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A B S T R A C T   

Urban land use on a building instance level is crucial geo-information for many applications yet challenging to 
obtain. Steet-level images are highly suited to predict building functions as the building façades provide clear 
hints. Social media image platforms contain billions of images, including but not limited to street perspectives. 
This study proposes a filtering pipeline to yield high-quality, ground-level imagery from large-scale social media 
image datasets to cope with this issue. The pipeline ensures all resulting images have complete and valid geotags 
with a compass direction to relate image content and spatial objects. 

We analyze our method on a culturally diverse social media dataset from Flickr with more than 28 million 
images from 42 cities worldwide. The obtained dataset is then evaluated in the context of a building function 
classification task with three classes: Commercial, residential, and other. Fine-tuned state-of-the-art architectures 
yield F1 scores of up to 0.51 on the filtered images. Our analysis shows that the quality of the labels from 
OpenStreetMap limits the performance. Human-validated labels increase the F1 score by 0.2. Therefore, we 
consider these labels weak and publish the resulting images from our pipeline and the depicted buildings as a 
weakly labeled dataset.   

1. Introduction 

While urban planning used to be performed as a top-down approach 
based on a master plan with zoning, new processes are needed to cope 
with rapid urban development in the global South (Watson, 2009). 
Historically, urban planning practices were developed in the global 
North with assumptions and aims that do not hold true nowadays or are 
outdated, like separations of income groups and accessibility for indi
vidual transport. Moreover, land use data is crucial for the evaluation of 
existing zoning provisions (American Society of Planning Officials, May 
1950). For example, to know the demand for public transport, urban 
planning requires accurate numbers of citizens living in an area. These 
numbers can be estimated from land use data in combination with 
building heights. On the most fine-grained level, this data is calculated 
for each building individually and presumes information about the 
building's function. However, due to the rapid development, monitoring 
the status quo of building functions becomes infeasible. Automatic, data- 
driven methods can help to fill this gap. Building function classification 
is the task of automatically identifying the settlement type of a given 
building, e.g., is it a residential or commercial building? Traditionally, 
this process is performed manually, which is highly resource- 

consuming, and it cannot catch up with the size and speed of develop
ment of modern cities. To cope with this issue, automatic methods are 
applied, where they mainly consume air-view images, such as aerial or 
satellite images (Huang et al., 2018a; Zhang et al., 2019). Although this 
kind of data is of high quality, it has inherent ambiguities from a nadir 
view looking at rooftops. 

During the last two decades, we have seen a tremendous increase in 
social media usage: Its data is ubiquitous, cheap, and easy to collect. It 
has become an essential and valuable source of information for many 
applications and scenarios (Kruspe et al., 2021). For example, it can 
serve as a proxy if authoritative data is missing or help to discover new 
phenomena, particularly in locations and populations where data from 
traditional sources are lacking (Lopez et al., 2019). In our task, social 
media data shows promising features to augment traditional air-view 
data sources. First, it offers a ground-level view, which means a finer- 
grained and different perspective data source. Second, it is a more up- 
to-date source of information or even a real-time source of informa
tion. Third, it is a huge source of cheap data. The only restriction in our 
scenario is that we need geotagged social media data. Fortunately, this is 
the case for a considerable share of data coming from social media 
channels such as Twitter or Flickr. For example, around 1 % of all tweets 
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are geotagged (Sloan et al., 2013), i.e., given that around 500 M1 tweets 
are published per day, 5 M among them are geotagged. Flickr does not 
disclose its photo statistics in detail but announces having billions of 
photos already online.2 By aligning geotagged social media content with 
open Volunteered Geographical Information (VGI) systems, such as 
OpenStreetMap (OSM), we could decode social media posts (e.g., tweets, 
images, etc.) to specific places on Earth and, hopefully, to certain 
buildings. However, one should not take social media as a no-cost source 
of information. One should be careful when dealing with social media as 
a primary source of information, where it is a noisy and uncontrolled 
data source. In addition, it is a sparse source, where social media equally 
cover not all spots on Earth. For example, Flickr photos are mainly 
coming from city centers and hotspots. 

1.1. Related work 

Generally, urban land use classification is a challenging task: no 
matter at which spatial level it is performed, inherent ambiguities exist. 
At the most fine-grained level, at the building instance level, it is often 
hard to decide which function a building serves. The task of building 
function classification has been approached with different data sources: 
The most intuitive one is street-level imagery showing the building fa
çades. Alternatively, remote sensing data, especially optical imagery, is 
suited to predict building functions based on roof appearance and spatial 
context. Another potential data source is geotagged social media text 
messages, which can be analyzed with natural language processing or 
with pattern detection in metadata. Last but not least, taxi trajectories, 
mobile network usage, and point-of-interest databases have been used 
for building function classification. The following paragraphs present 
selected publications concerning the different data modalities. 

Several studies investigated the feasibility of building façade images 
to address this problem. There are two primary sources for such ground- 
level image data: first, commercial ground-level data like Google Street 
View or Mapillary, and second, social media platforms like Facebook, 
Instagram, or Flickr. 

Especially Google Street View is a preferred source for this task as its 
data is accessible using an API enabling the user to define the position, 
heading, pitch, and field-of-view. Additionally, Google has its own 
standardized hardware to capture street view images and a tailored 
image processing pipeline to generate high-quality imagery on a large 
scale. In combination with Google Places data, Google Street View data 
allows fine-grained store classification (Movshovitz-Attias et al., 2015). 
This work builds upon Google Map Maker ontology and a GoogLeNet 
architecture trained on a global sample of Google Street view. Access to 
Google Places is limited for research outside of Google, and Google 
Places focuses on points of interest (POIs) and does not include data 
about residential buildings. Alternatively, building footprints from 
OpenStreetMap (OSM) can also have semantic data, including details 
about building functions. This information can be used to label buildings 
shown in Google Street View images and hence, provides an additional 
way to predict land use on a building instance-level (Kang et al., Nov. 
2018). The comprehensive coverage of buildings by Google Street View 
allows multiple images from different perspectives for a single building. 
This data richness can be used in a multi-modal architecture to include 
information from different sides while obtaining the labels from OSM 
(Srivastava et al., 2020). Beyond land use classification information 
encoded in Google Street View images can be used to infer socioeco
nomic characteristics (Gebru et al., 2017) or to map urban green in 
terms of tree detection and positioning (Laumer et al., 2020). 

However, the terms of service of Google Street View prohibit 
scraping, downloading, or storing images obtained using the API. This 
legal constraint limits the applicability of Google Street View data in 

research projects and requires analyzing other data sources, e.g., social 
media image platforms. While Facebook and Instagram do not open 
their data for such purposes, Flickr turned out to be a valuable image 
source. They provide an easily accessible API and encourage their users 
to share photos with creative commons license. While early works on 
land use classification with Flickr images used bag-of-visual-word fea
tures for classification (Leung & Newsam, 2012), more recent studies 
benefited from advancements in computer vision with CNNs and pro
posed land use classification using a scene and an object detection 
stream in parallel (Zhu et al., 2019). On a larger spatial scale, Flickr has 
been used for mapping and understanding landscape aesthetics, either 
manually (Langemeyer et al., 2018) or based on CNNs (Havinga et al., 
2021; Salem et al., 2020). Another field of application is flood-level 
estimation. By formulating this problem as an object detection task 
with Mask R-CNN it has been shown that these images help to predict 
discrete levels of flooding (Chaudhary et al., 2019). If social media im
ages are used for a specific application, dealing with massive variations 
in motifs and scenes is crucial. 

Other data sources with a dedicated purpose but limited spatial 
extent can be a better option in some cases. For example, images from 
Geograph project3 are captured in a systematic way to cover Great 
Britain and Ireland. It aims to have at least one representative image for 
every square kilometer on both islands. These images can be used for 
predicting urban land use in London with object bank features (Fang 
et al., 2018; Li et al., 2010). Apart from Flickr, Twitter is also a social 
media data source providing geo-located information with textual fea
tures. Although Twitter restricted its geotagging feature in June 2019, it 
is still a valuable source of geospatial data (Kruspe et al., 2021). To 
predict building functions, it can be sufficient to have a set of geotagged 
tweets and build a classifier using their metadata (Huang et al., 2018b). 
As tweets contain mainly text, the inherent linguistic features have also 
shown potential to help in urban land use classification on a building 
instance-level (Häberle et al., 2019) as well as on a venue level (Terroso- 
Saenz & Munoz, 2020). Furthermore, geo-located Twitter data reveal 
patterns in language use and provide insights into socioeconomic factors 
when related to demographics (Bokányi et al., 2016). When used in 
combination with Flickr data, a correlation between socioeconomic 
factors and park visits shows up (Hamstead et al., 2018). 

1.2. Contribution 

In this paper, we tackle the problem of building function classifica
tion using social media images. To our best knowledge, this is the first 
method that relates the image content to individual buildings. It works 
on real-world, large-scale image datasets by establishing a rigid filtering 
pipeline that eliminates noisy, irrelevant, and non-geotagged photos. In 
contrast to other works, it is fully automatic and requires no manual 
selection or interaction (Chen et al., 2021b). After that, a Convolution 
Neural Network (CNN) is fine-tuned for a multi-class classification 
downstream task. This study mainly considers three classes of buildings 
from OSM, namely residential, commercial, and other. The main 
contribution of this paper can be summarized in the following points:  

• Building function classification using weakly labeled Flickr images.  
• A content-based automatic filtering pipeline to eliminate irrelevant 

and noisy Flickr photos from large-scale and real-world datasets  
• A human-validated subset of Flickr photos for testing. 

2. Methodology 

Our method uses social media images to classify building settlement 
types. We follow a content-based approach, which can identify the main 
visual patterns for each class. 

1 https://www.internetlivestats.com/twitter-statistics/.  
2 https://www.flickr.com/jobs. 3 https://www.geograph.org.uk/. 
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2.1. Social media image filtering pipeline 

Social media images cover different content and motifs, including 
but not limited to photography, digital art, and cartoons. However, 
given a task like building function classification, most images do not 
help solve the task. For our task, an image must have three features:  

1. Shows a building  
2. Has a valid geotag  
3. Has a known compass orientation 

A filtering pipeline needs to identify all images fulfilling these three 
criteria in a social media image dataset. Additionally, it must account for 
big data to work on datasets with millions of images. 

Fig. 1 shows the pipeline used in this study. It consists of five steps, 
starting with Google Street View similarity filtering and object detection 
filtering. These two steps together ensure that the first criterion is 
matched. We validate geotags in the next two steps: first, with a heuristic 
that discards images whose location is not unique. If another image is at 
precisely the same position, likely, that the geotag was manually edited. 
Second, we download the metadata for each remaining image and check 
if it contains a compass orientation. This step serves as a stricter check 
for the second criterion and ensures the last criterion. Finally, we use the 
geotag for spatial referencing with OSM buildings, including the com
pass direction. 

2.1.1. Google street view similarity filtering 
This first step is a coarse filtering step aiming at finding images that 

are potentially helpful for building function classification. Previous 
studies showed the relevance of façade images to predict building 
functions (Kang et al., Nov. 2018; Srivastava et al., 2020). Therefore, 
this step is formulated as an image retrieval problem with a sample of 
Google Street View images as seed dataset S and a social media dataset 
D. 

Features from deep neural networks are well suited for finding 

structurally similar images. As they aggregate information with every 
layer, the final layers of a network are an abstract representation of the 
whole image. For example, the deep features of VGG16 (Simonyan & 
Zisserman, Apr. 2015) have been successfully applied in different do
mains for image retrieval (Ge et al., Jul. 2018; Ha et al., Aug. 2018; Liu 
et al., 2019; Wang et al., Oct. 2018). 

In this study, features are taken from the last hidden layer of a 
VGG16 network trained on ImageNet (Russakovsky et al., Dec. 2015). 
This process yields feature vectors v ∈ ℝ4096. To assess similarity be
tween pairs of images i1, i2, the cosine similarity scos is calculated based 
on the feature vectors v1, v2: 

scos(v1, v2) =
v1vT

2

‖v1‖‖v2‖
(1) 

For efficient calculation, the features for all images of the seed 
dataset are calculated beforehand. Then, the features for all social media 
images are computed batch-wise, and we calculate the pair-wise cosine 
similarity between the batch and the seed dataset. For each social media 
image in the batch, we save the maximum similarity against all seed 
images, called the similarity parameter psim: 

psim(vs) = max({scos(v1, vs) ,…, scos(vn,vs)} ) (2) 

A threshold tsim is set as a minimum similarity value and all social 
media images with psim < tsim are discarded. 

2.1.2. Object detection filtering 
The previous step is a fast check for structural similarity to a given 

seed dataset but does not ensure that the social media images contain a 
building façade. Therefore, this step uses an object detection algorithm 
to find all objects in the images that passed the previous filter. 

Applying the object detection algorithm yields a list of objects for 
each image. If this list contains either a house or a building it is a 
candidate for passing this filter. Each detected object comes with a size 
relative to the image and a confidence score. Based on these variables, 
there are two thresholds for adjusting if a candidate image passes the 

Fig. 1. Filter pipeline for extracting Street View-like images from Flickr image database.  
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filter: tsize and tscore. Only if there is a building or a house with a size 
parameter psize that is larger than tsize and has a confidence parameter 
pscore higher than tscore the image is passed to the next step. 

2.1.3. Unique location filtering 
The previous steps confirmed that the image content is relevant for 

the given task. Now, this step focuses on the geotag of the image. Geo
tags can be created in two different ways: either automatically by a GPS 
sensor of the camera or manually by the user. 

This filter is a heuristic to identify images that have been manually 
tagged. If users have to pick locations of images by hand, they tend to do 
it batch-wise, tagging multiple images simultaneously. Otherwise, im
ages tagged using a GPS sensor will have slight differences in the posi
tion even if the photographer has not moved. GPS sensors constantly 
update their location estimate based on how many GPS satellites are 
available. Therefore, having two images with precisely the same posi
tion is a strong indicator that their geotag has not been measured by a 
GPS sensor but manually added. In such cases, there is no compass 
orientation in the EXIF data, and hence, this image can be omitted for 
the subsequent step. 

More formally, an image i from a set of images I with location l(i) 
passes this filter if 

∀j ∈ I, j ∕= i∄l(i) = l(j) (3) 

A note on implementation: a sequential scan for each image is not 
feasible to make this step computationally efficient. If naïvely done, the 
geotag for each image needs to be compared with all geotags in the 
database. A geospatial index decreases the necessary checks by 
excluding geotags far away. Using an R-tree (Guttman, 1984) allows us 
to find the images in a very close neighborhood, and a subsequent check 
on true equality is performed only on the geotags of these images. 

2.1.4. Image direction filtering 
This step is based on metadata of images, so-called EXIF data. EXIF is 

a standard established by the Camera and Imaging Products Association 
(CIPA) and the Japan Electronics and Information Technology Industries 
Association (JEITA) (Camera &amp & Imaging Products Association, 
May 2019). It defines fields for saving details about images, including 
the date and time of capturing, camera model, and camera settings. 
Moreover, it specifies how data from GPS sensors can be incorporated. 
This data can be a position of longitude and latitude and a compass 
direction. 

For our pipeline, we assume that the social media database does not 
contain the original images, including the EXIF metadata, but only a 
downsampled variant without original EXIF data. Therefore, we down
load the EXIF data for all images passing the previous filters as an in
termediate step. Once all EXIF data are available, this step checks if the 
tag GPSImgDirection is present and rejects all images that do not have 
this tag. 

Knowing the position where an image was taken is a necessary pre- 
condition, but only with the compass direction, a geospatial reference 
becomes feasible. Both information allows for calculating a line of sight, 
which is crucial for the next step. 

2.1.5. OSM reference building filtering 
This final step establishes a connection between buildings shown in 

an image and their representations in OpenStreetMap (OSM). OSM is a 
Volunteered Geographic Information (VGI) platform meaning that users 
contribute mapping data in a Wikipedia-like style. OSM provides 
guidelines on how this data should be structured and semantically 
enriched, but there is no strict enforcement. Therefore, tags for buildings 
are optional; just the building footprint coordinates are mandatory if 
added to OSM. OSM's guidelines specify three different tags that can be 
added for indicating a building function: building, amenity, and shop. 

To summarize the information from all three tags, we use a mapping 

scheme that assigns each possible value according to OSM's guidelines of 
each tag to one of commercial, residential, and other. If more than one of 
these tags, building, amenity, and shop, is present, we make sure that they 
do not disagree. In case of disagreement, the building is not mapped to 
any class. If only one tag or all available ones agree on the same mapped 
class, then this building gets this class. 

We use position and compass orientation to create a line of sight. All 
buildings' polygons intersecting the line of sight are possible candidates 
for the building shown in an image. We select the building with the 
closest distance to the position as the reference building in the picture 
and set this as parameter pdist. Based on this parameter, we add a fourth 
threshold tdist to analyze the effect of the distance. 

For evaluation, we add another filtering step that discards all images 
assigned to a building without a semantic label. 

2.1.6. Filtering pipeline summary 
Having the pipeline in this order enables a content-first strategy 

while keeping the computational effort low. Additionally, the number of 
hyperparameters is small with four thresholds:  

1. minimum seed similarity tsim  
2. minimum object size tsize  
3. minimum object score tscore  
4. maximum building distance tdist 

2.2. Fine-tuning CNN architectures for building function classification 

To classify buildings shown in the social media images we fine-tune 
six state-of-the-art CNN architectures (DenseNet (Huang et al., Jan. 
2018), InceptionV3, (Szegedy et al., Dec. 2015) MobileNetV2, (Sandler 
et al., Mar. 2019) ResNetV2, (He et al., Jul. 2016) VGG16, (Simonyan & 
Zisserman, Apr. 2015) Xception, (Chollet, Apr. 2017)). Starting with 
weights from ImageNet (Russakovsky et al., Dec. 2015) we applied a 
two-step approach to adapt the models for building function classifica
tion (Hoffmann et al., Jan. 2019). We start with ImageNet models 
without the classification head and add a dense layer with three outputs 
to predict each of the aforementioned homogenized OSM mapping 
scheme: commercial, other, and residential. Please note that we fine-tune 
the models on the Google Street View seed dataset and use social media 
images only for inference to predict building functions. 

As a first step, all layers are frozen, and only the new, randomly 
initialized layer is trained with a learning rate of lr = 10− 4 for at most 16 
epochs. Hence, the new layer is adapted to the current weights, and 
there is no risk of collapsing weights when trained on the entire network. 
A checkpointing mechanism makes sure that after training, the model 
with the lowest validation loss is restored and used for the next step. This 
method prevents overfitting in both steps. 

After convergence of the newly added layer, the whole model is set as 
trainable and fine-tuned in a second step with a learning rate of lr =
10− 5. Again, we apply the checkpoint mechanism and create the final 
model based on the one with the lowest validation loss during training of 
16 epochs. 

2.3. Human label validation 

To validate the labels obtained from OpenStreetMap buildings, we 
asked a group of humans to verify the labels given to an image. Given a 
question if an image contains a commercial/other/residential building, 
they had to choose between three options: yes, unsure, or no. If no was 
selected, users were asked for the correct label in their opinion. 

As our classification scheme does not include mixed-use labels, we 
asked our voters to opt for unsure if no clear label could be assigned. Our 
system requested three votes from different humans for each image to 
make the votes more reliable. Once an image received three votes, it was 
not shown to any other user again. The users were not restricted in the 
number of images to vote on. 

E.J. Hoffmann et al.                                                                                                                                                                                                                            



Cities 133 (2023) 104107

5

3. Experiments 

We first introduce the two datasets used in this study and describe 
the results of the different filtering steps. Moreover, we show the results 
of a Google Street View trained model on filtered Flickr images and dive 
deeper into the prediction performance by including results from the 
human validation setup. 

3.1. Datasets 

We evaluate our method using two datasets: First, a sample of Google 
Street View (GSV) images featuring buildings with known functions, and 
second, a Flickr image dataset captured in 42 cities with global 
distribution. 

3.1.1. Google street view dataset 
The Google Street View dataset consists of 43,392 building facade 

images, distributed to 14,512 commercial, 14,184 other, and 14,696 
residential buildings. We apply a faster R-CNN (Ren et al., Jan. 2016) 
trained on OID v4 (Kuznetsova et al., Jul. 2020) to detect objects on all 
images and discard all images that do not show a building or house. This 
combination of architecture and dataset has the best trade-off between 
accuracy and speed (Huang et al., Apr. 2017). This yields a refined 
dataset of 7698 images (2743 commercial, 2333 other, and 2622 
residential). 

This Google Street View dataset is used in two ways: first, as a seed 
dataset for finding structurally similar images in the social media 
dataset, and second, for fine-tuning state-of-the-art CNN architectures 
on the given task. 

3.1.2. Flickr social media dataset 
We collected Flickr image data in 42 cities across the globe to cover 

different cultures and continents. The images were obtained by querying 
the Flickr API with small random bounding boxes inside these regions of 
interest. With this approach, we harvested 28,818,438 images. 

Table 1 shows the number of images per city. The number of images 
per city correlates with the user distribution of Flickr, so we see the 
highest number of images in London (~4.0 M images). Second, New 
York City has ~2.3 M images, and third, Los Angeles with ~1.9 M im
ages. Except for Dongying, we found more than 5000 images in every 
city. There is evidence that Dongying is a ghost city, meaning that the 
housing capacity outnumbers the number of inhabitants by far (Leichtle 
et al., Nov. 2019). 

3.2. Filtering pipeline results 

We evaluate our pipeline end-to-end by analyzing the effects of the 
four hyperparameters on the F1 score. For an architecture-independent 
evaluation, we calculated the mean probability vectors of all six models 
for each image. Using mean probability vectors of six models eliminates 
artifacts from single models and allows more general conclusions. Fig. 2 
shows the F1-scores and the remaining dataset size as functions of a 
threshold. Computing the F1 score requires working on the final output 
of the pipeline, with each image being assigned to an individual build
ing. Hence, the complete dataset of 100 % is based on 26,381 images, 
8070 labeled as commercial, 9171 labeled as other, and 9140 labeled as 
residential. 

Our analysis is ordered by the appearance of the hyperparameters in 
the pipeline. First, there is the similarity threshold tsim setting how 
similar a social media image must be compared to the seed dataset 
(Fig. 2a). Between 0.70 and 0.80 there is little difference in the resulting 
F1-score: It is almost constant between 0.50 and 0.52. At the same time, 
the dataset size decreases from 100 % to 2 %. The F1 scores show the 
first peak at tsim = 0.83 with an F1 score of 0.70 and a corresponding 
dataset size of 0.08 % (23 images in total). For thresholds higher than 
0.85 F1 scores become unreliable as the number of images is seven or 

less. Figs. 3, 4, and 5 show examples of Flickr images having a psim =

0.50, psim = 0.75, and psim = 0.90. 
Fig. 2b shows how the F1 score is affected by the object detection 

score pscore. The figure starts with tscore = 0.30 because objects with lower 
scores are not reported by the implementation we used. It increases 
slightly starting from tscore > 0.30 with an F1 score of 0.50 up to 0.63 at 
tscore = 0.93. At the same time, the dataset decreases from 100 % to 3.6 % 
(this is equal to 930 images). Setting tscore > 0.965 yields an increase in 
F1 score to 0.70, but with only 0.2 % or 56 images being considered. 

The second parameter from the object detection filtering is tsize, the 
minimum size of the building or house to be found in an image (Fig. 2c). 
Using a threshold tsize = 0.2 yields a F1 score of 0.50. Increasing the 
threshold up to tsize = 0.56 results in a higher F1 score of 0.52, which is 
the highest possible value. Raising the threshold further decreases the F1 
score down to 0.40 at tsize = 1.0. At the peak of tsize = 0.57 the remaining 
dataset consists of 11,234 images (44 %). 

As a last parameter in the pipeline, there is the distance between a 
photographer's position and the next building in the compass direction 
pdist. Fig. 2d depicts the F1 score as a function of the distance. Please note 
that the threshold is an upper limit. Setting tdist = 0.0 yields a F1 score of 
1.0 based on a single image. Increasing to tdist = 2.2 provides a first 
realistic value of 0.48 calculated on 4.8 % of the dataset. Raising the 
threshold further to tdist = 40.32 results in the highest possible F1 score 
of 0.52. At this point, 13,999 images, 69 % of the dataset, are included. 
Higher thresholds lead to a slight decrease of the F1 score down to 0.50 
at tdist = 222. 

Table 1 
Number of Flickr images per city.  

City #Images 

Amsterdam 1,147,657 
Beijing 358,393 
Berlin 929,508 
Cairo 110,297 
Cape Town 165,848 
Changsha 8051 
Cologne 610,185 
Dongying 153 
Guang Zhou 81,585 
Hong Kong 964,733 
Islamabad 9779 
Istanbul 259,141 
Jakarta 204,792 
Kyoto 668,547 
Lisbon 463,992 
London 3,978,803 
Los Angeles 1,979,163 
Madrid 709,029 
Melbourne 661,921 
Milan 735,996 
Moscow 569,651 
Mumbai 140,495 
Munich 391,798 
Nairobi 32,262 
Nanjing 24,411 
New York City 2,351,955 
Paris 1,344,000 
Qingdao 11,960 
Rio De Janeiro 425,874 
Rome 570,033 
San Francisco 1,744,662 
Santiago 269,656 
Sao Paulo 729,197 
Shanghai 330,229 
Shenzhen 51,893 
Sydney 730,823 
Tehran 21,999 
Tokyo 1,361,486 
Vancouver 834,973 
Washington D.C. 1,139,602 
Wuhan 25,754 
Zurich 288,903  
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Fig. 2. Effect of filtering pipeline parameters on prediction results and remaining dataset size.  

Fig. 3. Sample for Flickr image having a psim = 0.50.  
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Overall, the hyperparameters do not have too much influence on the 
prediction quality. We see that the F1 score is primarily stable at around 
0.5. Just in the case of strict thresholds, there are some exceptions: e.g., 
setting tscore = 0.965 yields an F1 score of 0.70. Adjusting thresholds has 
more effects on the dataset size: On the one hand, fixing too strict 
thresholds yields a low number of images. On the other hand, this has a 
significant effect on the runtime of the whole pipeline. The more images 
a filter step at the beginning, the higher the overall computational time. 
This trade-off needs to be taken into account when applying the filtering 
steps. 

Table 2 illustrates the number of images remaining after each 
filtering step when setting tsim = 0.70, tscore = 0.3, tsize = 0.2 and tdist =

250. Additionally, it shows how long it takes to process a single image in 
a filter step in our setup. While the exact times will change with different 
setups, the relative comparison allows an assessment of the 
effectiveness. 

Similarity filtering reduces the remaining images to less than 6 % of 
the original dataset at high speed. Discarding all images that do not 

show a house or a building yields 891,861 images (3.09 % of all images 
in the original dataset). However, this second step of content filtering 
takes more than 25 times longer than the similarity check. 

Ensuring that there is no other image from the same location filters 
out 743,731 images, which indicates that almost half of all images were 
manually tagged. Utilizing a spatial index makes this step the fastest of 
all filtering steps with 0.2 milliseconds, a hundred times faster than the 
similarity check. Out of the remaining 457,670 images, 88,593 have a 
compass orientation, which is 0.31 % of the original dataset. This step 
requires downloading additional data using the Flickr API; it takes 1.33 
s. Please note that most of the time is spent waiting for the subsequent 
API request to prevent being blocked by the platform (1 s). 

Checking if an OSM building footprint is within the line of sight kept 
73,207 images, and limiting this to labeled OSM buildings gave 26,381 
images. This result is 0.09 % of the whole dataset. This step again uses 
the spatial index, which results in the second-fastest check of all steps. 

There can be more than one image per building, and several images 
cover especially touristic landmark buildings. The 6955 images from our 
filtering pipeline were mapped to 18,759 buildings. 5962 of them are 
commercial, 5138 are other, and 7659 are residential. 

3.3. Prediction results 

Table 3 summarizes the performance of all fine-tuned models on an 
image level. Class-wise they behave similar with higher recall values on 
commercial and other labeled images and a higher precision value for the 
residential class. One exception in this pattern is VGG16, which has the 
highest precision score for other. The mean F1 score for commercial is 
0.51, which is slightly higher than the F1 score for other, 0.47, and 
residential, 0.37. 

Residential buildings can appear as single-detached houses, town
houses, apartment blocks, or skyscrapers. While the first two forms of 
residential buildings are easy to predict, the latter can be easily confused 

Fig. 4. Sample for Flickr image having a psim = 0.75.  

Fig. 5. Sample for Flickr image having a psim = 0.90.  

Table 2 
Number of Images remaining after each Filtering Step when using tsim = 0.70, 
tsize = 0.2, tscore = 0.3, and tdist = 250. Execution time per image sample in 
seconds.  

Filtering step #Images % of 
dataset 

Execution time 
[s] 

Flickr LCZ42 Dataset 28,818,438 100.00 %  
Similarity filtering 1,635,592 5.68 %  0.0236 
Object detection filtering 891,861 3.09 %  0.6319 
Unique location filtering 457,670 1.59 %  0.0002 
Image direction filtering 88,593 0.31 %  1.3333 
OSM building in line-of-sight 73,207 0.25 %  0.0008 
Labeled OSM building in line-of- 

sight 
26,381 0.09 %   
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with the other two classes. This hypothesis is one possible explanation 
for why we see a high precision for residential buildings but a lower 
recall. 

All architectures show similar performance on the social media 
dataset. Concerning the weighted average, the Densenet121 and VGG 
models show the best F1 score of 0.47, but the worst model has an F1 
score of 0.45 (Resnet50). Hence, the prediction errors are not model- 
specific but rather data issues. Figs. 6 and 7 illustrate positive and 
negative examples of building function prediction using nearby Flickr 
images. The façade of a restaurant near Hong Kong is correctly predicted 
as commercial (Fig. 6a), which matches the overall building function 
from OSM. Likely, the large Chinese characters are a highly distinctive 
feature. Fig. 6b is an interesting example showing that the prediction 

works on greyscale images as well. The church in the center of London is 
correctly predicted as other. The single-detached house in Fig. 6c is an 
ideal example of a residential building in the suburbs of Melbourne. 
However, the building is pictured from the side with a different 
perspective than Google Street View images, yet it is predicted as resi
dential. All three photos show a perfect, real-world example for each 
class, i.e., a single building with a clear function in the center of the 
photo. Although the model was trained on Google Street View images, it 
can cope with different cultures, greyscale images, and changes in 
perspective. In the end, the model predicted the correct class for each 
building. In contrast to these examples, Fig. 7 shows three photos that 
are predicted with a different class than the actual label from OSM. The 
first example in Fig. 7a depicts an image centered in the sky and has 
some houses at the bottom. The image is mapped to a bar called The 
Royal Oak in London and hence, it is labeled as commercial. However, 
based on the image content, the DenseNet model predicts the buildings 
as other. A cross-check with Google Street View reveals that the compass 
direction is slightly off and the photo is mapped to the building, which is 
cut off at the right side. Hence, in this case, the image is mapped to the 
wrong building. Fig. 7b shows an image, which is mapped to a other 
building, but the model predicts it as a commercial one. This is a 
borderline case in our classification scheme: We define a train station as 
other because we see it as a part of public infrastructure. However, as 
most train systems are organized as companies, predicting it as com
mercial is also theoretically possible. Of course, the machine learning 
model is simply looking for image features to define class borders and in 
this case, the large sign a the top of the image is a strong hint toward a 
commercial usage. Finally, Fig. 7c depicts an image that is labeled as 
residential. Despite this label, the image shows the front of a famous 
restaurant in New York City. It is located on the ground floor of a multi- 
story apartment house. Hence, the model's prediction is plausible from 
the image content but it misses the rest of the building and its pre
dominant function. This is a limit of a single-label classification scheme, 
which cannot reflect mixed-used buildings. We investigate this data 
quality issue with the labels in the next section. It investigates the effect 
of OSM labels on classification performance based on human verifica
tion of the labels. 

Fig. 8 shows an example of Flickr images and their corresponding 
buildings from OSM in the city center of Mumbai, India. Only eleven 
buildings are annotated with a function while the majority of buildings, 
37, in red have no semantic annotation at all. This illustrates the po
tential of our method: Although social media images are an 

Table 3 
Prediction results of fine-tuned Google Street View models on filtered Flickr 
images and on human validated subset. Class labels are abbreviated as high
lighted in bold: Commercial, Other, Residential, and Avg stands for the weighted 
average based on the number of samples.  

Architecture Metric class Filtered images Human-validated images 

F1 Prec Rec F1 Prec Rec 

DenseNet121 Com  0.52  0.43  0.66  0.76  0.65  0.91 
Oth  0.49  0.49  0.50  0.76  0.77  0.76 
Res  0.43  0.60  0.34  0.64  0.82  0.51 
Avg  0.47  0.50  0.481  0.72  0.75  0.73 

Inceptionv3 Com  0.51  0.44  0.61  0.76  0.68  0.91 
Oth  0.51  0.45  0.58  0.74  0.67  0.76 
Res  0.39  0.63  0.28  0.55  0.87  0.51 
Avg  0.46  0.50  0.48  0.68  0.73  0.70 

MobileNetv2 Com  0.49  0.45  0.54  0.76  0.72  0.81 
Oth  0.51  0.45  0.61  0.74  0.67  0.82 
Res  0.44  0.62  0.34  0.61  0.80  0.49 
Avg  0.46  0.50  0.48  0.71  0.73  0.71 

ResNet50v2 Com  0.48  0.43  0.55  0.73  0.67  0.81 
Oth  0.45  0.44  0.46  0.69  0.70  0.68 
Res  0.45  0.53  0.40  0.58  0.65  0.53 
Avg  0.45  0.45  0.45  0.67  0.67  0.67 

VGG16 Com  0.53  0.45  0.64  0.74  0.64  0.86 
Oth  0.35  0.58  0.25  0.61  0.87  0.47 
Res  0.55  0.52  0.58  0.68  0.62  0.74 
Avg  0.47  0.49  0.47  0.67  0.72  0.68 

Xception Com  0.53  0.42  0.69  0.75  0.64  0.91 
Oth  0.48  0.48  0.49  0.70  0.69  0.71 
Res  0.40  0.63  0.29  0.62  0.85  0.48 
Avg  0.46  0.50  0.47  0.69  0.73  0.70  

Fig. 6. Examples of Flickr images with correct predictions for the building functions.  
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opportunistic data source, they can still help to close gaps in VGI data 
sources. In this example, they could add additional geospatial knowl
edge to 70 % of the identified buildings. 

3.4. Label verification results 

For this experiment, we selected a random subset of 1500 social 
media images with OSM labels, 500 from each class, to be validated by 
humans. As we required three votes for each image, we understood how 
difficult the task is for a person seeing only the image and the label. Out 
of 1500 images, 756 images have total agreement on their label, and 744 
received inconsistent votes. 

Full agreement includes three unsure votes as well, so in Fig. 9 we 
focused on the images that received a clear vote, either correct or wrong. 
Overall, the accuracy of OSM is 69 %, but there are subtle differences 

between the three classes. Commercial has 63.5 % correct labels, which is 
the lowest value of all classes. On the other hand, residential images show 
72.5 % correctness with other being similar (71.3 %). 

To assess our models' true performance, we evaluate our models on 
the subset of images that received either complete agreement on the 
existing label or an entire agreement on a new label. The right part of 
Fig. 3 shows the F1 score, precision, and recall for this subset. The 
patterns concerning precision and recall described above are the same, 
but all values improved by 0.2. 

Hence, our models yield good results if applied to clear data. In this 
case, the Densenet121 model yields the best F1 score of 0.72, with 
MobileNetV2 being second. The VGG16 model is among the worst, with 
an F1 score of 0.67, while it showed up in the first place on the filtered 
dataset. The Densenet121 model has the best generalized essential fea
tures for building function classification. 

Fig. 7. Examples of Flickr images that yielded an incorrect prediction compared to the building label.  

Fig. 8. Map of Flickr images in Mumbai spatially aligned with buildings. Magenta lines indicate the line of sight from an image toward a building. Buildings are 
colored based on their function as described in OpenStreetMap. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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A big source of error is unclear, mislabeled, or mixed-used buildings. 
Considering that almost half of the images in the human-validated 
subset did not receive any consistent vote from humans, the perfor
mance of these models is sensible. 

4. Discussion 

4.1. Ambiguity of the task 

Our simple classification schema of commercial, other, and residential 
works best if buildings have such a clear function. In historically grown 
city centers, mixed-use buildings are more common, with a retail store 
on the ground floor and apartments on the upper floors. Our three 
classes reach their limits and result in an error source in these cases. 
Especially if there is a large sign above the ground floor advertising a 
retail store, this will likely cause a misclassification. Additionally, the 
other class is not well defined. Serving as an alternative if none of com
mercial or residential truly fit, there are a lot of different patterns pointing 
to the same final decision. This fuzziness makes it hard for a CNN to 
predict this class. 

4.2. Missed images in filtering pipeline 

Although we sampled our Google Street View image dataset on a 
global scale, there are most likely types of buildings that are not covered. 
This lack will result in discarded images, although it shows a building 
and contains valuable geographic information. However, the prediction 
would likely be wrong in this case as the seed dataset for filtering, and 
the training dataset for fine-tuning are identical. Hence, there would be 
no benefit in including this image. Possible mitigation could be a more 
sophisticated sampling algorithm that includes rare building types. 

The same applies to the object detection algorithm. If there are 
building types that were not in the training dataset of OID, images can be 
filtered out despite having a building inside, which would be correctly 
predicted. 

4.3. Correctness of OpenStreetMap labels 

OSM's primary goal is to provide an open geoinformation service for 
users to orientate, navigate, and find places of interest (POIs) for their 
needs. Therefore, commercial and other buildings providing any service 
for society are more likely mapped than residential buildings that have 
no general purpose. Residential buildings are often bulk mapped so that 
certain neighborhoods show a high level of completeness, while others 

do not have any building footprint at all. 
Additionally, building functions may change: what used to be a 

church becomes an apartment building or is abandoned. The validity of 
labels depends on the activity of OSM's contributors. Hence, in regions 
with many active contributors, labels will be more up-to-date than in 
regions with very few contributors. 

Last but not least, in areas with few active local contributors like 
Africa, OSM buildings are mostly mapped by remote users looking at 
aerial imagery and drawing building polygons accordingly. There will 
most likely be no semantic labels at all in such cases. 

4.4. Completeness of OpenStreetMap building footprints 

As a VGI platform, the completeness of OpenStreetMap buildings 
polygons varies a lot. If a building footprint in OSM is missing, our al
gorithm may assign an image to a building that is actually behind the 
one it shows. 

4.5. Reference building calculation 

Several images show street view perspectives, including more than 
one building. In such cases, our line-of-sight algorithm will check which 
building is the building of the image. Buildings on the left and the right 
will be ignored. 

5. Conclusion and outlook 

This study proposes a content-first filtering pipeline for social media 
image datasets to extract geospatial information on building functions. 
By applying five filtering steps, we can find relevant images with valid 
metadata for the given task and relate them to buildings within the line 
of sight. The order of the filter steps ensures scalability on large image 
databases. Moreover, our pipeline has only four hyperparameters for 
balancing runtime, and the number of images yielded without strong 
influence on final prediction results. Based on human validation of our 
image labels from OSM, we show that the limiting performance factor is 
rather the data quality of OSM labels than the models used for pre
dictions. The resulting image dataset with corresponding OSM building 
IDs and labels is published as a benchmark dataset for urban land use 
using social media images and weak OSM labels. Additionally, we pro
vide the human-validated subset with high-quality labels based on three 
independent votes. 

In urban planning, this pipeline could be used for automatic checks if 
planned and actual building functions differ. Therefore, it can be used as 
a tool for gap analysis and land use optimization (Zhang & Huang, 
2015). Moreover, building function classification is only one application 
among others. The resulting images from this pipeline enable studies on 
the attractiveness of buildings by the number of images. Analyzing the 
image content allows gathering insights into the parts and perspectives 
that are interesting to visitors. Hence, this poses a backward commu
nication channel for a concept known as urban planning as communi
cation (Innes & Booher, 2015). Further potential applications are the 
validation of existing VGI data, e.g., map data in OSM (Hoffmann et al., 
2020) or labeling remote sensing data (Chi et al., 2017). Moreover, so
cial media images go beyond the scope of Google Street View: while the 
latter is bound to streets, social media images can be taken from any 
position. Hence, there are no occlusions from trees, but rather it can 
retrieve images from pedestrian zones or other areas that are inacces
sible to cars. These images can be used for improved LOD 2 and 3 
building models with high-resolution textures and architectural details 
on balconies, windows, or doors. Such high-quality models are the basis 
for digital twins of cities, which will enhance the realization, operability, 
and management of cities (Shahat et al., 2021). Last but not least, with a 
different seed dataset, the pipeline allows for relating arbitrary images 
to objects on maps. Such objects could be trees for mapping urban green 
or infrastructures like street lights or fire hydrants. 

Fig. 9. Results from human validation of OSM labels as confusion matrix with 
only full agreement of human voters. 
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Our pipeline still has many opportunities for refinement. While the 
cosine similarity measure against a seed dataset ensures fast processing 
speed, this image retrieval task can be enhanced with more sophisticated 
algorithms taking different aspects of an image into account (Chen et al., 
2021a). One of the most rigid filtering steps is discarding all images 
without a compass orientation. Recent approaches that estimate the 
compass orientation based on aerial imagery could be of help to close 
this gap (Regmi & Shah, 2019; Shi et al., 2020; Vo & Hays, 2016). As the 
last step, we relate the image to a building using a line-of-sight. Fortu
nately, the EXIF metadata contains data about the focal length opening a 
possibility to calculate all buildings within the field of view. An image 
could be separated into patches with different buildings found during 
the object detection step. This step could yield predictions for many 
buildings from one image. Moreover, our classification scheme with 
commercial, residential, and other focuses on the most crucial classes for 
population estimation and disaster management. A more fine-grained, 
multi-level scheme could provide more insights into urban develop
ment, e.g., education, transportation, and health care. Another possible 
direction could be introducing multi labels to consider mixed-use 
buildings. 
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