-fibrotic re- 87 

sponse [21,22] using in vitro or in vivo systems to detect and compare molecular effects of 88 

different NMs and to identify potential detrimental responses through nanoparticle-spe- 89 

cific actions. For an in vitro set up, the standard and most simple technique in toxicological 90 

research is achieved by adding substances directly to the media of submerged cultures. 91 

However, for inhalation and particle toxicological studies this method is not decisive since 92 

the process of particle-cell interaction, as observed at the epithelial surface of the lung, is 93 

different to in medium submerged conditions [23,24]. The distribution pattern of NPs by 94 

inhalation is more critical than the stimulation itself [25]. Apart from inappropriate bio- 95 

logical conditions, obscure dosimetry, especially the dose interacting with and thus deliv- 96 

ered to the cell at submerged conditions, is a major concern for poorly soluble particles 97 
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that is challenging to determine and, moreover, is still little considered [24,26]. The unre- 98 

alistic dose delivery for the lung surface is mainly due to factors driving the sedimentation 99 

route in submerged cultures. For example, aggregation of NMs in artificially serum pro- 100 

tein containing media, the possibility of dissolution of certain NMs in high volumes of 101 

media and thus an unrealistic distribution of particles across the on the bottom of the cul- 102 

ture exposed cells [27,28]. 103 

To overcome these disadvantages for inhaled particles, cells can be cultured on an 104 

Air-Liquid Interface (ALI). By placing the cells or tissue on a porous membrane and feed- 105 

ing them just from the basal side, the apical side is open for an inhalation like airborne 106 

exposure, thereby a comparable experimental set up to in vivo conditions arise. Hence, in 107 

vitro exposure at the ALI with airborne NMs is not only the more realistic approach but 108 

also the one allowing defined cell delivered dose estimations compared to exposure under 109 

submerged conditions. ALI inhalation models have the potential for a more precise repro- 110 

duction of the processes during exposure, as they can mimic the fragile respiratory epi- 111 

thelial region comparable to structural in vivo terms [29]. Especially for studying the ef- 112 

fects of exposure to low solubility materials, a special Air-Liquid Interface cell exposure 113 

(ALICE) system was developed, which uses a nebulizer to generate a droplet cloud of 114 

dispersed particles. The in the exposure chamber created moisture cloud finally drives the 115 

applied NMs to gravimetrically deposit onto the culture [28]. Instead of the use of gravi- 116 

metric force, which requires aqueous dispersion for nebulization, other methods use elec- 117 

trostatic force to improve the deposition efficiency on the ALI surface [30]. However, in 118 

this context it must be highlighted that the exposed cells are often immortalized cell lines 119 

which may resemble the natural cell characteristics only partly. In addition, the porous 120 

membranes used as substrate for the cell medium interface usually exceed realistic dimen- 121 

sions. Notably, well-working approaches to overcome this problem with advanced bio- 122 

mimetic membranes already exist [31]. 123 

Even with the most desired advanced models, it is noted that the results generated 124 

by inhalation of nanoparticles in vivo cannot be fully and properly represented in vitro. 125 

Previous studies have shown that the use of immortalized cell lines does not represent the 126 

in vivo situation completely, so does not provide fully comparable results to those ob- 127 

tained in vivo. This relates to the fact that immortalized cell lines often lose polarity and 128 

lack of key morphology features, which may biologically distinguish respective cells in 129 

the tissue context. Furthermore, as the immortalized cells do not have a natural prolifera- 130 

tion cycle due to mutation or manipulation, they have evaded normal cellular senescence 131 

and instead can keep undergoing division, which could lead to functional alterations and 132 

genetic drifts [32,33]. In general, any cell model will only model a certain biological aspect 133 

of the in vivo situation and this aspect, and its limitations have to be well-known to the 134 

researcher to use the model appropriately. Several human alveolar epithelial cell lines, for 135 

example A549, NCI-H441, TT1 or hAELVi, are commercially available. The ones originat- 136 

ing from alveolar type 2 cells (AT2) mostly lost their stem cell character referring to the 137 

possibility to differentiate into alveolar type 1 like-cells (AT1) with protein expression of 138 

Aquaporin-5 (AQP5) or Podoplanin (PDPN) [34-36] as it occurs in the lung. TT1 and 139 

hAELVi represent cells with an AT1-like phenotype regarding morphology and caveolae 140 

presence, although they do not display other common AT1 markers like AQP5 or in the 141 

case of TT1 only show discontinuous tight junctions [37-40]. To get a human epithelial cell 142 

line representing the bronchial epithelium, for example BEAS-2B, 16HBE14o or Calu-3 are 143 

well established [41]. Indeed, there are also murine lung epithelial cell lines, namely MLE- 144 

12 or LA-4, representing the alveolar compartment. Therefore, the lack of reproducibility 145 

between in vivo and in vitro data is not due to the applied in vitro model but rather to the 146 

cells chosen for the particular research aim.  147 

A promising approach to overcome disadvantages of currently widely used immor- 148 

talized cell lines and to compare results created in vivo with in vitro data is the use of three- 149 

dimensional (3D) cell cultures, the so-called lung organoids. Organoids are defined as 150 

three-dimensional, mostly spherical shaped constructs cultured in vitro in an extracellular 151 
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matrix. They self-organize from single stem cells into multicellular structures and mimic 152 

the in vivo organ, in this case the bronchiolar or alveolar region of the lung [42]. An over- 153 

view of different ways to generate lung organoids and their cells of origin is shown in 154 

Figure 1.  155 

 156 

 157 

Figure 1. Generation of murine and human lung organoids and their cells of origin. Organoids can 158 

be derived from primary murine and human lung cells. Tracheospheres and bronchospheres origi- 159 

nate from airway basal cells [43,44]. To generate bronchioalveolar organoids from murine lungs, 160 

bronchioalveolar stem cells or Scgb1a1+ club cells can act as progenitors to bronchiolar as well as 161 

alveolar cells [45,46]. Primary isolated alveolar type 2 cells are able to differentiate into alveolar 162 

organoids [47,48]. Another possibility to generate lung organoids is the use of human induced plu- 163 

ripotent stem cells. The use of different growth factors and conditions results in either airway [49] 164 

or alveolar organoids [50,51]. Organoids that include bronchial as well as alveolar cells can be de- 165 

rived as so-called lung bud organoids [52]. 166 

One method to grow lung organoids is to isolate primary epithelial cells out of lung 167 

tissue. This is possible with murine lungs as well as human tissue, although the availabil- 168 

ity of human lung tissue is limited. Basal cells act as progenitor cells in the tracheal and 169 

bronchial region of the lungs [53]. When isolated and cultured in a complex matrix, airway 170 

basal cells can form bronchospheres and contain multiple airway cell types, including cil- 171 

iated, goblet and secretory cells, with expression of markers as Forkhead Box J1 (FoxJ1), 172 

acetylated a-tubulin, Mucin 5AC (MUC5AC), Cystic Fibrosis Transmembrane Conduct- 173 

ance Regulator (CFTR) or secretoglobin family 1A member 1 (SCGB1A1). The human and 174 

murine bronchospheres still contain basal cells expressing for example p63, enabling them 175 

to self-renew [43,44]. In the alveolar region, AT2 cells have stem cell character and can 176 

proliferate and differentiate into AT1 cells [47]. To obtain organoids, mesenchymal sup- 177 

port cells are often needed to help the organoids grow. Human mature alveolar organoids 178 

show AT2 cell markers like surfactant protein-C (SFTPC) and HTII-280. Murine alveolar 179 

organoids also contain SFTPC expressing cells and in addition cells showing AT1 charac- 180 

teristics [47,48] (Figure 2 a and b). Thus, stem cell properties are retained within 3D cul- 181 

ture, in contrast to traditional culture methods with cell lines. In addition to these two 182 

organoid types, the bronchospheres and the alveolar organoids, it is also possible to obtain 183 

bronchioalveolar organoids from distinct cell populations in mouse lungs. The so-called 184 

bronchioalveolar stem cells (BASCs) and Scgb1a1 positive club cells are able to give rise 185 
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to organoids containing cells with airway phenotype as well as alveolar characteristics. 186 

They combine both lung compartments in vitro, with bronchiolar cells in the center fol- 187 

lowed by an outer part of branching alveolar structures [45,46]. 188 

 189 

An alternative to primary lung epithelial cells for generating lung organoids is the 190 

use of directed differentiation of induced pluripotent stem cells (iPSCs).  191 

Since the discovery of human iPSCs [54], they are considered a valuable alternative 192 

to the problematic use of embryonic stem cells (ESCs) and to provide comparable in vitro 193 

models in relation to the actual disease pattern in humans with the potential of long term 194 

and repetitive experiments.  195 

The experimental set-ups of in vitro lung models are based on biochemically differ- 196 

entiation of hiPSCs into lung lineages.  Organoids derived from stem cells (ESC or hiPSC) 197 

are able to differentiate and self-organize through lineage bonding comparable to pro- 198 

cesses taking place during development  in vivo [55].  199 

hiPSCs differentiated into lung progenitors can be used for deriving airway organ- 200 

oids. They contain SCGB1A1+ secretory cells, multiciliated cells expressing FOXJ1 and ba- 201 

sal cells amongst others [49]. In modified conditions lung progenitors can grow into ma- 202 

ture alveolar epithelium with specific cell expression markers of AT2 (and AT1) cells e.g., 203 

SFTPC [50,51]. As shown in Jacob et al. 2017, NKX2.1 is highly expressed in tightly packed 204 

lung progenitor colonies. At a later stage of differentiation lung progenitors resulted in 205 

self-renewal and high yield of SP-C expressing iAT2s (Figure 2 c and d). An interesting 206 

approach to obtain lung organoids that contain AT2, AT1 as well as airway goblet cells, is 207 

to generate lung bud organoids by prolonged differentiation in a 3D matrix. With this 208 

method, mesenchymal cells expressing Vimentin (VIM) arise, surrounding the organoids 209 

[52]. 210 

 211 

Figure 2. 3D Alveolar Organoids. (a) Illustration showing a primary murine alveolar organoid. (b) 212 

Representative immunofluorescence staining of a murine alveolar organoid showing AQP5 staining 213 

as a marker for AT1 cells (pink) and nuclei (DAPI, blue). (c) Illustration showing a hiPSC-derived 214 

alveolar organoid. (d) Representative immunofluorescence staining with AT2 cells expressing SPC 215 

(red), NKX2.1 (green) and nuclei (DAPI, cyan). 216 
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Great advantages of 3D lung organoid cultures compared to conventional cell lines 217 

are the comparable cellular identity and functionality to the in vivo situation, and the po- 218 

tential to differentiate into several epithelial cell types. This enables us to perform disease 219 

modeling, developmental and regeneration studies, identify roles of the distinct cell types 220 

regarding cellular communication in defined settings and create a representative model 221 

of airway and/or alveolar lung compartments. When comparing architecture and func- 222 

tional readouts of lung tissue, a 3D cell culture system creates much better and even more 223 

realistic conditions than a cell monolayer culture system [56,57]. A feature of mature AT2s 224 

in a 3D cell culture system, is the ability to produce lamellar body-like inclusions, includ- 225 

ing mature SP-B and SP-C protein forms, and so further supporting their self-renewing 226 

capacity, which is desperately needed for a constant repetition of experimental set-ups. 227 

Lipidomic analysis of the intracellular and extracellular material from alveolar organoids 228 

show amounts of dipalmitoylphosphatidylcholin (DPPC), the main phospholipid in sur- 229 

factant, and thus the presence of functional lamellar bodies that synthesize and secrete 230 

surfactant from phenotypically mature AT2 cells [50]. At the moment, this prominent fea- 231 

ture of AT2 cells is only found in stem cell derived 3D cultures. Another advantage of 232 

organoid cultures, either originating from primary lung cells or iPSCs, is the possibility to 233 

include multiple defined cell types into a co-culture system. The defined, but yet superior 234 

model can incorporate different cells representing lung epithelial cells interacting with 235 

fibroblasts or macrophages for example [58-61], thus promoting interactions and display 236 

inflammation and cell-matrix alterations. Especially studying cell-cell interactions with 237 

regard to therapeutic efficacy and toxicity of delivered drugs is possible in 3D microtissue 238 

models. One thing to highlight as an advantage of human organoid cultures is, they pro- 239 

vide faster and more robust outcomes as well as a more accurate representation of human 240 

tissue as animal models do [62]. Notably, from hiPSCs generated lung organoids can be 241 

passaged for up to 300 days and retain their typical alveolar characteristics [51,63]. Beside 242 

all of these advantages of using iPSC derived organoids, their generation is quite labori- 243 

ous. For human tissue derived lung organoids, the availability of lung samples to perform 244 

epithelial cell isolation is restricted and obvious ethical issues arise in this context. An 245 

additional dilemma regarding human lung tissue samples is that it is not feasible to get 246 

completely healthy tissue, only for example peritumoral samples. Although murine lung 247 

organoids can be derived from various genetic backgrounds, this method is still depend- 248 

ent on animal experiments and not a replacement like traditional culture models are. Nev- 249 

ertheless, murine as well as human organoid experiments could help to reduce the num- 250 

ber of research animals used in accordance to the 3R principles [64] and additionally, us- 251 

ing human cells would increase the translational aspect and allow patient-associated stud- 252 

ies. Especially in the context of NM toxicity assessments, it is advisable to take advantage 253 

of the benefits 3D organoids offer. Lung organoids are already used for different research 254 

questions regarding NM toxicity. Readouts including reactive oxygen species (ROS) pro- 255 

duction, epithelial cell differentiation and regeneration, NP internalization or surfactant 256 

production can be assessed easily and help to elucidate the mechanisms underlying dis- 257 

ease progression in the lung after NP exposure [65-67]. Toxicity testing in organoids is not 258 

yet used often, but these examples already show the numerous opportunities with 3D 259 

lung cultures. However, one difficulty still is to imitate the inhalation of NMs. For exam- 260 

ple, in Yu et al. 2022, the particles to be tested are mixed into the culture medium, which 261 

is without a doubt a convenient and high throughput suitable approach for NM exposure 262 

but leads to similar problems regarding the cell delivered dose and the particle-cell inter- 263 

action as conventional 2D submerged cell culture does. Nevertheless, 3D organoids are 264 

able to respond to stimuli and can recapitulate epithelial cell responses more accurately 265 

than 2D culture does [68]. In addition, usually grown alveolar organoids are polarized in 266 

a way that the surfactant producing apical side is faced towards the lumen of the sphere. 267 

Thus, exposure to NMs through the media or matrix does not reach the epithelial cells as 268 

it would in vivo, they are exposed from the basal side. One possible idea to overcome this 269 
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issue is to microinject the desired harmful substance directly into the lumen of the organ- 270 

oid, which is not yet performed with NMs, but within several other contexts [58,69]. 271 

This brings the NMs or pathogens directly to the site of action and the exact dose 272 

delivered to the cells is known. Nevertheless, microinjection of NM into lung organoids 273 

is not done so far as it is challenging to generate high throughput. In order to get a relevant 274 

outcome, this method requires experience regarding the microinjector. On the other hand, 275 

there are already approaches to change the polarity of distal lung organoids towards an 276 

apical-out polarization [70] This method could be used to expose lung organoids to NMs 277 

easier from the apical cell side. Still, organoids are grown in matrix with feeding medium, 278 

this means a direct contact or defined cell delivered dose is difficult to achieve under these 279 

conditions.  280 

Another approach to take advantage of the stem cell character that cells keep in or- 281 

ganoid culture, is to dissociate the cultured 3D organoids into single cells again. When 282 

cultured in transwell inserts, organoid derived epithelial cells can form an intact epithelial 283 

barrier [71]. 284 

In this setting, an exposure to NMs using the ALICE system, where particles are neb- 285 

ulized and a defined dose is distributed equally upon the cells, is feasible. The combina- 286 

tion of using cells with functions and properties as in vivo and the inhalation like exposure 287 

to particles with the ALICE system makes this culture method interesting. In summary, 288 

the combination of organoid culture and subsequent ALI exposure to balance limitations 289 

of each individual model will be a useful approach to assess NM hazards.drawn. 290 

3. Future Direction 291 

Lung organoid technology has developed quickly in the last years and became a use- 292 

ful tool for modeling perpetuating lung diseases and hazards affecting the lung [72]. With 293 

reference to previous research, it is evident that a holistic in vitro model of the lung cannot 294 

be generated. Therefore, it is absolutely essential for a comprehensive, accurate and above 295 

all realistic test result to relate the model to the specific research question. It must be clar- 296 

ified from the beginning whether a 2D submerged or ALI model or a 3D cell culture model 297 

would be the right choice for the problem posed. For investigations, particularly with re- 298 

gard to epithelial responses, epithelial cell differentiation and epithelial recovery, organ- 299 

oids are a suitable instrument [72]. 300 

Thus, the choice of cells used should be thoroughly considered, especially concerning 301 

their respective properties such as forming lamellar bodies, producing surfactant or re- 302 

taining stem cell character. It becomes clear that there is not one overall cell line for a 303 

general experimental setup, for instance with regard to NM inhalation, where particle-cell 304 

interactions in a realistic environment are of particular importance. Therefore, using ad- 305 

vanced target cells that are able to create a liquid lining layer would improve the compa- 306 

rability of in vitro studies to in vivo findings and lead to extended outcomes (Table 1). 307 

Table 1. Comparison of cell lines and organoids. 308 

 Accessibility Feasibility 
Physiological 

Characteristics 

Transition 

into Complex 

Models 

Hazard assessment 

Cell Lines 

Commercially 

available, many 

passages 

Easy to handle Partially preserved limited 

Simple,  

only specific re-

search questions 
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 309 

One important step in the future is to increase the use of stem cell derived murine or 310 

even better human cells that adequately reflect the disease pattern for monitoring and 311 

understanding the underlying cell-cell interactions after NM exposure. For instance, the 312 

use of immortalized cell lines within an in vitro experiment has shown to be not compara- 313 

ble to a clinical picture. Isolated human primary cells can only be passaged for a short 314 

period of time and are therefore also not sufficiently suitable for a complex experimental 315 

set-up with necessary replicates. At this point, an adapted experimental setup with hiPSCs 316 

would be a desirable and new promising approach. Due to their close resemblance to the 317 

primary cells, but their durability and the possibility to be passaged over a long period, 318 

hiPSCs derived organoids should be the prospective choice for human in vitro experi- 319 

ments.  320 

In addition, an adequate murine in vitro 3D culture system has several advantages. 321 

It’s important to create setups reflecting and confirming the findings observed in previous 322 

in vivo studies. This enables us to elucidate cell-cell interactions and events happening on 323 

cellular, protein and gene level, while reducing the number of animals used in similar in 324 

vivo testing according to the 3R principles. Based on the AOP framework regarding NM 325 

toxicity, lung organoid culture could be a helpful NAM to obtain results representing in 326 

vivo conditions more accurately. With the emergence of new analytical techniques, profil- 327 

ing cellular responses at the single cell level, we realize that a tissue such as the lung con- 328 

sist of over 50 different cell types [72]. Yet these new approaches such as single cell tran- 329 

scriptomics, raise the awareness that very specific cellular niches might be required to 330 

sense injury as AOP initiating event, such as caused by inhaled particles, and distinct cell- 331 

cell communication network are then required to develop the pathological outcome. For 332 

the lungs, these cellular networks and outcomes are now increasingly described for SARS- 333 

CoV-2 infection and pulmonary fibrosis [73], but similar communications are likely re- 334 

quired for nanoparticle triggered AOPs. Reproducing the underlying key events and cell 335 

interactions at the in vitro level will be of great impact for future safety testing and organ- 336 

oids because of the maintained cellular plasticity and more natural cellular communica- 337 

tions hold great promise. 338 

In summary, we illustrate that already established experimental setups with new and 339 

adapted cells will lead to potentially improved or even new results and findings. Lung 340 

organoids include these particular cells, enabling us to perform hazard assessments for 341 

NM within suitable models. 342 
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hiPSC-derived 
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