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Abstract Objective: HPV-associated head and neck cancer is correlated with favorable prog-

nosis; however, its underlying biology is not fully understood. We propose an explainable con-

volutional neural network (CNN) classifier, DeepClassPathway, that predicts HPV-status and

allows patient-specific identification of molecular pathways driving classifier decisions.

Methods: The CNN was trained to classify HPV-status on transcriptome data from 264 (13%

HPV-positive) and tested on 85 (25% HPV-positive) head and neck squamous carcinoma pa-

tients after transformation into 2D-treemaps representing molecular pathways. Grad-CAM

saliency was used to quantify pathways contribution to individual CNN decisions. Model sta-

bility was assessed by shuffling pathways within 2D-images.

Results: The classification performance of the CNN-ensembles achieved ROC-AUC/PR-AUC
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of 0.96/0.90 for all treemap variants. Quantification of the averaged pathway saliency heat-

maps consistently identified KRAS, spermatogenesis, bile acid metabolism, and inflammation

signaling pathways as the four most informative for classifying HPV-positive patients and

MYC targets, epithelialemesenchymal transition, and protein secretion pathways for HPV-

negative patients.

Conclusion: We have developed and applied an explainable CNN classification approach to

transcriptome data from an oncology cohort with typical sample size that allows classification

while accounting for the importance of molecular pathways in individual-level decisions.

ª 2022 Elsevier Ltd. All rights reserved.
1. Introduction

One of the main applications of cancer omics is the

prediction of prognostically relevant disease sub-

entities. Many transcriptome-based classifiers predict-

ing clinical outcome or defining transcriptional subtypes

have been published in recent years, with most studies

using a regression-based machine learning methodology

[1]. Regression models come with the advantage of low
complexity, which can be beneficial, but limits biological

explainability. Deep learning with neural networks can

make use of the full complexity of a dataset and allows

reconstruction of the information used in decision

making with explainable artificial intelligence methods.

Strategies for using omics- and gene expression data

as input to neural networks range from using them

directly as gene expression vectors, representation vec-
tors resulting from encoding/decoding or graph con-

volutional neural networks after mapping gene

expressions to proteineprotein interaction (PPi) net-

works [2]. However, these strategies do not sufficiently

allow post hoc reconstruction of the biological infor-

mation important for neural network decision making.

One promising approach for overcoming this is to

organize the gene expression into 2D-images with a
structured representation of molecular pathways.

Lopez-Garcia et al. (2020) first applied this concept by

organizing gene expression into pathway 2D-treemaps

as input for convolutional neural network (CNNs)

predicting clinical outcome in a pan-cancer study [3].

The resulting model showed good performance, but

explainability was not investigated.

High-risk human papilloma virus (HPV)-associated
and HPV-negative head and neck squamous cell carci-

noma (HNSCC), primarily associated with smoking and

alcohol consumption, are regarded as distinct cancer

entities which are clearly characterized by different

clinical and molecular properties [4e7]. HPV-associated

tumors treated with (chemo)radiation therapy have a

better clinical prognosis and exhibit different transcrip-

tional profiles compared to HPV-negative tumors. As
comprehensive knowledge on the underlying biology of

HPV- associated and -negative HNSCC exists and
HPV-status typing is well established and robust we

considered transcriptome data from HPV-characterized

HNSCC as ideal real-world data for the development of
an explainable deep learning approach for the prediction

of disease.

We developed and present DeepClassPathway, a

workflow that transforms transcriptome profiles into

2D-images representing the gene expressions of 50 mo-

lecular pathways as an input for training and applica-

tion of a classification CNN-ensemble (see Fig. 1 for an

overview). Our concept was applied to a whole RNA-
seq dataset from an in-house HNSCC cohort and a

HNSCC cohort from The Cancer Genome Atlas

(TCGA) [1,4,8]. The contributions of each molecular

pathway to decision making were reconstructed by

querying the magnitude of grad-CAM saliency heat-

maps at the locations of pathways within the gene

expression 2D-image [9].

We describe a reproducible workflow for generating
explainable CNN classification models, which can be

generally applied to any transcriptome dataset with bi-

nary ground truth labels and demonstrate its predictive

capabilities and the plausibility of the reconstructed

biological information used in the model decision

process.
2. Methods

2.1. HNSCC patient cohorts

The TCGA (n Z 277) and the LMU-KKG (n Z 72,
Ludwig-Maximilians-University of Munich, Clinical

Cooperation Group ‘Personalized Radiotherapy in

Head and Neck Cancer’) HNSCC cohorts were

analyzed [1,4,8]. Clinical patient data from cBioPortal

and the TCGA GDC data portal [10,11] were used. The

LMU-KKG cohort included patients with HNSCC of

the hypopharynx, oropharynx, or oral cavity who had

undergone surgical resection followed by adjuvant
(chemo)radiotherapy treatment at the Department of

Radiation Oncology, LMU University Hospital, Ger-

many, between 2008 and 2013 [8]. This study on clinical

and biological data was approved by the local ethics



Table 1
Best set of CNN hyper-parameters found using the first treemap

variant. The same hyper-parameters were then used for the other two

variants.

Hyper-parameter Best performing value

Learning rate 2 � 10�4

Weight decay 1 � 10�5

Dropout rate 0.30

Batch size 32
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committee in Munich (EA 448-13 and 17-116) and was

carried out in accordance with the Declaration of Hel-

sinki. HPV status for TCGA specimens was from the

clinical patient data [4]. HPV status for LMU-KKG

specimens was determined as previously reported [12].

The clinical and histopathological data for TCGA

and LMU-KKG patients included in the training and

testing sets are presented in SI Table 1.

2.2. Transcriptome data preprocessing

A detailed description of transcriptome data pre-

processing can be found in the supplementary extended

methods section. In brief, the LMU RNA-seq data raw

sequencing reads were adapter-trimmed, aligned and

counted per gene. Raw counts of the TCGA cohorts

were downloaded from the GDC data portal. All read
counts were imported into DESeq2 before calculation of

variance stabilization transformed (vst) gene expres-

sions. The resulting vst-value matrix was used as input

for generating the 2D-treemap images.

2.3. Transformation of gene expressions into 2D-treemap

images

In a first step the gene expression vector (vst) of each
patient was assigned to the genes defining each of the 50

MsigDB pathways and the resulting data frame was

converted to 500 � 500 pixels treemaps. Each gene

within the rectangles gets a greyscale value according to

its gene expression value (high expression: dark, low

expression: light). The MsigDB Hallmark genes have

been selected because they contain only ground-truth

evaluated genes [13]. As all 50 Hallmark pathways are
contained, each 2D-image represents the molecular

biological makeup of each tumor. To evaluate the

robustness of our approach we generated three different

variants of treemaps, leading to three different permu-

tations of the pathway locations in the treemaps and

optimized the CNN models separately for each one of

the treemap variants.

2.4. Deep learning model

We implemented a 2D-CNN [14,15] with three con-

volutional blocks and 3 � 3 kernels for binary classifi-

cation of HPV status. A detailed description of the 2D-

CNN architecture can be found in the supplementary

extended methods section.

2.5. Model optimization and details

We trained the model using cross-validation on the

training dataset, which was built by randomly selecting

about 75% of the patients from the combined cohorts,

with the remainder used as testing set. The training

patients were subsequently split to perform 3-fold cross
validation. This procedure was repeated 10 times with

random initialization, thus 30 different CNN models

were trained and validated. The models were then

applied to the testing data and by averaging the pre-

dicted probabilities over the models, we obtained for

every patient a probability for HPV-positive and HPV-

negative. All models were trained using the categorical

cross entropy loss function and the Adam optimizer.
Weight decay was used additionally to dropout as reg-

ularization technique [16]. The hyper-parameters found

to perform best are shown in Table 1.
2.6. Pathway saliency mapping

To determine which pathways of the treemaps are

related to HPV status, we used the gradient-weighted

class activation mapping (grad-CAM) method [[9],18]. It

uses the gradients of a predicted class probability with

respect to the feature set of the last convolutional layer
to produce a coarse saliency map. The saliency maps are

subsequently up-sampled to the shape of the input

treemap, as can be seen in the bottom left part of Fig. 1.

From the up-sampled saliency map, the saliencies of

different tumor pathways were calculated by taking the

average of the saliency map within all given pathway

regions. Saliency maps were calculated separately for

patients with clinically proven HPV-positive status with
respect to the HPV-positive class and for patients with

clinically proven HPV-negative status with respect to the

HPV-negative class prediction. We computed pathway

saliency only for models that predicted the correct HPV-

status with scores higher than 0.70. Finally, the average

saliency per pathway obtained for correctly classified

patients was averaged over all models. Therefore, we

obtained a patient and model averaged saliency per
pathway and treemap variant (see Fig. 2).
2.7. Explainability

To visualize the relatedness of MsigDB Hallmark paths,

a network graph was drawn, where pathways were

represented as nodes and edges were weighted according

to the number of overlapping genes between two paths.

The Kamada Kawai layout was chosen so that the dis-

tance between nodes reflected their relatedness in terms

of overlapping genes.



Fig. 1. (color): Workflow of CNN-based prediction of disease subentities using treemap-transformed gene expression data. The upper panel describes the prediction of the HPV-status by a

CNN-model using gene expression data transformed into pathway treemaps, followed by performance assessment using ROC-AUC (bottom right) and explainability by grad-CAM

saliency mapping to the pathways (bottom left).

E
.
L
o
m
b
a
rd
o
et

a
l.
/
E
u
ro
p
ea
n
J
o
u
rn
a
l
o
f
C
a
n
cer

1
7
6
(
2
0
2
2
)
4
1e

4
9

4
4



Fig. 2. (color): Mean grad-CAM saliencies obtained from the classification of HPV-positive (top) and HPV-negative (bottom) testing set

patients. Shown are boxplots of grad-CAM saliencies averaged across the CNN model ensemble 1, sorted by median order from left to

right.
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2.8. Predictive power

The discriminative performance in predicting HPV-

status was evaluated with the receiver operating char-

acteristics area under the curve (ROC-AUC) [19], and
with the precision-recall area under the curve (PR-AUC)

for imbalanced datasets [20].

3. Results

3.1. RNA-seq data

After random splitting, the training set (n Z 264) con-

tained n Z 232 cases from the TCGA and n Z 32 cases

from the in-house LMU-KKG cohort and the test set
(n Z 85) consisted of n Z 45 patients from the TCGA

and n Z 40 from the in-house cohort (SI Table 1). In

total the dataset contained n Z 22,866 genes.

3.2. Explainability

Heatmaps of the grad-CAM saliencies for each patient

and model contained in model ensemble 1 can be found

in SI File 1 for the prediction of HPV-associated and in

SI File 2 for HPV-negative predictions. The top five

mean grad-CAM salient MsigDB Hallmark pathways
for the prediction of HPV-positive patients were sper-

matogenesis, KRAS-signaling (down), bile acid meta-

bolism, inflammatory response and xenobiotic

metabolism. In HPV-negative patients the most salient



Fig. 3. (color): Hallmark pathway gene overlap network with mapped mean grad-CAM saliencies of HPV-positive (upper panel) and

HPV-negative (lower panel) classified testing set patients. Network nodes are Hallmark pathways colored by the grad-CAM saliencies

averaged across CNN model ensemble 1 and patients. Edges indicate shared genes between two paths, and the edge length is weighted by

the number of shared genes. The closer the network nodes are to each other, the more genes they have in common. The top five salient

pathways are indicated by pink circles. (For interpretation of the references to color in this figure legend, the reader is referred to the Web

version of this article.)
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Table 2
Prediction performance of CNN models for different input treemap

variants.

CNN-Model ROC-AUC test PR-AUC test

Model ensemble 1 0.955 0.900

Model ensemble 2 0.959 0.904

Model ensemble 3 0.958 0.904
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pathways were MYC targets (v1), apical surface,

epithelial mesenchymal transition, MTORC1 signaling

and reactive oxygen species (Fig. 2). The top salient

pathways for both HPV-positive and negative for model

ensemble 1, were also found in the top 10 of model

ensemble 2 and 3 (SI File 3). The mean pathway sa-

liencies in HPV-negative patients showed higher ho-

mogeneity expressed by smaller variation across
pathways (SD: 0.017, range: 0.19e0.26) compared to

HPV-positive patients (SD: 0.056, range: 0.08e0.34).

The distributions of variances of the mean pathway

saliencies in both groups were significantly different

(Levene’s homogeneity test p-value < 10�7).

The relatedness of the 50 Hallmark pathways in

terms of genes shared between the underlying gene sets

is visualized in Fig. 3, with mean grad CAM saliency
values assigned to pathway nodes. The five major

signaling pathways in HPV-positive predictions, KRAS-

signaling (down), spermatogenesis, and inflammatory

response pathways form a direct connection subnet-

work, as do xenobiotic metabolism and bile acid meta-

bolism. In HPV-negative predictions from the top five

salient pathways MYC targets (v1), apical surface,

epithelial mesenchymal transition, MTORC1 form a
directly connected subnetwork with no direct connec-

tion to the reactive oxygen species pathway. In order to

identify grad-CAM saliency patterns the mean grad-

CAM saliencies per patient and pathway were sub-

jected to unsupervised hierarchical clustering, and four

main grad-CAM patterns were found (SI Fig. 2).

3.3. Predictive power

For the three treemap variants and the corresponding
ensembles of models, ROC-AUC was 95.5%, 95.9% and

95.8% and PR-AUC was 90.1%, 90.4% and 90.4%

(Table 2 and SI Fig. 1).

4. Discussion

In addition to assessing predictive power, which was

consistently good across model ensembles, we thor-

oughly explored the capabilities of our approach with

respect to explainability expressed by grad-CAM.
Overall, we observed higher homogeneity of pathway

mean grad-CAM saliencies in HPV-negative- compared

to HPV-positive patients. This goes along with a clear

ranking of mean pathway grad-CAM saliencies
observed in HPV-positive- but not in HPV-negative-

predicted patients. In contrast to HPV-negative

HNSCC, tumorigenesis of HPV-related tumors is

characterized by deregulated expression of the HPV

oncogenes E6 and E7, which inactivate RB and p53,

respectively, and lead to immortalization and cancer

progression through the accumulation of typical alter-

ations such as PIK3CA mutations or amplifications
[6,7]. The process of tumorigenesis in HPV-negative

tumors is not triggered by HPV viruses and is there-

fore rather stochastic, which on average should lead to a

more regular distribution of activated pathways as

observed in our data. The top five pathway grad-CAM

saliencies in HPV-associated predicted patients were

spermatogenesis, KRAS signaling, bile acid metabolism,

inflammatory response and xenobiotic metabolism.
Martinez et al. (2007) reported specific upregulation of

spermatogenesis genes in HPV-positive HNSCC [21].

Further, it is known that HPV-driven HNSCC regulate

the inflammatory response in the frame of immune

escape [22]. Only little knowledge is available on

disturbed KRAS-signaling in HNSCCdonly rare

occurrence of KRAS-mutation is reported [23]. Bile acid

metabolism and xenobiotic metabolism are not plausible
in the context of HNSCC. This can be explained by the

unspecific detection of their saliencies due to genes

present not only in these but also in other signaling.

Hence, improving the specificity of ground truth-based

pathway gene sets would be an important next step to-

wards improving their usability. The pathways MYC

targets (v1), apical surface, epithelial mesenchymal

transition, MTORC1 signaling and reactive oxygen
species with highest grad-CAM saliencies in the HPV-

negative predicted patients are consistent with pub-

lished findings on HNSCC and squamous cell carcino-

genesis [23e26] and therefore highlight the plausibility

of the approach. The pathways which showed highest

mean grad-CAM activations showed overall consistent

patterns in HPV-associated and HPV-negative patients

as identified by hierarchical clustering. Two out of three
HPV-associated patients misclassified as HPV-negative

by our models showed an overall low grad-CAM acti-

vation which is probably due to faulty transcriptomic

profiles. The third HPV-associated patient misclassified

as HPV-negative and the HPV-associated cases classi-

fied as HPV-negative showed grad-CAM patterns which

are typical for their predicted class, which could be due

to clinical misclassification.

5. Conclusion

In this study, we developed a deep learning model for

the prediction of HPV-status from transcriptome data in
head and neck cancer patients from two independent

cohorts which achieved very good and stable classifica-

tion performance. The advantage of the proposed CNN

model was identified in its biological explainability, as it
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provides the molecular pathway information that

determined the classification at an individual patient

level. In conclusion, we showed that CNNs can be

successfully applied to transcriptomic datasets with

sample sizes usual in translational clinical science to

predict a meaningful endpoint and obtain information

about the biological pathways driving the model’s pre-

diction. This provides the starting point for the further
development of explainable transcriptome-based CNN

prediction models.
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