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Abstract

While all the siRNA drugs on the market target the liver, the lungs offer a variety of currently 

undruggable targets which could potentially be treated with RNA therapeutics. Hence, local, 

pulmonary delivery of RNA nanoparticles could finally enable delivery beyond the liver. The 
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administration of RNA drugs via dry powder inhalers offers many advantages related to physical, 

chemical and microbial stability of RNA and nanosuspensions. The present study was therefore 

designed to test the feasibility of engineering spray dried lipid nanoparticle (LNP) powders. 

Spray drying was performed using 5% lactose solution (m/V), and the targets were set to obtain 

nanoparticle sizes after redispersion of spray-dried powders around 150 nm, a residual moisture 

level below 5%, and RNA loss below 15% at maintained RNA bioactivity. The LNPs consisted 

of an ionizable cationic lipid which is a sulfur-containing analog of DLin-MC3-DMA, a helper 

lipid, cholesterol, and PEG-DMG encapsulating siRNA. Prior to the spray drying, the latter 

process was simulated with a novel dual emission fluorescence spectroscopy method to preselect 

the highest possible drying temperature and excipient solution maintaining LNP integrity and 

stability. Through characterization of physicochemical and aerodynamic properties of the spray 

dried powders, administration criteria for delivery to the lower respiratory tract were fulfilled. 

Spray dried LNPs penetrated the lung mucus layer and maintained bioactivity for >90% protein 

downregulation with a confirmed safety profile in a lung adenocarcinoma cell line. Additionally, 

the spray dried LNPs successfully achieved up to 50% gene silencing of the house keeping gene 

GAPDH in ex vivo human precision-cut lung slices at without increasing cytokine levels. This 

study verifies the successful spray drying procedure of LNP-siRNA systems maintaining their 

integrity and mediating strong gene silencing efficiency on mRNA and protein levels both in vitro 
and ex vivo. The successful spray drying procedure of LNP-siRNA formulations in 5% lactose 

solution creates a novel siRNA-based therapy option to target respiratory diseases such as lung 

cancer, asthma, COPD, cystic fibrosis and viral infections.

Abstract
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Graphical Abstract. 

Keywords

lipid nanoparticles; LNP; Onpattro®; RNA therapeutics; siRNA delivery; spray drying; pulmonary 
delivery; respiratory diseases; human precision-cut lung slices; formulation screening

1 Introduction

The lungs are the most vulnerable internal organ to infection and injury from the 

external environment because of its constant exposure to particles, chemicals and infectious 

organisms in ambient air. Respiratory diseases impose an immense worldwide health burden. 
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Altogether, more than 1 billion people suffer from either acute or chronic respiratory 

conditions. [1] Chronic respiratory diseases such as asthma, chronic obstructive pulmonary 

disorder (COPD), cystic fibrosis and lung cancer made up more than 545 million cases 

in 2017. Noteworthy, this number increased by almost 40% from 1990 to 2017. [2] 

Since the start of the Covid-19 pandemic in 2019, an increased number of pulmonary 

dysfunctions on top of all other pulmonary diseases was noted [3], followed by an 

inevitable increasing demand for novel pulmonary therapies being locally applied to the 

site of action. RNA therapeutics are promising for the treatment of respiratory diseases, 

and nucleic acid-based therapy have been studied for COPD or asthma therapies. [4–7] In 

comparison to conventional therapeutic approaches using proteins, peptides, small molecules 

or monoclonal antibodies, RNA therapeutics provide high selectivity, potency and the 

possibility of personalized therapy. [8, 9] Small interfering RNA (siRNA) as one class of 

RNA therapeutics inhibits gene expression to improve or cure disease symptoms, underlying 

pathologic mechanisms, and viral infections. [10] However, siRNAs are negatively charged 

macromolecules that do not bind to the cell surface and do not permeate through the cell 

membrane. Furthermore, challenges such as nuclease degradation, off-target gene silencing 

and immune-stimulating effects need to be addressed and resolved. [11] To overcome 

these limitations, siRNAs are encapsulated in a vast variety of materials including lipids, 

polymers, inorganic materials, proteins and combinations of the above. Lipid-based carrier 

systems mimicking the composition of pulmonary surfactant or the cell membrane enhance 

the ability to overcome the lungs’ biological barriers and reduce toxicity and antigenicity. 

[12, 13]

One of the biggest breakthroughs of siRNA therapeutics was the approval of the first 

siRNA-LNP drug, Onpattro® (Patisiran) by the FDA (Food and Drug Association, USA) 

and EMA (European Medicines Agency). Onpattro® consists of lipid nanoparticles (LNPs) 

encapsulating siRNA in its lipid matrix to treat hereditary amyloidogenic transthyretin 

(TTR) amyloidosis. [14, 15] The target is the liver after intravenous administration. 

Recently, LNP technology has also enabled the rapid development and approval of mRNA-

based vaccines against COVID-19. [16] These types of LNPs consist of phospholipids, 

cholesterol, polyethylene glycol-conjugated lipids, and ionizable helper lipids. Ionizable 

helper lipids bind to anionic RNA to enable efficient encapsulation and promote endosomal 

escape following internalization into the target cell. [17] The major advantage of LNP 

technology is its adaptability to different siRNA payloads as its physicochemical properties 

remain similar. [18] Therefore, LNP formulations can potentially be pursued to deliver 

therapeutic cargoes via different administrative routes for the treatment of a large variety of 

diseases.

The lungs are one of the most complex organs and offers advantages of local, over systemic, 

delivery such as noninvasive access and a large alveolar surface area. [19] Furthermore, the 

administered dose can be reduced for local effects compared to systemic delivery, resulting 

in decreased side effects. Regarding RNA delivery to the lungs, the absence of serum 

proteins on the air-side keeps the nuclease activity relatively low. [20] Therefore, drugs can 

most effectively be delivered by inhalation and are immediately available to the lungs. [21, 

22] In order to deliver drugs or nanoparticles to the lungs, incorporation into microparticles 

with aerodynamic diameters between 1 and 5 μm are required. The matrices of these 
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particles need to consist of excipients, such as FDA-approved lactose [23] or mannitol [24], 

which readily dissolve upon contact with the lung fluid to release their cargo. [25] During 

the spray drying process, two main stress factors applied to the product are heat and shear 

forces which may tear the nanoparticle structure and result in degradation of the cargo. To 

avoid a negative impact on the quality of nanoparticles, appropriate sugar excipients need 

to be selected and the process parameters need to be optimized. Another important aspect 

that needs to be considered is the restricted outlet temperature range for thermolabile drugs. 

[26] siRNAs are prone to degrade at about 90 °C, and Onpattro-like LNPs have shown phase 

transition temperatures of 38 °C with a gradual phase transition.[27] Furthermore, during 

the development of novel dosage forms for lung administration, lung deposition, retention, 

dissolution, metabolism and toxicity of spray dried microparticles need to be tested. [28]

The aim of this study was to transfer LNP formulations based on an updated Onpattro® 

composition but consisting of a neutral, positively or negatively charged helper lipid (nLNP, 

(+)LNP and (-)LNP) into a successful spray dried powder at maintained physicochemical 

properties and siRNA integrity for pulmonary application. The target range was set to 

obtain sizes after redispersion of around 150 nm, a residual moisture level below 5%, and 

RNA loss below 15% at maintained RNA bioactivity. A novel dual emission fluorescence 

spectroscopy method was used to simulate the stability of LNPs in different excipient 

solutions (PBS, lactose, mannitol and trehalose) at different temperatures. This prescreening 

to find the best combination of LNPs, excipients and temperatures for the spray drying 

process, supersedes the necessity for a trial-and-error approach. Quantification of siRNA 

and lipid concentration of LNPs after redispersion of spray dried powders underlines a 

quality criterion which should always be carried out to avoid performance loss or increased 

material costs. The particles’ performance and siRNA integrity were tested in vitro in lung 

cancer cells expressing enhanced green fluorescent protein (eGFP), and ex vivo in human 

precision-cut lung slices (hPCLS) targeting the house keeping gene GAPDH. The findings 

of this study provide unique insights into the possibility of spray drying siRNA embedded 

LNPs and maintaining their bioactivity while keeping optimal properties for pulmonary 

delivery.

2 Materials & Methods

2.1 Materials

Dicer substrate double-stranded siRNA targeting green fluorescent protein (DsiRNA EGFP, 

25/27) (siGFP), dicer substrate double-stranded siRNA targeting the house-keeping gene 

GAPDH (DsiRNA GAPDH) (siGAPDH) and scrambled, non-specific control (siNC) 

were purchased from IDT (Integrated DNA Technologies, Inc., Leuven, Belgium) (Table 

S1). [29–31] Cholesterol, tris-EDTA buffer solution 100x (T9285), RPMI-1640 medium 

(R8758), fetal bovine serum (FBS) (F9665), penicillin-streptomycin (P/S) (P4333), G418 

disulfate salt solution (G8168), Dulbecco’s phosphate buffered saline (D-PBS) (D8537), 

isopropanol for molecular biology, methylthiazolyldiphenyl-tetrazoliumbromid (MTT), D-

mannitol, HEPES buffer 1M, Triton X-100, MISSION® siRNA flourescent universal 

negative control #1, cyanine 4 (SIC005) and cholesterol quantitation kit were purchased 

from Sigma-Aldrich, a subsidiary of Merck KGaA (Darmstadt, Germany). PEG-DMG, 
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DSPC, DSPG and DOTAP were bought from Avanti Polar Lipids, Alabaster, USA. The 

ionizable cationic lipid is a sulfur-containing analog of DLin-MC3-DMA (pKa 6.3-6.6) 

defined by the structure shown in Figure S1. [32] InhaLac®230, lactose monohydrate for 

dry powder inhalers, was purchased from Meggle Group (Wasserburg, Germany). Quant-

it™ RiboGreen DNA reagent, chloroform as molecular biology reagent, black and white 

96-well plates (10307451), TRIzol reagent, Power SYBR™ green PCR master mix and 

Aquastar® water standard oven 1% were bought from Thermo Fisher Scientific (Schwerte, 

Germany). Pumpsil® tubings were bought from Watson-Marlow GmbH (Rommerskirchen, 

Germany) and had an inner diameter and a thickness of 1.6 mm. Lysing matrix D 2.0 

mL tubes and D(+)-trehalose were purchased from VWR International GmbH (Ismaning, 

Germany). White 96 well PCR plate and 0.2 mL PCR tubes were purchased from Biozym 

Scientific GmbH (Hessisch Oldendorf, Germany). AL-crucibles at 40 μL (ME-26763) for 

DSC measurements were bought from Mettler Toledo (Fürstenfeldbruck, Germany). High 

sensitivity capillaries (PR-C006) produced by NanoTemper Technologies GmbH were used 

for all formulation screening measurements.

2.2 Preparation of lipid nanoparticles (LNPs) entrapping siRNA

LNP-siRNA formulations had a lipid composition based on the clinically approved 

Onpattro® formulation and were prepared as previously described [14, 15, 33]. 

Briefly, lipid components (ionizable cationic lipid, helper lipid, cholesterol, and PEG-

DMG) at molar ratios of 50:10:38.5:1.5 mol% were dissolved in ethanol to a 

concentration of 10 mM total lipid. Different helper lipids, i.e. 1,2-distearoyl-sn-glycero-3-

phosphocholine (DSPC), 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), and 1,2-

distearoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DSPG), were used to enable formation 

of LNP-siRNA systems with near neutral [nLNP], positive [(+)LNP], and negative [(-)LNP] 

zeta potential, respectively. Purified siRNA (siNC, siGFP and siGAPDH) was dissolved in 

25 mM sodium acetate pH 4 buffer to achieve an N/P ratio of 3, which is the charge ratio 

between the ionizable cationic head group on the lipid to the anionic phosphate in the RNA 

backbone. The two solutions were mixed through a T-junction mixer at a total flow rate of 

20 mL/min, and a flow rate ratio of 3:1 v/v (aqueous:organic phase). The resulting LNP 

suspension was subsequently dialyzed overnight against PBS pH 7.4, sterile filtered (0.2 

μm), and concentrated to 1.0 mg/mL siRNA.

2.3 siRNA loading of preformed LNPs for thermal stability measurements

10 nmol MISSION® siRNA Fluorescent Universal Negative Control #1, Cyanine 5 (Cy5-

siRNA) was diluted to 1000 μg / μL in 10 mM HEPES buffer pH 7.4 and used as a stock in 

all experiments. To load preformed LNPs, Cy5-siRNA was diluted 1:10 in 25 mM sodium 

acetate buffer pH 4. Afterwards, 1.2 μL LNP, 0.7 μL 100 μg / mL Cy5-siRNA and 1.4 μL 

25 mM sodium acetate buffer pH 4 were gently mixed and incubated at room temperature 

in the dark for 5 min. LNPs were then diluted in 97 μL final formulation buffer (PBS, 5 

% mannitol, 5 % trehalose or 5 % lactose) and incubated for additional 30 min at room 

temperature in the dark before being further analyzed.
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2.4 Thermal stability of LNPs

A novel and highly sensitive method was used to characterize environmental changes 

experienced by Cy5- labelled siRNA within different LNPs in regards to their excipient 

buffer and temperature. The system used was a prototype instrument developed by 

NanoTemper Technologies GmbH to monitor a dedicated dual-emission optical system. 

Detection channels were used at LED excitation of 570 nm and emission detection with two 

filters simultaneously, one at 640 +/- 20 nm and one at 697 +/- 29 nm.

2.4.1 Fluorescence spectral detection of LNP spectral shift—Experiments were 

performed in a JASCO FP-8300 Fluorescence Spectrometer with a PCT-818 Peltier 

Temperature Controller controlled by the Spectra Manager 2.0 (JASCO Deutschland GmbH, 

Pfungstadt, Germany). For each sample, 100 μL LNP suspension was loaded into a quartz 

microcuvette and fluorescence spectra was recorded at an excitation wavelength of 590 ± 

20 nm and the fluorescence emission was recorded at a wavelength between 620 – 725 

nm, with a 10 nm bandgap, 1 nm step, 0.2 s integration time, using high sensitivity, with 

4 accumulations per scan. The emission spectra were recorded as the temperature ramped 

from 20°C to 90 °C, at a ramp rate of 2 °C / min, with scans taken every 10 °C.

2.4.2 Fluorescence based temperature stability scans—Thermal stability 

experiments were performed in coated high sensitivity capillaries (PR-C006) on a prototype 

instrument equipped with dual emission optics (NanoTemper Technologies GmbH, Munich, 

Germany). Each data point requires 10 μL of sample. For each ratiometric reading, the 

fluorescence was recorded simultaneously at 650 nm and 670 nm after excitation with 

an amber LED. For fluorescence stability experiments, data were recorded in a modified 

version of Pr.Control. The excitation power was set to 100 % and scans were performed 

from 15°C to 110 °C, with a 1 °C / min ramp rate. The temperature stressing experiments 

were performed in a modified version of Pr.TimeControl, with the temperatures as indicated 

in the figures, and a temperature ramp rate of 7 °C / min.

2.5 Spray drying of LNPs

For production of spray dried LNPs, a B-290 spray drying tower (Büchi Labortechnik, 

Flawil, Schweiz) was used. Pumpsil Tubing 1.6 mm x 1.6 mm (Watson Marlow Tubing, 

Falmouth, UK) with a pump rate of 1.4 mL/min was chosen. Nitrogen functioned as 

atomizing gas, whereas drying gas was air. In order to avoid dust and other airborne 

particles, both nitrogen gas and air were filtered through a 0.2 μm PTFE membrane 

pore. Pressurized air was used to ensure sufficient heating of the air supply and to avoid 

overheating of the Büchi’s vacuum pump. The aspirator was set to 70% and vacuum ranged 

from -40 mbar to -35 mbar. The airflow was set to 40 mm corresponding to 473 NL/h. 

The inlet-temperatures (T-In) were set to 100 °C and 120 °C resulting in measured outlet-

temperatures (T-Out) of accordingly 62 °C and 72 °C ± 2 °C, respectively. Each individual 

stock solution of LNP-siRNA formulations was diluted to a concentration of 30 μg siRNA in 

5000 μL of a specified solvent (highly purified water (HPW) with lactose (InhaLac) at 5% 

w/V, sterile filtered). This resulted in an siRNA to sugar concentration of 0.12 μg siRNA/mg 

lactose.
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2.6 Loss detection after spray drying of LNPs

2.6.1 siRNA quantification—The Quant-IT™ Ribogreen assay was adapted as 

described in Walsh et al. [34] Briefly, LNPs were either freshly prepared or redispersed 

as described above. For each reading, 50 μL of samples was transferred in a black 96-well 

plate and filled to 100 μL with 2% Triton X-100 solution. A siRNA standard curve was 

pipetted at 25.0, 10.0, 5.0 and 2.5 μL of a stock solution (20 μg/mL) resulting in final 

concentration of 2.5, 1, 0.5 and 0.25 μg/mL, respectively. The plate was incubated at 37°C 

for 30 min in a shaking incubator. Upon the addition of the Ribogreen reagent at a 1:100 

dilution, the fluorescence intensities were measured at an excitation wavelength of 480 nm 

and an emission wavelength of 525 nm. The siRNA loss was quantified by normalizing the 

siRNA amount of spray dried samples to the siRNA amount of fresh LNP samples.

2.6.2 Cholesterol quantification—The cholesterol quantification method was 

performed following the Cholesterol Quantitation Kit product information sheet (Sigma-

Aldrich). To construct the standard curve, 20 μL of a 2 μg/μL cholesterol standard solution 

was diluted with 140 μL of the cholesterol assay buffer resulting in a 0.25 μg/μL stock 

solution. Amounts of 0, 4, 8, 12, 16 and 20 μL were pipetted into a clear 96 well plate, and 

each well was replenished to 50 μL by addition of cholesterol assay buffer. To measure the 

cholesterol content of the test samples, 50 μL per sample were transferred into the well plate. 

Since the cholesterol amount was unknown, each individual sample was diluted several 

times and replenished to 50 μL with cholesterol assay buffer. Subsequently, the Reaction 

Mix at 50 μL/well was prepared and added to each well. The plate was protected from light 

and placed in a shaking incubator for 60 min at 37°C. The cholesterol concentration was 

determined by measuring the absorbance at 570 nm.

2.7 Hydrodynamic diameter and zeta (ζ) potential measurements of LNPs

Hydrodynamic diameters and polydispersity indices (PDI) were measured in disposable 

cuvettes (Brand GmbH, Wertheim, Germany) using the Zetasizer Nano ZS instrument 

(Malvern Instruments Inc., Malvern, U.K.). To measure the size and PDI of spray dried 

formulations after redispersal, approximately 8.33 mg of spray dried LNP powder was 

dissolved in 100 μL HPW. This equates to 1 μg of siRNA (10 μg siRNA/mL). For 

comparison, fresh LNPs (c = 1 mg/mL) were diluted in 5% lactose to reach a concentration 

of 10 μg siRNA/mL. All samples were detected at a backscatter angle of 173°. Results 

are presented as average size (nm) ± SD. Zeta potentials were measured by Laser Doppler 

Anemometry (LDA) using a Zeta Cell (Zetasizer Nano series, Malvern, UK) containing a 

6.5X dilution of the same 100 μL sample of LNP suspension. For each LNP formulation, 

measurements were presented as an average charge (mV) ± SD.

2.8 Residual water content – Karl Fischer titration

The residual water content for spray dried LNPs in 5% lactose (w/V) was determined by 

weighing 10 mg powder of each LNP sample into 2R vials. A 1% water standard was 

equally prepared with approximately 40-50 mg powder. Empty vials served as blank values. 

For coulometric measurements, an Aqua 40.00 Karl Fischer Autosampler-Titrator with 

corresponding software from Analytik Jena AG (Jena, Germany) was used. The oven was 
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heated to 100°C, and the final drift was set to less than 10.0 μg/min. Blank measurements 

were run and automatically subtracted from the standards and samples. Residual moisture 

measurements were considered valid if the 1% water standard measurement resulted in a 

value between 0.9 and 1.1%. Results are presented as mean residual moisture (%) ± SD.

2.9 Differential Scanning Calorimetry (DSC)

For calorimetric measurements 5 to 10 mg of spray dried LNPs were weighed into AL-

crucibles at 40 μL volume and closed. The reference was an empty crucible. The reference 

and samples were inserted into the oven at a set point of 25 °C. Measurements were taken 

with a DSC 214 Polyma (Erich NETZSCH GmbH & Co. Holding KG, Selb, Germany) 

starting from 0°C with a ramp of 8 °C/min until temperature reached 200 °C for all spray 

dried LNP formulations in 5% lactose (w/V) and spray dried 5% lactose (w/V). Data was 

analyzed using the Proteus Analysis software.

2.10 Scanning Electron Microscopy (SEM)

Scanning electron microscopy (SEM) is used to determine the geometric diameter and 

morphology of spray dried powders. A small amount of spray dried LNPs was placed on 

top of a stub covered with double-sided carbon tape. The stub was then coated with carbon 

under vacuum for 40 s. The microparticles were examined imaged using a FEI Helios G3 

UC (Thermo Fisher Scientific, Schwerte, Germany).

2.11 Aerodynamic properties of spray dried LNPs

For the analysis of the aerodynamic properties of spray dried powders, procedures specified 

in the monograph 2.9.18, apparatus E, of the European Pharmacopoeia was performed 

using a next generation impactor (NGI) from Copley Scientific (Nottingham, UK). The 

measurement procedure was adapted as previously described. [7] Spray dried LNP powder 

was transferred into 2-3 hydroxypropylmethylcellulose capsules. Each capsule was loaded 

into a Handihaler® (Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany) 

and hole-punched. Every capsule was discharged twice with a 5 s interval between the 

two actuations. Following the application of the Handihaler®, the same procedure as in 

2.6.1. was performed. Every stage of the NGI was washed with 2% Triton-X buffer. The 

induction port (IP) was washed with 5 mL and the pre-separator (PS) was pre-filled with 

15 mL 2% Triton-X buffer. The small cups were filled with 2 mL 2% Triton-X buffer, 

whereas the greater cups were filled with 4 mL 2% Triton-X buffer solution. All parts 

were cautiously shaken and placed on a horizontal shaker for 20 min. A standard curve of 

fresh siRNA was prepared and topped up to 100 μL with 2% Triton-X buffer. As a control, 

fresh LNPs, at siRNA concentration of 10 μg/mL, similar to the redispersed samples, were 

prepared in 2% Triton-X buffer. Three aliquots of 100 μL from each stage were used for 

further analysis. All samples were pipetted to a black 96-well plate and put into a shaking 

incubator for 60 min at 37 °C. Upon the addition of Ribogreen reagent at a 1:100 dilution, 

the fluorescence intensities were measured at an excitation wavelength of 480 nm and 

an emission wavelength of 525 nm. The mass median aerodynamic diameter (MMAD), 

geometric standard deviation (GSD), fine particle dose (FPD), fine particle fraction (FPF) 

and powder recovery (%) were calculated as described in the European Pharmacopoeia 

considering fine particles at sizes below 5 μm MMAD.
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2.12 Mucus penetration assay of spray dried LNPs

The mucus penetration of fresh versus spray dried LNPs was adapted from Casciaro et 

al. [35] Briefly, 75 μL of artificial mucus was transferred onto 8 μm pore polycarbonate 

membrane Transwell® inserts submerged in 300 μL of acceptor medium in a 24-well plate. 

Afterwards, 5 mg of spray dried LNPs was redispersed in HPW (0.6 μg siRNA / 100 μL) and 

labelled with 1 μL 1,1-dioctadecyl-3,3,3,3-tetramethylindodicarbocyanine solution (DiD) 

solution, acting as a fluorescence lipid marker. The same procedure was performed to assess 

diffusion of fresh LNPs at the same concentration. Hence, 100 μL of samples was deposited 

on artificial mucus. Non-deposited samples were stored for 24 h under light exclusion for 

further fluorimetric analysis as a comparable value. Simulated interstitial lung fluid (SILF) 

was used as acceptor media for mucus diffusion experiments and placed on the bottom of 

the well, respectively. SILF was carefully prepared according to the instructions provided by 

Moss et al. [36] At scheduled time intervals (0.5, 1, 2, 4 and 24 h), the acceptor medium 

was collected, pipetted to a 96 well plate and quantified by spectrofluorimetric analysis 

at excitation wavelength of 520 nm and an emission wavelength of 635 nm. Values were 

calculated by normalizing each mucus deposited sample value to the non-deposited and 

stored DiD-LNPs. The results are reported as percentage (%) of total LNPs permeated over 

time.

2.13 In vitro characterization of spray dried LNPs in a lung cell line

2.13.1 Cell Culture—The human non-small cell lung carcinoma cell line H1299 (ATCC 

CRL-5803) stably expressing enhanced green fluorescence protein (eGFP) was cultured in 

RPMI 1640 medium supplemented with 10% FBS, 1% P/S and 0.4% G418. Cells were 

passaged every 3 days with 0.05% v/v trypsin and subcultured in 75 cm2 flasks. H1299-GFP 

cells were kept in a humidified atmosphere at 37 °C with 5% CO2.

2.13.2 In vitro GFP protein downregulation—To evaluate the in vitro gene silencing 

efficiency, H1299-GFP cells were seeded in a 24-well plate at a density of 2.5x104 cells 

per well in 500 μL medium at 37 °C and 5% CO2. Fresh LNPs of different helper 

lipids were prepared at concentrations of 1 μg/mL and 10 μg/mL in 5% lactose (w/V). 

Comparably, 0.833 mg and 8.333 mg of spray dried LNPs encapsulating siNC or siGFP, 

were resuspended in 100 μL HPW resulting in equal concentrations as aforementioned. 

The day after, 100 μL of each sample was added to 400 μL of fresh culture medium 

and incubated for 24 h at 37 °C and 5% CO2. The medium was then discarded and 

replaced with 500 μL of fresh medium, and the plates were further incubated for another 

24h. At the end of the incubation time, cells were washed with PBS, trypsinized and 

collected. After centrifugation at 400 rcf for 5 min, the supernatant was discarded and 

the cell pellet was washed two times in PBS before being resuspended in PBS with 2 

mM EDTA. Samples were analyzed by flow cytometry (Attune® NxT, Thermo Fischer 

Scientific, Waltham, Massachusetts, USA), and the median fluorescence intensity (MFI) of 

GFP protein expression was measured by using a 488 nm excitation laser and the emitted 

light passing through a 530/30 nm band pass emission filter set (BL-1H) was detected. All 

LNPs samples were gated by morphology for a minimum of 10,000 viable cells. Results are 

displayed as mean MFI values (%) ± SD.
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2.13.3 In vitro cytotoxicity of spray dried LNPs—Cell viability after transfection 

with spray dried LNPs (neutral, positive and negative LNPs) was tested via an MTT Assay 

as described previously.[37, 38] Shortly, 5,000 H1299-GFP cells per well were seeded in 

100 μL medium onto a transparent 96-well plate (BioLite 96 well multidish, Thermo Fisher 

Scientific, Rochester, New York, USA). The samples were prepared by redispersing 0.833 

mg (1 μg siRNA) and 8.33 mg (10 μg siRNA) of spray dried powders in 100 μL of HPW. 

After 24 h, 90 μL of prewarmed medium was added to each well and supplemented with 10 

μL of sample, respectively. Thus, siRNA concentrations of 1.0 and 10.0 μg/mL were added 

for each LNP sample. The plate was incubated for 24 h at 37 °C and 5% CO2. As a full 

viability control, cells were incubated in 100 μL of liquid consisting of 10 μL sterile 5% 

lactose solution (m/V) and 90 μL medium. After 24 h, the media was aspirated and 200 μL 

of MTT containing medium (0.5 mg/ml in serum-free RPMI-1640 medium) was added to 

each well. Cells were incubated for another 3 h at 37 °C and 5% CO2. Subsequently, the cell 

culture medium was completely removed, and insoluble purple formazan crystals, converted 

from water soluble MTT by metabolically active mitochondria, were dissolved in 200 μl 

DMSO. [39] The plate was set on a horizontal shaker for 20 min for all crystals to dissolve. 

The absorbance was measured at 570 nm, corrected with background values measured at 

680 nm, using a microplate reader (TECAN Spark, TECAN, Maennedorf, Switzerland). The 

data are shown as mean ± SD as percentage of viable cells in comparison to untreated cells 

representing 100% viability.

2.14 Ex vivo gene silencing of spray dried LNPS in human precision-cut lung slices 
(hPCLS)

2.14.1 Human tissue, ethics statement and hPCLS—Human tissue was obtained 

from the CPC-M bioArchive at the Comprehensive Pneumology Center (CPC), from the 

University Hospital Großhadern of the Ludwig-Maximilian University (Munich, Germany) 

and from the Asklepios Biobank of Lung Diseases (Gauting Germany). Participants 

provided written informed consent to participate in this study, in accordance with approval 

by the local ethics committee of the Ludwig-Maximilians-Universität Munich, Germany 

(Project 19-630). Precision-cut lung slices (PCLS) were prepared as described before. [40–

42] Briefly, PCLS were prepared from tumor-free peri-tumor tissue. The lung tissue was 

inflated with 3% agarose solution and solidified at 4°C. Afterwards, 500 μm-thick slices 

were cut from tissue blocks using a vibration microtome (HyraxV50) (Karl Zeiss AG, 

Oberkochen, Germany). PCLS were cultured in DMEM F-12 medium supplemented with 

0.1% FBS. Prior to the experiments, PCLS were cut by means of a biopsy puncher into 4 

mm-diameter PCLS punches.

2.14.2 LNP transfection, nucleic acid extraction and qPCR—For the gene 

silencing of hPCLS cells, LNPs loaded with siGAPDH and siGFP were spray dried in 

5% lactose. The spray dried powder was redispersed to reach a concentration of 10 μg 

siRNA/mL. 100 μL of each sample was added to a well consisting of three PCLS punches 

in 500 μL medium, respectively. The plate was incubated for 24 h at 37 °C and 5% 

CO2. Once the incubation time was completed, the RNA extraction was performed by 

homogenizing the hPCLS punches in 1 mL TRIzol using a Fast Prep 24 Tissue Lyzer 

(M.P. Biomedicals, Irvine, California, USA). The samples were incubated for 5 min at room 
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temperature. Subsequently, 0.2 mL of chloroform was added, and each tube was vigorously 

mixed, followed by another incubation at room temperature for 3 min. Afterwards, samples 

were centrifuged at 11000 rcf for 15 min at 4 °C. The aqueous phase containing RNA 

was transferred into a new tube. Next, 500 μL of isopropanol was added and incubated 

for 10 min at room temperature before another centrifugation at 11000 rcf for 10 min 

at 4 °C was run. The supernatant was discarded, and the pellet was washed with 1 mL 

of ice-cold 75% ethanol followed by centrifugation at 7500 rcf for 5 min at 4°C. The 

supernatant was discarded and the RNA pellet was resuspended in 30 μL of RNase free 

water. The RNA concentration and purity were quantified by RT-qPCR. In brief, cDNA was 

synthesized from total RNA using high-capacity cDNA synthesis kit (Applied Biosystems, 

Waltham, Massachusetts, USA). The obtained cDNA was then diluted 1:10, and a qPCR 

was performed using the SYBR™ Green PCR Master Mix (Thermo Fischer Scientific, 

Waltham, Massachusetts, USA) with primers for human GAPDH and β-actin (Qiagen, 

Hilden, Germany) for normalization. Cycle thresholds were acquired by auto setting within 

qPCRsoft software (Analytic Jena AG, Jena, Germany). Three individual batches of spray 

dried LNPs (siGAPDH and siGFP) were tested on three individual donor hPCLS samples. 

The GAPDH silencing results are reported in the mean percentages (%) normalized to siGFP 

values ± SEM.

2.14.3 Cytokine secretion from hPCLS—To assess the toxicity of the spray 

dried LNPs toward human lung tissue, the levels of 12 pro-inflammatory cytokines in 

the supernatant of the treated hPCLS was determined using the human LEGENDplex 

Inflammation Panel 1 kit (BioLegend, San Diego, USA) according to the manufacturer’s 

protocol. Briefly, 25 μL samples of supernatant were diluted with the supplied assay 

buffer and incubated with the supplied beads for 2h. After washing the beads, they were 

incubated for 1 h with the detection antibodies, and the fluorophore was added. After further 

incubation, the beads were washed and diluted in PBS/EDTA buffer for analysis on an 

Attune® NxT flow cytometer. Cytokine levels were determined relative to a standard curve 

obtained with a standard supplied by the manufacturer.

2.15 Statistics, data analysis and presentation

All experiments were run in independent triplicates. Experimental data was analyzed for 

statistical significance using the One Way or Two Way ANOVA repeated measurements 

on the GraphPad Prism 5 software with either Bonferroni or Dunnetts post-hoc test with 

p>0.05 considered not significant (ns),, * p<0.05, **p<0.01, ***p<0.001. Data analysis was 

performed using Python (3.8.8) using the ipython (v7.29.0), matplotlib (v3.5.0), numpy (v 

1.20.3), seaborn (v 0.11.2) and GraphPad Prism 5 data science packages. Analysis routines 

and algorithms were specifically written to analyze dual emission fluorescence traces.

3 Results and Discussion

3.1 LNP stability using dual emission fluorescence spectroscopy

Lipid based nanoparticles are most commonly spray dried at comparably low temperatures 

because the lipid component acts as a limiting factor showing phase transition temperatures 

at about 55°C for the used helper lipids. [43] In comparison, when spray drying polymer-
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based nanoparticles, the polymers can resist much higher temperatures having melting points 

over 100°C. In this case, the cargo might face degradation or melting before the polymer 

does. [7] Therefore, spray drying lipids requires a maximum temperature which does not 

melt the lipid layers while still reducing the moisture levels to a sufficient level in the 

produced powders, as this is important for avoiding agglomeration and microbial growth. 

However, the residual moisture level depends on the excipient used and the temperature 

applied. It has been shown that spray dried powders based on crystalline excipients such as 

mannitol can be obtained with very low residual moisture level below 0.5%. In comparison, 

amorphous sugars such as lactose and trehalose ensue higher residual moisture levels of 3 – 

5% after spray drying. [44–46] Here, we used a new dual-emission epifluorescence setup to 

screen all LNP formulations at different temperatures and in different excipient solutions 

to avoid a trial-and-error approach of selecting spray drying temperatures and finding 

suitable excipient solutions (Figure S2). The fluorescence-based stability measurements 

were found to be highly sensitive when characterizing environmental changes experienced 

by fluorophore-labelled siRNA within LNP formulations.

Since the Cyanine 5 (Cy5) dye is very sensitive to environmental changes, its fluorescence 

emission is red shifted with a 6 nm peak shift from 660 to 666 nm upon encapsulation within 

a lipid nanoparticle (LNP) (Figure S3-S5). Instead of measuring the full emission spectrum, 

the fluorescence is recorded simultaneously only at two pre-selected wavelengths, 670 

nm and 650 nm, with photon-multiplier-tubes (PMTs), which greatly enhance sensitivity. 

The small hypsochromic (blue-) or bathochromic (red-) shifts of the emission peak of the 

fluorescent dye are translated into large changes in the 670 / 650 nm ratio (Figure S6). These 

changes are then monitored as a function of temperature, either online, or after temperature 

stressing. Therefore, we expected to obtain information through fluorescence emission about 

the LNPs’ stability related to temperature applied and excipient used. All LNP samples 

were produced encapsulating Cy5-siRNA and monitored for a change in fluorescence ratio 

while heating the samples from 15°C to 110°C. LNPs were prepared in either a control 

PBS buffer, or in 5 % mannitol, 5 % trehalose and 5 % lactose solution (m/V) (Figure S7). 

The behavior of the LNPs when subjected to a melting curve is more difficult to interpret 

than a standard nanoDSF analysis of protein melting. Proteins have sharp melting curves 

where the maximum of the first derivative of the melting curve can provide a Tm of melting. 

LNPs, where the lipids and cholesterols have wider glass transitions as opposed to defined 

transition temperatures, as points of denaturing, lead to less defined curves.[27] While 

melting events are somewhat visible in PBS, in the sugar solutions the melting events occur 

over a much larger temperature range. The first derivatives of each curve were analyzed 

and plotted in Figure S8. The inflection temperatures (Ti) do not accurately represent the 

stability of the LNPs, as visual inspection of the data shows that the nLNPs in 5% trehalose 

are likely to be more stable than an inflection of approx. 20 °C indicates. Visually, it appears 

that LNPs in 5 % lactose and 5 % mannitol seem to be more stable than in PBS or 5 

% trehalose. An alternative approach to observe LNP behavior was sought, which would 

also align with spray drying methods. Here, LNPs were subjected to four temperatures (41 

°C, 51 °C, 62 °C, 72 °C) mimicking the elevated outlet temperatures in a spray dryer, 

and then returned to the original temperature (Figure S9A). As the LNPs are heated, the 

ratio, and therefore the environment experienced by the Cy5-siRNA irreversibly changes. 
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This change is quantified by the difference between the initial ratio (Ri) and final ratio (RI) 

measurements, determined using the simple equation ΔR = Ri — Rf (Figure S10B). The 

change in ΔR was determined for each LNP formulation, at each temperature and in each 

excipient solution as summarized in Figure 1. Looking at the ΔR alone, (+)LNPs appear to 

be the most stable LNP in every dispersant measured. (-)LNPs are the least stable. An issue 

that arose was that in some cases of LNP and dispersant combination, the ratio value for the 

LNP was not greatly different from the Cy5-siRNA in solution (Figure S10B) – suggesting 

that the buffer changes lead to a different conformation of the LNP during formation. 

Furthermore, (-)LNPs encapsulating negatively charged siRNA might experience repulsion 

effects, thus leading them to be less stable than (+)LNPs. To provide a more holistic view, 

ΔR was plotted against initial ratio and the marker sizes used to indicate the temperature 

stress (Error! Reference source not found.). The plots allow us to visualize a region of 

stability in the upper left-hand corner of each plot, with larger shifts in initial ratio and 

lower ΔR at increasing stress temperature easily observed for LNPs in 5 % mannitol and 5 

% lactose, while PBS and 5 % trehalose show higher ΔR values trending higher as the stress 

temperatures increases and lower initial ratios. Moreover, applying a temperature of up to 72 

°C seemed not to have an influence of the LNPs stability in 5% lactose and 5% mannitol 

solutions (m/V). In the previous studies by Freitas and Müller, solid lipid nanoparticles were 

successfully spray-dried at outlet temperatures of 50-60 °C using mannitol, trehalose or 

lactose as the excipient solution. However, the particles were not carrying any cargo, and no 

in vitro or in vivo work was performed. [47]

Of the different excipient solutions tested, 5% mannitol and 5% lactose solutions were most 

effective at stabilizing the LNPs at the temperatures tested. Comparing these two excipient 

solutions more closely, the 5% lactose solution stabilized the different LNPs more efficiently 

at chosen temperatures. Furthermore, the Δ ratio within each LNP formulation remained 

lower than in the LNPs prepared in 5% mannitol solution. Hence, it seems favorable to use 

5% lactose as an ideal excipient solution for spray drying of LNP formulations. In regards 

to the LNP carriers, the thermal stressing of LNPs up to 72 °C did not lead to any reduction 

of stability. RNA stability was not assessed, however. In conclusion, the highest possible 

temperatures, 62 °C and 72 °C, were selected for spray dry all LNP formulations in 5% 

lactose solution (m/V).

3.2 Characterization of spray dried LNPs

3.2.1 Losses during spray drying—Spray drying of LNPs was performed in a Büchi 

B-290 spray drying tower applying inlet temperatures of 100 °C and 120 °C resulting in 

outlet temperatures of 62 °C and 72 °C, respectively. In order to ascertain whether the spray 

drying process results in LNP- and subsequently siRNA losses, the respective amounts were 

measured before and after spray drying. When spray dried at 62 °C outlet temperature, none 

of the LNP formulation showed high siRNA or LNP losses of more than 30%. The siRNA 

losses were shown to be 7.5 – 14.0% (Figure 3A). The cholesterol detection assay resulted 

in 3.85 – 9.54% LNP losses (Figure 3B). There were no significant differences between 

the lipid and the siRNA losses observed between the three LNP formulations. However, 

even though the dual emission fluorescence-based stability measurements were performed 

at the outlet temperature of 72 °C (Tin = 120 °C), this temperature led during the spray 
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drying process to visual destruction of LNP samples. Only a very low amount of powder 

was collected showing streaks in the collection vial indicating that the LNP formulation had 

started to melt. Analysis of the small amount of collected powder showed high cholesterol 

losses over 80% (Figure 3B). Accordingly, the maximum temperature suitable for spray 

drying LNPs was set at an inlet temperature of 100 °C, resulting in an outlet temperature of 

62 ± 2 °C.

3.2.2 Physicochemical properties of spray dried LNPs—Besides heat, spray 

drying exerts shear forces on LNP-siRNA systems and could melt, disassemble, destroy or 

merge LNPs. Therefore, DLS measurements were performed before and after spray drying 

to visualize any possible effects. Subsequently, spray dried microparticles, having the LNPs 

embedded, were dissolved in HPW for LNP redispersion to mimic impaction and matrix 

excipient dissolution in the lungs. As demonstrated in Figure 4, Z-average values of freshly 

LNPs prepared in 5% lactose (m/V) and redispersed LNPs from spray-dried powders did 

not show any statistical differences. Also, differences in PDI were not observed except for 

redispersed nLNPs. Here, the PDI increased slightly by keeping the sizes similar to before 

spray drying. However, we recognized higher PDI values which may be explained to some 

extent by sugar monomers that change the size distribution of the particles. It was shown by 

Weinbuch et al. that monomers of sugar and sugar alcohol are detected by DLS in highly 

concentrated solutions. [48] Furthermore, by measuring the size of redispersed spray dried 

5% lactose solution, without any LNP cargo, we detected particle structures at 200 nm size 

and a PDI of over 0.3. It is expected that the sugar matrix does not instantly dissolve. By 

diluting the obtained lactose solution further, the count rate dropped and no significant peaks 

were detected (data not shown). Furthermore, a PEG-DMG loss from the LNP formulation 

could potentially explain the increased PDI and zeta potential changes. In summary, LNP 

size and distribution were not affected by spray drying and remained comparable to the 

freshly prepared samples. The zeta potential of LNPs, on the other hand, is dictated by their 

helper lipid. Neutral DSPC, positively charged DOTAP and negatively charged DSPG were 

implemented into the LNP structure to facilitate different characteristics. However, by spray 

drying LNPs in 5% lactose solution (m/V), the zeta potential of positively and negatively 

charged LNPs was reduced. It was therefore investigated in the following experiments 

whether the decreased zeta potentials changed in vitro cellular uptake.

As seen in Table 1, the average amount collected for all LNP formulations was around 65% 

yield at a maximum of 250 mg spray dried powder. This is in line with the expectations 

from a Büchi B-290 spray dryer which is stated to achieve a yield of about 70% [49] 

and is ranked at the upper end of collected yield in comparison to literature values. [50] 

Another important parameter that needs to be tested is the residual moisture. Spray dried 

powders should show low residual moisture levels in order to allow for storage stability. 

Although it was discussed above that residual moisture may act as a plasticizer stabilizing 

LNPs during the spray drying process, it could nonetheless cause microparticle aggregation 

lead to microbial growth and RNase contamination. Therefore, the moisture content of all 

formulations was measured by Karl Fischer titration. The results show that for all LNP 

formulations, independent of the charge of the LNP and the drying temperature, the residual 

moisture levels were 3.5 – 4%. Interestingly, spray drying 5% lactose solution without any 
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LNPs showed a slightly higher residual moisture level of 4.9%. However, the differences 

are not significant and are in line within previously reported literature values. [44] Lactose 

often solidifies upon spray drying into an amorphous state. This was detected by DSC of 

spray dried 5% lactose solution in comparison to all other spray dried LNP formulations 

(Figure 5). In addition to the hygroscopic nature of lactose, the reason for the formation 

of amorphous structures is the fast drying step which does not provide sufficient time for 

lactose molecules to arrange into an ordered structure with subsequent crystal nucleation 

and growth. This explanation is supported by the molecule’s crystallization temperature 

of around 110 °C and melting points ranging from 150 °C to 180 °C. [51] All of the 

lactose formulations showed glass transitions at temperatures between 47 °C and 56 °C 

corresponding to their residual moisture content (Table 1). [44, 52, 53] This temperature 

(Tg) is important for stability predictions during storage as amorphous solid forms are 

thermodynamically unstable and tend to crystallize if stored close to or above Tg. [54] 

The amorphous state of the formulation is favorable for LNP preservation. Therefore, when 

storing these products at 4 °C or room temperature for a longer period of time, high Tg 

values are necessary. The final Tg of a formulation, however, is closely linked to the water 

content: the higher the residual moisture the lower Tg. Also, with a lower residual moisture 

content degradation processes are less likely to occur. [55] It is therefore of interest to 

further decrease the amount of residual moisture in lactose formulations to avoid nucleation 

and degradation processes over time and in order to maintain the amorphous state of the 

formulation.

When administration of spray dried powders application is envisioned via the pulmonary 

route, their morphology and particle sizes need to be examined. Aerodynamic sizes of 

1 – 5 μm are considered ideal for inhalation because more than 50% of particles of an 

aerodynamic size of 3 μm deposit in the alveolar region. If the particle sizes are smaller than 

3 μm, an 80% chance of reaching the lower airways and a 50-60% chance of deposition 

in the alveoli is given. [56–58] Therefore, the optimal aerodynamic size for deep lung 

deposition after pulmonary delivery is around 3 μm. For local effects, aerodynamic particles 

sizes around 5-7 μm can as well be acceptable. To determine whether the spray-dried 

particles in this study fit these criteria, they were imaged using SEM. The geometric 

median diameters (GMD) which reveal the actual visual particle size. As seen in Figure 

6, spray drying of all LNP formulations with 5% lactose solution resulted in smooth round 

microparticles of sizes below 10 μm. In Figure 6A, spray dried 5% lactose, and 6B, spray 

dried nLNPs, showed a GMD size range from particles of 2 – 7 μm, whereas, (+)LNPs 

and (-)LNPs were slightly larger with 3 – 9 μm (Figure 6C and D). For porous materials, 

geometric sizes commonly exceed the aerodynamic diameter [59], which was therefore 

examined experimentally. Furthermore, the residual moisture has a direct impact on the 

particles’ size with higher water content resulting in more particle aggregation and bigger 

GMD values accordingly.

3.2.3 Aerodynamic performance of spray dried LNPs—The aerodynamic 

performance of each spray dried LNP formulation was measured using an NGI. The mass 

median aerodynamic diameters (MMAD) of all powders present sizes of 2.85 – 2.9 μm 

with standard deviations of 0.07 – 0.42 μm. These results position the spray dried LNP 
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formulations at aerodynamic sizes of about 3 μm which was discussed as the optimal 

particle size range for lower respiratory delivery targeting a wide field of pulmonary diseases 

such as COPD, or respiratory viruses, e.g., influenza or SARS-CoV-2. This is underlined by 

the fact that the geometric standard deviation (GSD) remains low at 2 μm. Reaching a fine 

particle fraction (FPF, defined as particles under 5 μm in diameter) of almost 30% is a very 

good value that is in line with the geometric diameter results obtained from SEM pictures. 

The FPF can be improved by reducing the residual moisture of spray dried LNPs to narrow 

down the size distribution, GSD, of spray dried powders and avoid particle agglomerates. 

This can be achieved by drying the spray dried powder in a subsequent drying step at a 

lower inlet temperature to reduce the heat stress on the product. The temperature should 

not be increased since the spray drying temperature was already set to an upper threshold 

value keeping the LNPs integrity. The fine particle dose (FPD) expresses the FPF value in an 

absolute mass. Therefore, 0.74 μg siRNA were delivered at sizes below 5 μm out of 2.6 μg 

siRNA applied, known as dose delivered (DD). The overall recovery rate ranged from 71.1% 

to 86.8%. Some losses could have been caused by an insufficient clearance of capsules 

using the Handihaler device. Furthermore, depending on the surface charge of the LNPs, a 

difference in electrostatic charge was noticeable that could have led to higher adhesion of 

powders to the walls of capsules, induction port and pre-separator. The conclusion can be 

drawn that for all the different powders, regardless of their different LNP cargo, optimal 

microparticulate characteristics for pulmonary application were achieved.

3.3 Mucus penetration of spray dried LNPs

For efficient delivery of spray dried powder to the lungs a few hurdles need to be overcome. 

First, the nano-in-microparticles need to be redispersed in lung fluid quick enough to 

dissociate into nanoparticles. Second, the nanoparticles need to pass the lung fluid as quickly 

as possible before the fluid is renewed and all particles are washed away. To mimic this 

scenario, we performed a mucus penetration study, in which we compared the penetration 

ability of freshly prepared LNPs in 5% lactose solution with spray dried LNPs redispersed 

in HPW. By taking into account the LNPs zeta potential which remained neutral for all 

LNP formulations in 5% lactose solution (m/V), LNPs are expected to pass the mucus 

layer without diffusion restrictions due to charge interactions. [60] As seen in Figure 7, 

65-90% of the freshly prepared LNPs penetrate the mucus layer, whereas only 20-40% of 

the spray dried LNP penetrate the mucus. This higher amount of penetration for freshly 

prepared LNPs can be explained by referring to the sizes of redispersed LNPs which lets 

us assume that the sugar matrix was not fully dissolved resulting in bigger nanoparticle 

sizes. Moreover, the spray dried LNPs were still immobilized inside the sugar matrix not 

being able to pass the mucus layer as efficiently as freshly prepared LNPs. It is noteworthy, 

that the negatively charged, (-)LNPs, showed the least efficient mucus diffusion both as 

freshly prepared or spray dried particles. Comparing our results to the literature, a negatively 

charged particle should pass through the negatively charged mucus more efficiently because 

of charge repulsion. A positively charged particle would interact with the negative mucus 

charge and be hindered in diffusion. A neutral charged particle would pass the mucus 

layer but not as efficiently as the negative ones. [35, 60] Freshly prepared (+)LNPs show 

mucus penetration characteristics of 90% which contradicts the charge theory. However, low 

nanoparticle sizes and near to neutral zeta potential in 5% lactose solution can explain its 
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efficient mucus penetration. Spray dried nLNPs showed the highest penetration at 40%. In 

conclusion, the spray dried LNPs are capable of penetrating a lung mucus layer in order to 

reach the lung cells to release the siRNA cargo even if to a lesser extent than their freshly 

prepared counterparts.

3.4 In vitro characterization of spray dried LNPs

For siRNA delivery it is fundamental to maintain the molecule's bioactivity throughout 

the spray drying and storage process. Since the outlet temperature of 62°C is not close 

to the degradation temperature of siRNAs and no severe losses of LNPs or siRNA were 

detected as abovementioned (Figure 3), the bioactivity of the LNPs was expected to be 

intact. Therefore, the gene silencing efficiency of spray dried LNPs (nLNP, (+)LNP and 

(-)LNP) of the enhanced green fluorescence protein expressing H1299 (H1299-GFP) cells 

were tested. All LNPs had an siRNA against GFP (siGFP) encapsulated. Furthermore, for 

comparison, another set of LNPs was prepared with scrambled, negative-control siRNA 

(siNC). Freshly prepared LNPs were dispersed in 5% lactose solution (m/V), whereas 

spray dried LNPs were redispersed in HPW. The specific amount of fresh LNPs and spray 

dried LNPs was chosen to transfect the cells at an siRNA concentration of 1 μg/mL (55.7 

nM siGFP/siNC) and 10 μg/mL (557 nM siGFP/siNC), respectively. As other controls, 

spray dried 5% lactose solution was redispersed in HPW and free siRNA in the same 

amount was added to the cells. As seen in Figure 8A and 8B all LNPs having siGFP 

encapsulated show a highly significant GFP downregulation effect on the protein level. The 

downregulation ranged from approximately 80% for freshly prepared nLNPs at 1 μg/mL to 

> 95% downregulation of fresh (+)LNPs at 10 μg/mL. All control values showed no gene 

knockdown effect. Hence, the gene silencing efficiency is RNAi mediated and a result of the 

complementary siRNA sequence. At 1 μg siRNA/mL, Figure 8A, freshly prepared nLNPs 

performed least efficiently of all LNP formulations with 80% downregulation, in comparison 

to 90% knockdown of spray dried nLNPs. This difference can be explained by the charge 

difference of freshly prepared LNPs in comparison to redispersed spray dried LNPs. More 

positively charged nanoparticles show a greater interaction with the cell membrane through 

attractive electrostatic interactions with negatively charged phospholipids or membrane 

proteins, and subsequently lead to a higher cell uptake. [61, 62] Therefore, a higher eGFP 

knockdown can be the result of the aforementioned with an increased amount of siRNA 

entering the cells. (-)LNPs showed 90% gene silencing and were outperformed with >95% 

performance by (+)LNPs. By increasing the siRNA amount 10-fold, the gene silencing 

effect increased throughout all LNP formulations to values > 90% (Figure 8B). The 

negative control, scrambled siRNA values remained above 100% for each LNP formulation 

reflecting a highly significant gene silencing effect. To compare the LNP formulations 

against each other, (+)LNPs outperformed the other two formulations, even at lower siRNA 

concentrations. This observation can be explained by (+)LNPs entering the cell more easily 

and releasing higher amounts of siRNA from the endosome. [63] The 5% lactose solution 

should not interfere with the charges since the cells were cultivated in 400 μL cell medium 

and 100 μL of redispersed LNPs. This dilution could have enhanced the dissolution of 

LNPs out of the sugar matrix. Noteworthy, the gene silencing effects do not differ between 

freshly prepared and spray dried LNPs, and a knockdown on protein level was successfully 

achieved. This underlines the excellent characteristics of the LNPs which did not change 
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after the spray drying process. To compare our results to previous studies, Jensen et al. 

spray dried DOTAP modified PLGA nanoparticles loaded with siRNA in mannitol at an 

outlet temperature of 30°C to obtain hybrid dry powder formulations. Performing eGFP 

knockdown experiments in H1299-GFP cells resulted in a maximum silencing of 73%. 

[64] This knockdown result was one of the highest found in literature but not close to our 

outcome for the hybrid system spray dried at low temperatures. In another study, Karve et 

al. spray dried mRNA embedded hybrid nanoparticles at an outlet temperature of 46-50°C. 

Neither in vitro, nor in vivo work was performed and the attempt to spray dry lipid particles 

without polymer pre-encapsulation resulted in a recovery rate of 1-2%. [65] The temperature 

increase came in cost of the recovery rate. Adding a polymer to stabilize the system helped 

the authors to create a more feasible system. This confirms the difficulty of spray drying 

lipid nanoparticles at the highest possible temperatures while keeping the composition and 

bioactivity of the cargo. To the best of our knowledge, we are the first to report a successful 

eGFP knockdown of over 95% after spray drying of Onpattro®-derived LNPs at an outlet 

temperature of 62°C. Neither different spray dried lipid based nanoparticle systems, nor 

hybrid or polymeric nanoparticulate systems have shown a similar eGFP in vitro activity.

To exclude any toxic effects originated from LNP formulations, a cytotoxicity evaluation 

via an MTT assay was performed. All samples show no toxic effects and results are 

not statistically significantly different for freshly prepared LNPs vs. spray dried LNPs, 

apart from (+)LNP at a siRNA concentration of 10 μg/mL (Figure 9). This cytotoxic 

effect of about 35% could result from combining the positive LNP charge with a high 

amount of sugar being added to the cells. As discussed in literature and shown for many 

nanoparticulate systems, high positive charges cause increased toxicity to the cells. [62, 

66] By increasing the siRNA amount by 10 fold, we also increased the (+)LNP amount. 

This could cause an increased impact of positive charge to the cell membrane leading 

to cell disruption and cell death. Furthermore, an increasing amount of sugar can cause 

increased osmotic effects on the cells, inevitably, resulting in the same outcome. However, 

all other LNP formulations, redispersed after spray drying, do not show any cytotoxic 

effects. Hence, the main cytotoxic reason results from its positive charge. In summary, it 

was determined that a siRNA concentration of no higher than 10 μg/mL was necessary for 

achieving adequate gene knockdown, and higher concentrations were likely to increase the 

risk of cytotoxicity.

3.5 Ex vivo activity of spray dried LNPs in human precision-cut lung slices (hPCLS)

Human PCLS represent complex ex vivo 3D tissue culture models closely mimicking the 

anatomy and physiology of the lungs by maintaining the structure and cellular diversity. 

Furthermore, by closing the translational gap between in vitro and in vivo models, PCLS 

enable the study of respiratory diseases such as allergic asthma [67], COPD [68, 69], IPF 

[70] and viral infections [71] and can act as a more sophisticated nucleic acid delivery model 

to the lungs. [72–74]

Following the investigation of successful gene silencing on the protein level using spray 

dried LNPs, human precision cut lung slices (hPCLS) of individual donors were used 

to evaluate the gene knockdown efficiency of LNPs on the mRNA level. Human PCLS 
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were transfected at siRNA concentrations of 10 μg/mL using redispersed spray dried 

LNP formulations targeting the house keeping gene GAPDH (siGAPDH). As a reference 

control, spray dried LNP-siGFP formulations were used to rule out any off-target effects. 

Untreated control hPCLS were treated with medium and 5% lactose solution only. Figure 10 

shows the normalization of GAPDH mRNA by the mRNA levels of β-actin and all values 

being normalized against LNP-siGFP values. The hPCLS treated with spray dried LNPs-

siGAPDH showed significant reduction of GAPDH expression for each LNP formulation 

tested. The knockdown results ranged from 35% in (-)LNPs to 50% in (+)LNPs. The nLNP 

formulation showed a silencing efficiency of 45%. Figure S11 underlines that no statistically 

significant inflammatory effects were observed after transfection of hPCLS with different 

LNPs based on the level of twelve different proinflammatory cytokines. As stated in the in 
vitro protein silencing experiment, the (+)LNPs outperformed the other LNP formulations 

demonstrating their drug delivery potential for pulmonary administration. The overall 

performance of LNPs being able to reduce the mRNA level up to 50% underlines the LNPs’ 

preservation of bioactivity and transfection efficiency after spray drying. Most importantly, 

the LNP formulations did mediate a level of ex vivo gene knockdown that has not been 

observed before with spray dried LNP delivery systems targeting the lungs. In comparison, 

Ruigrok et al. reported approximately 50% gene silencing of GAPDH in murine PCLS using 

non-spray dried Accell siRNA not using a nanocarrier delivery system [74]. As discussed 

in the beginning, naked siRNAs cannot cross the cell membrane sufficiently and need to 

be protected from heat stress during the spray drying process, hence, a galenic packaging 

of the cargo is necessary. Moreover, pulmonary administration is most commonly achieved 

via nebulization or dry powder inhalation. Furthermore, the LNPs’ stability to retain the 

siRNA after spray drying highlight robustness and manifoldness of LNP formulations for 

pulmonary application systems. Those aspects underline the complexity of spray drying of 

LNP-siRNA formulations for pulmonary application.Therefore, our results of 50% ex vivo 
gene silencing of GAPDH RNA levels emphasize the relevancy of spray dried LNPs as a 

promising therapy for the treatment of respiratory diseases such as asthma, COPD, lung 

cancer, cystic fibrosis or viral infections.

4 Conclusion

In this study, we established a spray drying setup that allows RNA-loaded lipid nanoparticle 

systems to be spray dried at the highest possible temperature while retaining the LNP 

structure, cargo integrity and maintaining bioactivity and gene silencing efficiency. The 

detection of thermal stability of LNPs using the dual emission fluorescence-based method 

enabled a prescreening of different LNP formulations in different excipient solutions and 

at different temperatures. It was beneficial to test LNP stabilities near the lipids’ phase 

transition temperatures to understand whether a spray drying process would damage the 

LNP composition or lead to cargo leakage. In addition, it enabled measurements of low 

sample volume and wide temperature ranges to simulate heat stress on the individual LNP 

systems during spray drying. These results led to a preselection of spray drying parameters 

including the best suitable excipient solution. Therefore, spray drying was performed in 

5% lactose solution (m/V) in combination with a maximum spray drying inlet temperature 

of 100°C (62°C outlet temperature). Quantification measurements of spray dried LNPs 
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resulted in low losses underlining the preservation of siRNA and LNPs. The spray 

dried microparticles demonstrate optimal physicochemical and aerodynamic properties for 

pulmonary administration to the lower respiratory tract. Spray dried LNP formulations were 

able to successfully pass an artificial mucus layer similarly found in human lungs. Efficient 

gene silencing on the protein level was achieved in vitro in an adenocarcinoma cell line 

showing very good cellular compatibility. Spray dried LNPs efficiently silenced the house 

keeping gene GAPDH in ex vivo human lung tissues. In conclusion, our research confirms 

the successful spray drying of LNP-siRNA formulations to create a novel siRNA-based 

therapy to target respiratory diseases such as lung cancer, asthma, COPD, cystic fibrosis and 

viral infections.
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Figure 1. Box plots of the Δ R values observed by each LNP in different buffers (as indicated by 
colored legends) and hold temperatures).

Zimmermann et al. Page 26

J Control Release. Author manuscript; available in PMC 2022 October 13.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 2. Stability plot shows stability of LNPs in each excipient buffer condition.
The ΔR is plotted against initial ratio in each buffer condition, with the color indicating 

LNP and the size of marker stating the temperature the LNPs were stressed at. The top left 

quadrants represents the most stable environments.
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Figure 3. Quantification of the losses of A) siRNA and B) cholesterol after spray drying of 
LNPs in 5% lactose solution (m/V) at an outlet temperatures of 62°C. A nLNP loss at outlet 
temperature of 72°C is shown in B). Each bar shown as mean ± standard deviation, n=3. SD 
stands for spray-dried.
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Figure 4. 
A) DLS measurements of freshly prepared (full colored bars) and redispersed (shaded 

colored bars) LNPs. PDI is indicated by black squares. LNP formulations with neutral, 

positive or negative charge and spray dried (SD) 5% lactose were redispersed in HPW 

after spray drying at 62°C outlet temperature and compared to freshly prepared LNPs in 

5% lactose solution. B) Zeta potential measurements of fresh and spray dried LNPs in 5% 

lactose solution via LDA. Mean ± standard deviation, n=3.
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Figure 5. DSC measurements of lactose formulations spray dried at an outlet temperature of 
62°C: 1.3) SD (-)LNP (brown), 2.3) SD 5% lactose (grey), 3.3) SD (+)LNP (green), 4.3) SD nLNP 
(blue).
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Figure 6. SEM pictures of spray dried A) 5% lactose solution, B) nLNP formulation, C) (+)LNP 
formulation and D) (-)LNP formulation. All samples were spray dried in 5% lactose solution at 
62°C outlet temperature.
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Figure 7. Mucus penetration assay of fresh LNPs vs spray dried (SD) LNPs. The time points 
were chosen at 0h, 0.5h, 1h, 2h, 4h and 24h.
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Figure 8. In vitro gene silencing effect of enhanced green fluorescent protein (eGFP) within a 
H1299-eGFP expressing cell line.
Different siRNA concentrations were tested: A) 1 μg/mL, B) 10 μg/mL. Samples are plotted 

as follow: freshly prepared LNPs in full colored bars, spray dried LNPs in shaded colored 

bars. Bars show the mean fluorescent intensities (MFI) of the eGFP as a percentage relative 

to the untreated sample (grey, unpatterned bar).
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Figure 9. In vitro cytotoxicity evaluation via a MTT assay in H1299-eGFP cells.
The siRNA concentrations were set at 1 μg/mL and 10 ug/mL for all samples. Samples are 

plotted as follow: freshly prepared LNPs in full colored bars, spray dried LNPs in shaded 

colored bars.
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Figure 10. Ex vivo knockdown of house-keeping gene GAPDH.
Human precision cut lung slices (hPCLS) were transfected at 10 μg siRNA / mL with 

spray dried LNPs encapsulating either siGAPDH or siGFP. All values were expressed as a 

percentage in comparison to the baseline values of samples treated with LNP-siGFP. Mean ± 

standard deviation, n=3.
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Table 1
Residual moisture recovered spray-dried mass and yield of LNPs spray dried with 5% 
lactose (w/V) at an outlet temperature of 62°C.

Name SD mass (mg) SD yield (%) Residual moisture (%)

SD 5% Lactose 192.06 ± 3.44 76.83 ± 1.37 4.90 ± 0.01

SD nLNP 160.89 ± 5.69 64.36 ± 2.28 4.01 ± 0.79

SD (+)LNP 164.15 ± 4.35 65.66 ± 1.74 4.12 ± 0.53

SD (-)LNP 164.69 ± 3.55 65.87 ± 1.42 3.56 ± 0.40
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Table 2

Microparticle characteristics of spray dried LNP formulations in 5% lactose solution at an outlet temperature 

of 62 °C using a Next Generation Impactor (NGI). DD: dose delivered, FPD: fine particle dose, FPF: fine 

particle fraction, MMAD: mass median aerodynamic diameter, GSD: geometric standard deviation.

  nLNP (±)LNP (-)LNP

DD (μg) 2.37 ± 0.85 2.62 ± 0.31 2.66 ± 0.70

FPD (μg) 0.70 ± 0.27 0.74 ± 0.13 0.73 ± 0.10

FPF (%) 29.5 ± 0.60 28.1 ± 1.70 28.1 ± 3.80

MMAD (μm) 2.85 ± 0.07 2.85 ± 0.35 2.90 ± 0.42

GSD (μm) 1.96 ± 0.02 2.01 ± 0.05 2.01 ± 0.16

Recovery (%) 71.1 ± 28.1 82.9 ± 4.50 86.8 ± 17.3
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