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Urban land use on a building instance level is crucial geo-information for many applications yet challenging to
obtain. Steet-level images are highly suited to predict building functions as the building facades provide clear
hints. Social media image platforms contain billions of images, including but not limited to street perspectives.
This study proposes a filtering pipeline to yield high-quality, ground-level imagery from large-scale social media
image datasets to cope with this issue. The pipeline ensures all resulting images have complete and valid geotags
with a compass direction to relate image content and spatial objects.

We analyze our method on a culturally diverse social media dataset from Flickr with more than 28 million
images from 42 cities worldwide. The obtained dataset is then evaluated in the context of a building function
classification task with three classes: Commercial, residential, and other. Fine-tuned state-of-the-art architectures
yield F1 scores of up to 0.51 on the filtered images. Our analysis shows that the quality of the labels from
OpenStreetMap limits the performance. Human-validated labels increase the F1 score by 0.2. Therefore, we
consider these labels weak and publish the resulting images from our pipeline and the depicted buildings as a

weakly labeled dataset.

1. Introduction

While urban planning used to be performed as a top-down approach
based on a master plan with zoning, new processes are needed to cope
with rapid urban development in the global South (Watson, 2009).
Historically, urban planning practices were developed in the global
North with assumptions and aims that do not hold true nowadays or are
outdated, like separations of income groups and accessibility for indi-
vidual transport. Moreover, land use data is crucial for the evaluation of
existing zoning provisions (American Society of Planning Officials, May
1950). For example, to know the demand for public transport, urban
planning requires accurate numbers of citizens living in an area. These
numbers can be estimated from land use data in combination with
building heights. On the most fine-grained level, this data is calculated
for each building individually and presumes information about the
building's function. However, due to the rapid development, monitoring
the status quo of building functions becomes infeasible. Automatic, data-
driven methods can help to fill this gap. Building function classification
is the task of automatically identifying the settlement type of a given
building, e.g., is it a residential or commercial building? Traditionally,
this process is performed manually, which is highly resource-
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consuming, and it cannot catch up with the size and speed of develop-
ment of modern cities. To cope with this issue, automatic methods are
applied, where they mainly consume air-view images, such as aerial or
satellite images (Huang et al., 2018a; Zhang et al., 2019). Although this
kind of data is of high quality, it has inherent ambiguities from a nadir
view looking at rooftops.

During the last two decades, we have seen a tremendous increase in
social media usage: Its data is ubiquitous, cheap, and easy to collect. It
has become an essential and valuable source of information for many
applications and scenarios (Kruspe et al., 2021). For example, it can
serve as a proxy if authoritative data is missing or help to discover new
phenomena, particularly in locations and populations where data from
traditional sources are lacking (Lopez et al., 2019). In our task, social
media data shows promising features to augment traditional air-view
data sources. First, it offers a ground-level view, which means a finer-
grained and different perspective data source. Second, it is a more up-
to-date source of information or even a real-time source of informa-
tion. Third, it is a huge source of cheap data. The only restriction in our
scenario is that we need geotagged social media data. Fortunately, this is
the case for a considerable share of data coming from social media
channels such as Twitter or Flickr. For example, around 1 % of all tweets
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are geotagged (Sloan et al., 2013), i.e., given that around 500 M' tweets
are published per day, 5 M among them are geotagged. Flickr does not
disclose its photo statistics in detail but announces having billions of
photos already online.” By aligning geotagged social media content with
open Volunteered Geographical Information (VGI) systems, such as
OpenStreetMap (OSM), we could decode social media posts (e.g., tweets,
images, etc.) to specific places on Earth and, hopefully, to certain
buildings. However, one should not take social media as a no-cost source
of information. One should be careful when dealing with social media as
a primary source of information, where it is a noisy and uncontrolled
data source. In addition, it is a sparse source, where social media equally
cover not all spots on Earth. For example, Flickr photos are mainly
coming from city centers and hotspots.

1.1. Related work

Generally, urban land use classification is a challenging task: no
matter at which spatial level it is performed, inherent ambiguities exist.
At the most fine-grained level, at the building instance level, it is often
hard to decide which function a building serves. The task of building
function classification has been approached with different data sources:
The most intuitive one is street-level imagery showing the building fa-
cades. Alternatively, remote sensing data, especially optical imagery, is
suited to predict building functions based on roof appearance and spatial
context. Another potential data source is geotagged social media text
messages, which can be analyzed with natural language processing or
with pattern detection in metadata. Last but not least, taxi trajectories,
mobile network usage, and point-of-interest databases have been used
for building function classification. The following paragraphs present
selected publications concerning the different data modalities.

Several studies investigated the feasibility of building facade images
to address this problem. There are two primary sources for such ground-
level image data: first, commercial ground-level data like Google Street
View or Mapillary, and second, social media platforms like Facebook,
Instagram, or Flickr.

Especially Google Street View is a preferred source for this task as its
data is accessible using an API enabling the user to define the position,
heading, pitch, and field-of-view. Additionally, Google has its own
standardized hardware to capture street view images and a tailored
image processing pipeline to generate high-quality imagery on a large
scale. In combination with Google Places data, Google Street View data
allows fine-grained store classification (Movshovitz-Attias et al., 2015).
This work builds upon Google Map Maker ontology and a GoogLeNet
architecture trained on a global sample of Google Street view. Access to
Google Places is limited for research outside of Google, and Google
Places focuses on points of interest (POIs) and does not include data
about residential buildings. Alternatively, building footprints from
OpenStreetMap (OSM) can also have semantic data, including details
about building functions. This information can be used to label buildings
shown in Google Street View images and hence, provides an additional
way to predict land use on a building instance-level (Kang et al., Nov.
2018). The comprehensive coverage of buildings by Google Street View
allows multiple images from different perspectives for a single building.
This data richness can be used in a multi-modal architecture to include
information from different sides while obtaining the labels from OSM
(Srivastava et al., 2020). Beyond land use classification information
encoded in Google Street View images can be used to infer socioeco-
nomic characteristics (Gebru et al., 2017) or to map urban green in
terms of tree detection and positioning (Laumer et al., 2020).

However, the terms of service of Google Street View prohibit
scraping, downloading, or storing images obtained using the API. This
legal constraint limits the applicability of Google Street View data in

1 https://www.internetlivestats.com/twitter-statistics/.
2 https://www.flickr.com/jobs.
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research projects and requires analyzing other data sources, e.g., social
media image platforms. While Facebook and Instagram do not open
their data for such purposes, Flickr turned out to be a valuable image
source. They provide an easily accessible API and encourage their users
to share photos with creative commons license. While early works on
land use classification with Flickr images used bag-of-visual-word fea-
tures for classification (Leung & Newsam, 2012), more recent studies
benefited from advancements in computer vision with CNNs and pro-
posed land use classification using a scene and an object detection
stream in parallel (Zhu et al., 2019). On a larger spatial scale, Flickr has
been used for mapping and understanding landscape aesthetics, either
manually (Langemeyer et al., 2018) or based on CNNs (Havinga et al.,
2021; Salem et al., 2020). Another field of application is flood-level
estimation. By formulating this problem as an object detection task
with Mask R-CNN it has been shown that these images help to predict
discrete levels of flooding (Chaudhary et al., 2019). If social media im-
ages are used for a specific application, dealing with massive variations
in motifs and scenes is crucial.

Other data sources with a dedicated purpose but limited spatial
extent can be a better option in some cases. For example, images from
Geograph project3 are captured in a systematic way to cover Great
Britain and Ireland. It aims to have at least one representative image for
every square kilometer on both islands. These images can be used for
predicting urban land use in London with object bank features (Fang
et al., 2018; Li et al., 2010). Apart from Flickr, Twitter is also a social
media data source providing geo-located information with textual fea-
tures. Although Twitter restricted its geotagging feature in June 2019, it
is still a valuable source of geospatial data (Kruspe et al., 2021). To
predict building functions, it can be sufficient to have a set of geotagged
tweets and build a classifier using their metadata (Huang et al., 2018b).
As tweets contain mainly text, the inherent linguistic features have also
shown potential to help in urban land use classification on a building
instance-level (Haberle et al., 2019) as well as on a venue level (Terroso-
Saenz & Munoz, 2020). Furthermore, geo-located Twitter data reveal
patterns in language use and provide insights into socioeconomic factors
when related to demographics (Bokanyi et al., 2016). When used in
combination with Flickr data, a correlation between socioeconomic
factors and park visits shows up (Hamstead et al., 2018).

1.2. Contribution

In this paper, we tackle the problem of building function classifica-
tion using social media images. To our best knowledge, this is the first
method that relates the image content to individual buildings. It works
on real-world, large-scale image datasets by establishing a rigid filtering
pipeline that eliminates noisy, irrelevant, and non-geotagged photos. In
contrast to other works, it is fully automatic and requires no manual
selection or interaction (Chen et al., 2021b). After that, a Convolution
Neural Network (CNN) is fine-tuned for a multi-class classification
downstream task. This study mainly considers three classes of buildings
from OSM, namely residential, commercial, and other. The main
contribution of this paper can be summarized in the following points:

e Building function classification using weakly labeled Flickr images.

e A content-based automatic filtering pipeline to eliminate irrelevant
and noisy Flickr photos from large-scale and real-world datasets

e A human-validated subset of Flickr photos for testing.

2. Methodology
Our method uses social media images to classify building settlement

types. We follow a content-based approach, which can identify the main
visual patterns for each class.

% https://www.geograph.org.uk/.
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2.1. Social media image filtering pipeline

Social media images cover different content and motifs, including
but not limited to photography, digital art, and cartoons. However,
given a task like building function classification, most images do not
help solve the task. For our task, an image must have three features:

1. Shows a building
2. Has a valid geotag
3. Has a known compass orientation

A filtering pipeline needs to identify all images fulfilling these three
criteria in a social media image dataset. Additionally, it must account for
big data to work on datasets with millions of images.

Fig. 1 shows the pipeline used in this study. It consists of five steps,
starting with Google Street View similarity filtering and object detection
filtering. These two steps together ensure that the first criterion is
matched. We validate geotags in the next two steps: first, with a heuristic
that discards images whose location is not unique. If another image is at
precisely the same position, likely, that the geotag was manually edited.
Second, we download the metadata for each remaining image and check
if it contains a compass orientation. This step serves as a stricter check
for the second criterion and ensures the last criterion. Finally, we use the
geotag for spatial referencing with OSM buildings, including the com-
pass direction.

2.1.1. Google street view similarity filtering

This first step is a coarse filtering step aiming at finding images that
are potentially helpful for building function classification. Previous
studies showed the relevance of facade images to predict building
functions (Kang et al., Nov. 2018; Srivastava et al., 2020). Therefore,
this step is formulated as an image retrieval problem with a sample of
Google Street View images as seed dataset S and a social media dataset
D.

Features from deep neural networks are well suited for finding
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structurally similar images. As they aggregate information with every
layer, the final layers of a network are an abstract representation of the
whole image. For example, the deep features of VGG16 (Simonyan &
Zisserman, Apr. 2015) have been successfully applied in different do-
mains for image retrieval (Ge et al., Jul. 2018; Ha et al., Aug. 2018; Liu
et al., 2019; Wang et al., Oct. 2018).

In this study, features are taken from the last hidden layer of a
VGG16 network trained on ImageNet (Russakovsky et al., Dec. 2015).
This process yields feature vectors v € R*%%, To assess similarity be-
tween pairs of images iy, iz, the cosine similarity s.,s is calculated based
on the feature vectors vy, vo:

vivh

[vallflvl

Sm.r(vla VZ) = (1)

For efficient calculation, the features for all images of the seed
dataset are calculated beforehand. Then, the features for all social media
images are computed batch-wise, and we calculate the pair-wise cosine
similarity between the batch and the seed dataset. For each social media
image in the batch, we save the maximum similarity against all seed
images, called the similarity parameter pgin:

Piim(vs) = max({Scos (1, Vs) , -, Seos(Va,v5) }) (2)

A threshold tgp, is set as a minimum similarity value and all social
media images with pgm < tgm are discarded.

2.1.2. Object detection filtering

The previous step is a fast check for structural similarity to a given
seed dataset but does not ensure that the social media images contain a
building facade. Therefore, this step uses an object detection algorithm
to find all objects in the images that passed the previous filter.

Applying the object detection algorithm yields a list of objects for
each image. If this list contains either a house or a building it is a
candidate for passing this filter. Each detected object comes with a size
relative to the image and a confidence score. Based on these variables,
there are two thresholds for adjusting if a candidate image passes the

Similarity Object Detection Unique Location Spatial Alignment
Filtering 1 Filtering Filtering Filtering
Calculate cosine similarity Apply object detection Check if there is another Identify buildings

of feature vectors between
social media image and
seed dataset
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image

image from the very same
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intersecting with the line-
of-sight from compass
direction and geotag
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Fig. 1. Filter pipeline for extracting Street View-like images from Flickr image database.
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filter: tsze and tscore. Only if there is a building or a house with a size
parameter pgie that is larger than t,, and has a confidence parameter
Dscore higher than t, the image is passed to the next step.

2.1.3. Unique location filtering

The previous steps confirmed that the image content is relevant for
the given task. Now, this step focuses on the geotag of the image. Geo-
tags can be created in two different ways: either automatically by a GPS
sensor of the camera or manually by the user.

This filter is a heuristic to identify images that have been manually
tagged. If users have to pick locations of images by hand, they tend to do
it batch-wise, tagging multiple images simultaneously. Otherwise, im-
ages tagged using a GPS sensor will have slight differences in the posi-
tion even if the photographer has not moved. GPS sensors constantly
update their location estimate based on how many GPS satellites are
available. Therefore, having two images with precisely the same posi-
tion is a strong indicator that their geotag has not been measured by a
GPS sensor but manually added. In such cases, there is no compass
orientation in the EXIF data, and hence, this image can be omitted for
the subsequent step.

More formally, an image i from a set of images I with location I(i)
passes this filter if

vj € 1,j # il(i) = 1(j) 3

A note on implementation: a sequential scan for each image is not
feasible to make this step computationally efficient. If naively done, the
geotag for each image needs to be compared with all geotags in the
database. A geospatial index decreases the necessary checks by
excluding geotags far away. Using an R-tree (Guttman, 1984) allows us
to find the images in a very close neighborhood, and a subsequent check
on true equality is performed only on the geotags of these images.

2.1.4. Image direction filtering

This step is based on metadata of images, so-called EXIF data. EXIF is
a standard established by the Camera and Imaging Products Association
(CIPA) and the Japan Electronics and Information Technology Industries
Association (JEITA) (Camera &amp & Imaging Products Association,
May 2019). It defines fields for saving details about images, including
the date and time of capturing, camera model, and camera settings.
Moreover, it specifies how data from GPS sensors can be incorporated.
This data can be a position of longitude and latitude and a compass
direction.

For our pipeline, we assume that the social media database does not
contain the original images, including the EXIF metadata, but only a
downsampled variant without original EXIF data. Therefore, we down-
load the EXIF data for all images passing the previous filters as an in-
termediate step. Once all EXIF data are available, this step checks if the
tag GPSImgDirection is present and rejects all images that do not have
this tag.

Knowing the position where an image was taken is a necessary pre-
condition, but only with the compass direction, a geospatial reference
becomes feasible. Both information allows for calculating a line of sight,
which is crucial for the next step.

2.1.5. OSM reference building filtering

This final step establishes a connection between buildings shown in
an image and their representations in OpenStreetMap (OSM). OSM is a
Volunteered Geographic Information (VGI) platform meaning that users
contribute mapping data in a Wikipedia-like style. OSM provides
guidelines on how this data should be structured and semantically
enriched, but there is no strict enforcement. Therefore, tags for buildings
are optional; just the building footprint coordinates are mandatory if
added to OSM. OSM's guidelines specify three different tags that can be
added for indicating a building function: building, amenity, and shop.

To summarize the information from all three tags, we use a mapping
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scheme that assigns each possible value according to OSM's guidelines of
each tag to one of commercial, residential, and other. If more than one of
these tags, building, amenity, and shop, is present, we make sure that they
do not disagree. In case of disagreement, the building is not mapped to
any class. If only one tag or all available ones agree on the same mapped
class, then this building gets this class.

We use position and compass orientation to create a line of sight. All
buildings' polygons intersecting the line of sight are possible candidates
for the building shown in an image. We select the building with the
closest distance to the position as the reference building in the picture
and set this as parameter pg;s;. Based on this parameter, we add a fourth
threshold tg;s to analyze the effect of the distance.

For evaluation, we add another filtering step that discards all images
assigned to a building without a semantic label.

2.1.6. Filtering pipeline summary

Having the pipeline in this order enables a content-first strategy
while keeping the computational effort low. Additionally, the number of
hyperparameters is small with four thresholds:

. minimum seed similarity gy,

. minimum object size .

. minimum object score t;ore

. maximum building distance g

N wWN =

2.2. Fine-tuning CNN architectures for building function classification

To classify buildings shown in the social media images we fine-tune
six state-of-the-art CNN architectures (DenseNet (Huang et al., Jan.
2018), InceptionV3, (Szegedy et al., Dec. 2015) MobileNetV2, (Sandler
et al., Mar. 2019) ResNetV2, (He et al., Jul. 2016) VGG16, (Simonyan &
Zisserman, Apr. 2015) Xception, (Chollet, Apr. 2017)). Starting with
weights from ImageNet (Russakovsky et al., Dec. 2015) we applied a
two-step approach to adapt the models for building function classifica-
tion (Hoffmann et al., Jan. 2019). We start with ImageNet models
without the classification head and add a dense layer with three outputs
to predict each of the aforementioned homogenized OSM mapping
scheme: commercial, other, and residential. Please note that we fine-tune
the models on the Google Street View seed dataset and use social media
images only for inference to predict building functions.

As a first step, all layers are frozen, and only the new, randomly
initialized layer is trained with a learning rate of Ir = 10~* for at most 16
epochs. Hence, the new layer is adapted to the current weights, and
there is no risk of collapsing weights when trained on the entire network.
A checkpointing mechanism makes sure that after training, the model
with the lowest validation loss is restored and used for the next step. This
method prevents overfitting in both steps.

After convergence of the newly added layer, the whole model is set as
trainable and fine-tuned in a second step with a learning rate of Ir =
1075, Again, we apply the checkpoint mechanism and create the final
model based on the one with the lowest validation loss during training of
16 epochs.

2.3. Human label validation

To validate the labels obtained from OpenStreetMap buildings, we
asked a group of humans to verify the labels given to an image. Given a
question if an image contains a commercial/other/residential building,
they had to choose between three options: yes, unsure, or no. If no was
selected, users were asked for the correct label in their opinion.

As our classification scheme does not include mixed-use labels, we
asked our voters to opt for unsure if no clear label could be assigned. Our
system requested three votes from different humans for each image to
make the votes more reliable. Once an image received three votes, it was
not shown to any other user again. The users were not restricted in the
number of images to vote on.
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3. Experiments

We first introduce the two datasets used in this study and describe
the results of the different filtering steps. Moreover, we show the results
of a Google Street View trained model on filtered Flickr images and dive
deeper into the prediction performance by including results from the
human validation setup.

3.1. Datasets

We evaluate our method using two datasets: First, a sample of Google
Street View (GSV) images featuring buildings with known functions, and
second, a Flickr image dataset captured in 42 cities with global
distribution.

3.1.1. Google street view dataset

The Google Street View dataset consists of 43,392 building facade
images, distributed to 14,512 commercial, 14,184 other, and 14,696
residential buildings. We apply a faster R-CNN (Ren et al., Jan. 2016)
trained on OID v4 (Kuznetsova et al., Jul. 2020) to detect objects on all
images and discard all images that do not show a building or house. This
combination of architecture and dataset has the best trade-off between
accuracy and speed (Huang et al., Apr. 2017). This yields a refined
dataset of 7698 images (2743 commercial, 2333 other, and 2622
residential).

This Google Street View dataset is used in two ways: first, as a seed
dataset for finding structurally similar images in the social media
dataset, and second, for fine-tuning state-of-the-art CNN architectures
on the given task.

3.1.2. Flickr social media dataset

We collected Flickr image data in 42 cities across the globe to cover
different cultures and continents. The images were obtained by querying
the Flickr API with small random bounding boxes inside these regions of
interest. With this approach, we harvested 28,818,438 images.

Table 1 shows the number of images per city. The number of images
per city correlates with the user distribution of Flickr, so we see the
highest number of images in London (~4.0 M images). Second, New
York City has ~2.3 M images, and third, Los Angeles with ~1.9 M im-
ages. Except for Dongying, we found more than 5000 images in every
city. There is evidence that Dongying is a ghost city, meaning that the
housing capacity outnumbers the number of inhabitants by far (Leichtle
et al., Nov. 2019).

3.2. Filtering pipeline results

We evaluate our pipeline end-to-end by analyzing the effects of the
four hyperparameters on the F1 score. For an architecture-independent
evaluation, we calculated the mean probability vectors of all six models
for each image. Using mean probability vectors of six models eliminates
artifacts from single models and allows more general conclusions. Fig. 2
shows the Fl-scores and the remaining dataset size as functions of a
threshold. Computing the F1 score requires working on the final output
of the pipeline, with each image being assigned to an individual build-
ing. Hence, the complete dataset of 100 % is based on 26,381 images,
8070 labeled as commercial, 9171 labeled as other, and 9140 labeled as
residential.

Our analysis is ordered by the appearance of the hyperparameters in
the pipeline. First, there is the similarity threshold tgn, setting how
similar a social media image must be compared to the seed dataset
(Fig. 2a). Between 0.70 and 0.80 there is little difference in the resulting
F1-score: It is almost constant between 0.50 and 0.52. At the same time,
the dataset size decreases from 100 % to 2 %. The F1 scores show the
first peak at t;, = 0.83 with an F1 score of 0.70 and a corresponding
dataset size of 0.08 % (23 images in total). For thresholds higher than
0.85 F1 scores become unreliable as the number of images is seven or
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Table 1

Number of Flickr images per city.
City #Images
Amsterdam 1,147,657
Beijing 358,393
Berlin 929,508
Cairo 110,297
Cape Town 165,848
Changsha 8051
Cologne 610,185
Dongying 153
Guang Zhou 81,585
Hong Kong 964,733
Islamabad 9779
Istanbul 259,141
Jakarta 204,792
Kyoto 668,547
Lisbon 463,992
London 3,978,803
Los Angeles 1,979,163
Madrid 709,029
Melbourne 661,921
Milan 735,996
Moscow 569,651
Mumbai 140,495
Munich 391,798
Nairobi 32,262
Nanjing 24,411
New York City 2,351,955
Paris 1,344,000
Qingdao 11,960
Rio De Janeiro 425,874
Rome 570,033
San Francisco 1,744,662
Santiago 269,656
Sao Paulo 729,197
Shanghai 330,229
Shenzhen 51,893
Sydney 730,823
Tehran 21,999
Tokyo 1,361,486
Vancouver 834,973
Washington D.C. 1,139,602
Wuhan 25,754
Zurich 288,903

less. Figs. 3, 4, and 5 show examples of Flickr images having a psim, =
0.50, psin = 0.75, and psim = 0.90.

Fig. 2b shows how the F1 score is affected by the object detection
score Pscore- The figure starts with t;.or. = 0.30 because objects with lower
scores are not reported by the implementation we used. It increases
slightly starting from tsc,re > 0.30 with an F1 score of 0.50 up to 0.63 at
tscore = 0.93. At the same time, the dataset decreases from 100 % to 3.6 %
(this is equal to 930 images). Setting ty.ore > 0.965 yields an increase in
F1 score to 0.70, but with only 0.2 % or 56 images being considered.

The second parameter from the object detection filtering is g, the
minimum size of the building or house to be found in an image (Fig. 2c).
Using a threshold tg,, = 0.2 yields a F1 score of 0.50. Increasing the
threshold up to ts,, = 0.56 results in a higher F1 score of 0.52, which is
the highest possible value. Raising the threshold further decreases the F1
score down to 0.40 at tg,e = 1.0. At the peak of t;;,e = 0.57 the remaining
dataset consists of 11,234 images (44 %).

As a last parameter in the pipeline, there is the distance between a
photographer's position and the next building in the compass direction
Pdist- Fig. 2d depicts the F1 score as a function of the distance. Please note
that the threshold is an upper limit. Setting t;;s = 0.0 yields a F1 score of
1.0 based on a single image. Increasing to tz; = 2.2 provides a first
realistic value of 0.48 calculated on 4.8 % of the dataset. Raising the
threshold further to tgs = 40.32 results in the highest possible F1 score
of 0.52. At this point, 13,999 images, 69 % of the dataset, are included.
Higher thresholds lead to a slight decrease of the F1 score down to 0.50
at s = 222.
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(a) Fl-score and dataset size as a function of the
similarity threshold tg;m,, while tscore = 0.3,
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(c) Fl-score and dataset size as a function of the
relative size of a detected building ts;.., while
tsim = 0.7, tscore = 0.3, and tg;s¢ = 250
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(b) Fl-score and dataset size as a function of the
object detection score tscore, while tgim = 0.7,
tsize = 0.27 and tdist = 250
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(d) Fl-score and dataset size as a function of
the distance to the next labeled building t4;s¢,
while tgim = 0.7, tscore = 0.3, and ts;ze = 0.2

Fig. 2. Effect of filtering pipeline parameters on prediction results and remaining dataset size.

Flickr image 999956189
,,

Google Street View match (sim .. = 0.500)

Fig. 3. Sample for Flickr image having a pg, = 0.50.
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Flickr image 9997751024
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Google Street View match (5im, o, = 0.750)

Fig. 5. Sample for Flickr image having a pgm, = 0.90.

Overall, the hyperparameters do not have too much influence on the
prediction quality. We see that the F1 score is primarily stable at around
0.5. Just in the case of strict thresholds, there are some exceptions: e.g.,
setting tycore = 0.965 yields an F1 score of 0.70. Adjusting thresholds has
more effects on the dataset size: On the one hand, fixing too strict
thresholds yields a low number of images. On the other hand, this has a
significant effect on the runtime of the whole pipeline. The more images
a filter step at the beginning, the higher the overall computational time.
This trade-off needs to be taken into account when applying the filtering
steps.

Table 2 illustrates the number of images remaining after each
filtering step when setting tg,;, = 0.70, tscore = 0.3, tsize = 0.2 and tgise =
250. Additionally, it shows how long it takes to process a single image in
a filter step in our setup. While the exact times will change with different
setups, the relative comparison allows an assessment of the
effectiveness.

Similarity filtering reduces the remaining images to less than 6 % of
the original dataset at high speed. Discarding all images that do not

Table 2
Number of Images remaining after each Filtering Step when using ¢, = 0.70,
tiize = 0.2, tsore = 0.3, and tge = 250. Execution time per image sample in
seconds.

Filtering step #Images % of Execution time
dataset [s]

Flickr LCZ42 Dataset 28,818,438 100.00 %

Similarity filtering 1,635,592 5.68 % 0.0236

Object detection filtering 891,861 3.09 % 0.6319

Unique location filtering 457,670 1.59 % 0.0002

Image direction filtering 88,593 0.31 % 1.3333

OSM building in line-of-sight 73,207 0.25 % 0.0008

Labeled OSM building in line-of- 26,381 0.09 %

sight

show a house or a building yields 891,861 images (3.09 % of all images
in the original dataset). However, this second step of content filtering
takes more than 25 times longer than the similarity check.

Ensuring that there is no other image from the same location filters
out 743,731 images, which indicates that almost half of all images were
manually tagged. Utilizing a spatial index makes this step the fastest of
all filtering steps with 0.2 milliseconds, a hundred times faster than the
similarity check. Out of the remaining 457,670 images, 88,593 have a
compass orientation, which is 0.31 % of the original dataset. This step
requires downloading additional data using the Flickr API; it takes 1.33
s. Please note that most of the time is spent waiting for the subsequent
API request to prevent being blocked by the platform (1 s).

Checking if an OSM building footprint is within the line of sight kept
73,207 images, and limiting this to labeled OSM buildings gave 26,381
images. This result is 0.09 % of the whole dataset. This step again uses
the spatial index, which results in the second-fastest check of all steps.

There can be more than one image per building, and several images
cover especially touristic landmark buildings. The 6955 images from our
filtering pipeline were mapped to 18,759 buildings. 5962 of them are
commercial, 5138 are other, and 7659 are residential.

3.3. Prediction results

Table 3 summarizes the performance of all fine-tuned models on an
image level. Class-wise they behave similar with higher recall values on
commercial and other labeled images and a higher precision value for the
residential class. One exception in this pattern is VGG16, which has the
highest precision score for other. The mean F1 score for commercial is
0.51, which is slightly higher than the F1 score for other, 0.47, and
residential, 0.37.

Residential buildings can appear as single-detached houses, town-
houses, apartment blocks, or skyscrapers. While the first two forms of
residential buildings are easy to predict, the latter can be easily confused
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Table 3

Prediction results of fine-tuned Google Street View models on filtered Flickr
images and on human validated subset. Class labels are abbreviated as high-
lighted in bold: Commercial, Other, Residential, and Avg stands for the weighted
average based on the number of samples.

Architecture Metric class  Filtered images Human-validated images
F1 Prec Rec F1 Prec Rec
DenseNet121 ~ Com 0.52 043 0.66 0.76  0.65 0.91
Oth 0.49 049 0.50 0.76  0.77 0.76
Res 0.43 0.60 0.34 0.64 0.82 0.51
Avg 0.47 050 0481 072 0.75 0.73
Inceptionv3 Com 0.51 0.44  0.61 0.76 0.68 0.91
Oth 0.51 0.45 0.58 0.74 0.67 0.76
Res 0.39 0.63 0.28 0.55 0.87 0.51
Avg 0.46 050 0.48 0.68 0.73 0.70
MobileNetv2 Com 0.49 045 0.54 0.76  0.72  0.81
Oth 0.51 045 0.61 0.74 0.67 0.82
Res 0.44 0.62 0.34 0.61 0.80 0.49
Avg 0.46 0.50 0.48 071 073 071
ResNet50v2 Com 0.48 0.43 0.55 0.73 0.67 0.81
Oth 0.45 0.44 0.46 0.69 0.70 0.68
Res 0.45 0.53 0.40 0.58 0.65 0.53
Avg 0.45 0.45 0.45 0.67 0.67 0.67
VGG16 Com 0.53 045 0.64 0.74 0.64 0.86
Oth 035 058 0.25 0.61 0.87 0.47
Res 0.55 0.52 0.58 0.68 0.62 0.74
Avg 0.47 0.49 0.47 0.67 0.72 0.68
Xception Com 0.53 0.42 0.69 0.75 0.64 091
Oth 0.48 0.48 0.49 070 0.69 0.71
Res 0.40 0.63 0.29 0.62 0.85 0.48
Avg 0.46 0.50 0.47 0.69 0.73 0.70

with the other two classes. This hypothesis is one possible explanation
for why we see a high precision for residential buildings but a lower
recall.

All architectures show similar performance on the social media
dataset. Concerning the weighted average, the Densenet121 and VGG
models show the best F1 score of 0.47, but the worst model has an F1
score of 0.45 (Resnet50). Hence, the prediction errors are not model-
specific but rather data issues. Figs. 6 and 7 illustrate positive and
negative examples of building function prediction using nearby Flickr
images. The facade of a restaurant near Hong Kong is correctly predicted
as commercial (Fig. 6a), which matches the overall building function
from OSM. Likely, the large Chinese characters are a highly distinctive
feature. Fig. 6b is an interesting example showing that the prediction
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works on greyscale images as well. The church in the center of London is
correctly predicted as other. The single-detached house in Fig. 6¢ is an
ideal example of a residential building in the suburbs of Melbourne.
However, the building is pictured from the side with a different
perspective than Google Street View images, yet it is predicted as resi-
dential. All three photos show a perfect, real-world example for each
class, i.e., a single building with a clear function in the center of the
photo. Although the model was trained on Google Street View images, it
can cope with different cultures, greyscale images, and changes in
perspective. In the end, the model predicted the correct class for each
building. In contrast to these examples, Fig. 7 shows three photos that
are predicted with a different class than the actual label from OSM. The
first example in Fig. 7a depicts an image centered in the sky and has
some houses at the bottom. The image is mapped to a bar called The
Royal Oadk in London and hence, it is labeled as commercial. However,
based on the image content, the DenseNet model predicts the buildings
as other. A cross-check with Google Street View reveals that the compass
direction is slightly off and the photo is mapped to the building, which is
cut off at the right side. Hence, in this case, the image is mapped to the
wrong building. Fig. 7b shows an image, which is mapped to a other
building, but the model predicts it as a commercial one. This is a
borderline case in our classification scheme: We define a train station as
other because we see it as a part of public infrastructure. However, as
most train systems are organized as companies, predicting it as com-
mercial is also theoretically possible. Of course, the machine learning
model is simply looking for image features to define class borders and in
this case, the large sign a the top of the image is a strong hint toward a
commercial usage. Finally, Fig. 7c depicts an image that is labeled as
residential. Despite this label, the image shows the front of a famous
restaurant in New York City. It is located on the ground floor of a multi-
story apartment house. Hence, the model's prediction is plausible from
the image content but it misses the rest of the building and its pre-
dominant function. This is a limit of a single-label classification scheme,
which cannot reflect mixed-used buildings. We investigate this data
quality issue with the labels in the next section. It investigates the effect
of OSM labels on classification performance based on human verifica-
tion of the labels.

Fig. 8 shows an example of Flickr images and their corresponding
buildings from OSM in the city center of Mumbai, India. Only eleven
buildings are annotated with a function while the majority of buildings,
37, in red have no semantic annotation at all. This illustrates the po-
tential of our method: Although social media images are an

~
A7

(a) Flickr image showing a
part of the commercial building
Tower 2 (OSM ID 356349450)

(b)  Flickr

Saint

image
the fagade of other building

Mary’s Church (OSM

showing (c) Flickr image showing a res-
idential building in Spencer
Road 23, Melbourne (OSM ID

in London. Photo Sad house

near Hong Kong. Photo Unti- ID

tled by iombie is licensed under
CC BY-NC-ND 2.0

264381580)
Photo (©PBWA Kensington
and Chelsea by Ian Wood

875529280).
by Leonie Bourke is licensed un-
der CC BY-NC-SA 2.0

Fig. 6. Examples of Flickr images with correct predictions for the building functions.
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Flickr

(a) Flickr image mapped to (b)
commercial building The Royal to an

Oak in London
404678712).
Sunset,
Moriya

(OSM ID train

image

other
station,
Photo (©London (OSM ID 940194500).
Marylebone by Koji ©IMG_7634 by vincent chang

mapped (c) Flickr image showing res-
building, a i4dential OSM building The
near Kyoto Packard in New York City (ID
Photo 541718706). Photo (©) Untitled
by Julie Roth

Fig. 7. Examples of Flickr images that yielded an incorrect prediction compared to the building label.
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Fig. 8. Map of Flickr images in Mumbai spatially aligned with buildings. Magenta lines indicate the line of sight from an image toward a building. Buildings are
colored based on their function as described in OpenStreetMap. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

opportunistic data source, they can still help to close gaps in VGI data
sources. In this example, they could add additional geospatial knowl-
edge to 70 % of the identified buildings.

3.4. Label verification results

For this experiment, we selected a random subset of 1500 social
media images with OSM labels, 500 from each class, to be validated by
humans. As we required three votes for each image, we understood how
difficult the task is for a person seeing only the image and the label. Out
of 1500 images, 756 images have total agreement on their label, and 744
received inconsistent votes.

Full agreement includes three unsure votes as well, so in Fig. 9 we
focused on the images that received a clear vote, either correct or wrong.
Overall, the accuracy of OSM is 69 %, but there are subtle differences

between the three classes. Commercial has 63.5 % correct labels, which is
the lowest value of all classes. On the other hand, residential images show
72.5 % correctness with other being similar (71.3 %).

To assess our models' true performance, we evaluate our models on
the subset of images that received either complete agreement on the
existing label or an entire agreement on a new label. The right part of
Fig. 3 shows the F1 score, precision, and recall for this subset. The
patterns concerning precision and recall described above are the same,
but all values improved by 0.2.

Hence, our models yield good results if applied to clear data. In this
case, the Densenet121 model yields the best F1 score of 0.72, with
MobileNetV2 being second. The VGG16 model is among the worst, with
an F1 score of 0.67, while it showed up in the first place on the filtered
dataset. The Densenet121 model has the best generalized essential fea-
tures for building function classification.
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Fig. 9. Results from human validation of OSM labels as confusion matrix with
only full agreement of human voters.

A big source of error is unclear, mislabeled, or mixed-used buildings.
Considering that almost half of the images in the human-validated
subset did not receive any consistent vote from humans, the perfor-
mance of these models is sensible.

4. Discussion
4.1. Ambiguity of the task

Our simple classification schema of commercial, other, and residential
works best if buildings have such a clear function. In historically grown
city centers, mixed-use buildings are more common, with a retail store
on the ground floor and apartments on the upper floors. Our three
classes reach their limits and result in an error source in these cases.
Especially if there is a large sign above the ground floor advertising a
retail store, this will likely cause a misclassification. Additionally, the
other class is not well defined. Serving as an alternative if none of com-
mercial or residential truly fit, there are a lot of different patterns pointing
to the same final decision. This fuzziness makes it hard for a CNN to
predict this class.

4.2. Missed images in filtering pipeline

Although we sampled our Google Street View image dataset on a
global scale, there are most likely types of buildings that are not covered.
This lack will result in discarded images, although it shows a building
and contains valuable geographic information. However, the prediction
would likely be wrong in this case as the seed dataset for filtering, and
the training dataset for fine-tuning are identical. Hence, there would be
no benefit in including this image. Possible mitigation could be a more
sophisticated sampling algorithm that includes rare building types.

The same applies to the object detection algorithm. If there are
building types that were not in the training dataset of OID, images can be
filtered out despite having a building inside, which would be correctly
predicted.

4.3. Correctness of OpenStreetMap labels

OSM's primary goal is to provide an open geoinformation service for
users to orientate, navigate, and find places of interest (POIs) for their
needs. Therefore, commercial and other buildings providing any service
for society are more likely mapped than residential buildings that have
no general purpose. Residential buildings are often bulk mapped so that
certain neighborhoods show a high level of completeness, while others
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do not have any building footprint at all.

Additionally, building functions may change: what used to be a
church becomes an apartment building or is abandoned. The validity of
labels depends on the activity of OSM's contributors. Hence, in regions
with many active contributors, labels will be more up-to-date than in
regions with very few contributors.

Last but not least, in areas with few active local contributors like
Africa, OSM buildings are mostly mapped by remote users looking at
aerial imagery and drawing building polygons accordingly. There will
most likely be no semantic labels at all in such cases.

4.4. Completeness of OpenStreetMap building footprints

As a VGI platform, the completeness of OpenStreetMap buildings
polygons varies a lot. If a building footprint in OSM is missing, our al-
gorithm may assign an image to a building that is actually behind the
one it shows.

4.5. Reference building calculation

Several images show street view perspectives, including more than
one building. In such cases, our line-of-sight algorithm will check which
building is the building of the image. Buildings on the left and the right
will be ignored.

5. Conclusion and outlook

This study proposes a content-first filtering pipeline for social media
image datasets to extract geospatial information on building functions.
By applying five filtering steps, we can find relevant images with valid
metadata for the given task and relate them to buildings within the line
of sight. The order of the filter steps ensures scalability on large image
databases. Moreover, our pipeline has only four hyperparameters for
balancing runtime, and the number of images yielded without strong
influence on final prediction results. Based on human validation of our
image labels from OSM, we show that the limiting performance factor is
rather the data quality of OSM labels than the models used for pre-
dictions. The resulting image dataset with corresponding OSM building
IDs and labels is published as a benchmark dataset for urban land use
using social media images and weak OSM labels. Additionally, we pro-
vide the human-validated subset with high-quality labels based on three
independent votes.

In urban planning, this pipeline could be used for automatic checks if
planned and actual building functions differ. Therefore, it can be used as
a tool for gap analysis and land use optimization (Zhang & Huang,
2015). Moreover, building function classification is only one application
among others. The resulting images from this pipeline enable studies on
the attractiveness of buildings by the number of images. Analyzing the
image content allows gathering insights into the parts and perspectives
that are interesting to visitors. Hence, this poses a backward commu-
nication channel for a concept known as urban planning as communi-
cation (Innes & Booher, 2015). Further potential applications are the
validation of existing VGI data, e.g., map data in OSM (Hoffmann et al.,
2020) or labeling remote sensing data (Chi et al., 2017). Moreover, so-
cial media images go beyond the scope of Google Street View: while the
latter is bound to streets, social media images can be taken from any
position. Hence, there are no occlusions from trees, but rather it can
retrieve images from pedestrian zones or other areas that are inacces-
sible to cars. These images can be used for improved LOD 2 and 3
building models with high-resolution textures and architectural details
on balconies, windows, or doors. Such high-quality models are the basis
for digital twins of cities, which will enhance the realization, operability,
and management of cities (Shahat et al., 2021). Last but not least, with a
different seed dataset, the pipeline allows for relating arbitrary images
to objects on maps. Such objects could be trees for mapping urban green
or infrastructures like street lights or fire hydrants.
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Our pipeline still has many opportunities for refinement. While the
cosine similarity measure against a seed dataset ensures fast processing
speed, this image retrieval task can be enhanced with more sophisticated
algorithms taking different aspects of an image into account (Chen et al.,
2021a). One of the most rigid filtering steps is discarding all images
without a compass orientation. Recent approaches that estimate the
compass orientation based on aerial imagery could be of help to close
this gap (Regmi & Shah, 2019; Shi et al., 2020; Vo & Hays, 2016). As the
last step, we relate the image to a building using a line-of-sight. Fortu-
nately, the EXIF metadata contains data about the focal length opening a
possibility to calculate all buildings within the field of view. An image
could be separated into patches with different buildings found during
the object detection step. This step could yield predictions for many
buildings from one image. Moreover, our classification scheme with
commercial, residential, and other focuses on the most crucial classes for
population estimation and disaster management. A more fine-grained,
multi-level scheme could provide more insights into urban develop-
ment, e.g., education, transportation, and health care. Another possible
direction could be introducing multi labels to consider mixed-use
buildings.
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