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Abstract
Parkinson’s disease (PD) is a common progressive neurodegenerative disorder with motor and nonmotor symptoms. Recent 
studies demonstrate various susceptibility loci and candidate genes for familial forms of the disease. However, the genetic 
basis of the familial form of early-onset PD (EOPD) is not widely studied in the Iranian population. Therefore, the present 
study aimed to investigate the possible causative genetic variants responsible for developing EOPD among Iranian patients. 
Iranian patients with a clinical diagnosis of Parkinson’s disease were evaluated, and 12 consanguineous families with at 
least two affected individuals with early-onset PD (EOPD) were chosen to enroll in the present study. An expert neurologist 
group examined these families. Whole-exome sequencing (WES) was performed on PD patients, and the possible causative 
genetic variants related to the development of PD were reported. Exome sequencing (WES) was performed on every PD 
patient and revealed that patients had novel genetic variants in PRKN, PARK7, and PINK1 genes. All the genetic variants 
were in homozygous status and none of these variants were previously reported in the literature. Moreover, these genetic 
variants were “pathogenic” based on bioinformatic studies and according to the American College of Medical Genetics 
(ACMG). The present research revealed some novel variants for EOPD among the Iranian population. Further functional 
studies are warranted to confirm the pathogenicity of these novel variants and establish their clinical application for the 
early diagnosis of EOPD.
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Introduction

Parkinson’s disease (PD) is a common progressive neuro-
degenerative disorder with a considerable global burden. 
The estimated prevalence is reported to be 12.9 million by 

2040 (Dorsey et al. 2018; Trist et al. 2019). The main motor 
symptoms of PD are stemmed from the loss of dopaminergic 
neurons in the substantia nigra caused by the accumulation 
of Lewy bodies in the midbrain neurons (Trist et al. 2019). 
PD patients also develop a variety of nonmotor impairments 
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because of the involvement of other brain areas (Miller and 
Cronin-Golomb 2010). Interaction of both environmental 
and genetic risk factors is responsible for the development of 
PD (Dorszewska 2013). Pathogenic variants in fifteen genes 
(SNCA, LRRK2, VPS35, GBA, RAB39B, PRKN, PINK1, DJ-
1, ATP13A2, PLA2G6, DNAJC6, SYNJ1, FBXO7, VPS13C, 
PTRHD1) have been firmly established as genetic causes in 
PD (Guadagnolo et al. 2021).

Moreover, genome-wide association studies (GWAS) and 
linkage studies introduce novel candidate genes as risk factors 
of PD (Grenn et al. 2020). Among the several causative vari-
ants reported for autosomal recessive PD, PARK2 (PRKN), 
PARK6 (PINK1), and PARK7 (DJ-1) are the most common 
causes of early-onset PD. In addition to the rare mutations, 
common susceptibility variants like single-nucleotide poly-
morphisms (SNPs) are reported in some specific genes, 
including LRRK2 and SNCA (Bonifati et al. 2002). However, 
the genetic variants identified thus far explain only a minor-
ity of PD heritability (Ohnmacht et al. 2020). Up to now, 
the genetic diagnosis of the majority of PD patients remains 
unresolved.

Moreover, heritability has been tackled through different 
approaches within the last years, and recent line of evidence 
suggested common variants with moderate/weak effect sizes 
on PD susceptibility. Even more, next-generation sequencing 
studies (mostly whole-exome sequencing (WES)) identified 
rare causative mutations in a different population (Pierce 
et al. 2020). The genetic architecture and mutational spec-
trum of PD varies based on the ethnic and genetic back-
ground of the population (Gandhi et al. 2005). Therefore, 
recent population-specific and large-scale genomics stud-
ies focused on inter-individual variations, especially PD 
endophenotypes (Gandhi et al. 2005; Yemni et al. 2019; 
Li et al. 2020). Integrating WES and functional evidence 
in PD revealed several novel candidate genes, especially in 
early-onset PD (EOPD), suggesting that a broad spectrum 
of genetic variants is linked to EOPD (Yemni et al. 2019; 
Li et al. 2020). Consanguineous marriage is an old tradition 
in Iranian culture, constituting a considerable percentage of 
marriages in Iran (Hosseini-Chavoshi et al. 2014). Therefore, 
the increase of genetic homozygosity in specific populations 
causes the appearance of rare mutations in recessive diseases 
(Bittles 2010). To date, there are still limited studies on the 
genetic architecture of EOPD among the Iranians, which are 
considered among understudied populations in genome stud-
ies. Wide-scale genomic studies in such populations were 
usually costly and decreasing the cost of genotyping stud-
ies is balancing the studies over every population revealing 
novel genetic variants (Mulder et al. 2020; Dehghani et al. 
2021). Therefore, to address the gaps in knowledge about the 
genetics of EOPD in the Iranian population, we performed 
an extensive WES screening of the common and rare genetic 
variants causing familial EOPD among consanguineous 

Iranian families from mainland Iran. In addition, we also 
examined the clinical features of those patients to understand 
the connection between genotype and clinical phenotype.

Materials and Methods

Participants

The present study has been approved by the ethics commit-
tee of Mashhad University of Medical Sciences and took 
place in the neurology and neurogenetic clinics of Ghaem 
Hospital (Mashhad, Iran) and the academic center for educa-
tion and culture genetic counseling clinic (Khorasan branch, 
Mashhad Iran). As part of a large multi-center study, we 
chose our main study population with EOPD from a data-
base of 500 clinical records of Iranian patients with clini-
cal diagnoses of PD. Among these patients, 52 patients had 
familial EOPD with consanguineous marriage. Thirty five 
patients agreed to undergo complete neurological exami-
nation and underwent WES. Figure 1 describes the study 
flowchart and the number of novel and previously reported 
variants related to PD.

PD diagnosis was confirmed by two expert neurologists 
(ASH and MSH) based on MDS clinical criteria for clini-
cally established PD (Postuma et al. 2015). Different poten-
tial clinical findings of patients were evaluated based on a 
variety of clinical rating scales including Unified Parkin-
son’s Disease Rating Scale 1, 2, and 3 (UPDRS1, 2, and 3) 
(Goetz et al. 2007), Hoehn and Yahr (1967), the Schwab and 
England Activities of Daily Living scale (Schwab 1969), 
EuroQol 5D 5L (EQ-5D5L) (Group TE 1990), Epworth 
sleepiness scale (Johns 1994), Alertness section of MSQ 
Mayo Clinic Sleep scale (Boeve et al. 2011), Freezing of 
gait scale (Boeve et al. 2011), Non-Motor Symptom scale 
(NMSS) (Boeve et al. 2011), Beck Anxiety Inventory (BAI) 
(Leentjens et al. 2011), Beck Depression Inventory (BDI) 
(Leentjens et al. 2011), Frontal Assessment Battery (FAB) 
(Leentjens et al. 2011), Montreal Cognitive Assessment 
(MoCA) (Nasreddine et al. 2005), and Starkstein Apathy 
Scale (Starkstein et al. 1992). Early-onset PD was consid-
ered the initiation of the primary symptoms before 50 years 
of age. Among the patients with EOPD, 12 families with at 
least two affected individuals were enrolled in the present 
study. Selected families had a history of consanguinity and 
mainly were from eastern parts of Iran, and they belonged 
to different ethnicities including Fars, Kurd, and Baluch. 
All participants provided their written informed consent to 
participate in this study. Content and procedures of written 
information consent were inspected thoroughly within the 
ethics approval procedure. The study protocol adhered to 
the Declaration of Helsinki. The patients’ genomic DNA 



Journal of Molecular Neuroscience 

1 3

were isolated from whole blood, using standard procedures 
(Miller et al. 1988).

Whole‑Exome Sequencing

The probands (one affected individual per family) underwent 
whole-exome sequencing WES at the sequencing core of 
Helmholtz Center Munich (Munich, Germany). Paired-end 
100-bp libraries were prepared from lymphocyte-derived 
genomic DNA and captured using the SureSelect Human 
All Exon v6 kit (Agilent Technologies, CA, USA) accord-
ing to the manufacturer’s protocol. Samples were run on 
a HiSeq4000 (Illumina, CA, USA), generating on aver-
age ~ 10 Gb of uniquely mapped reads. Average coverage 
was ~ 100-fold, with ~ 97% of the target sequences covered 
at least 20-fold. Data processing was performed with the 
validated in-house pipeline, which implements Burrows-
Wheeler-Aligner for sequence mapping (GRCh37/hg19) 
and SAMtools, GATK, ExomeDepth (CNV detection), and 
custom scripts for variant calling and annotation (Plagnol 
et al. 2012a). CNV detection was performed by Exome-
Depth (ver 1.1.15) R software package. The software uses 
read depth for calling CNVs from BAM files and compared 
with our reference set. The reference set for the ExomeDe-
pth considered 10 healthy individuals with Iranian decent 
(Plagnol et al. 2012b). Copy number variations formally 
known as deletion, duplication, and normal copies in every 
exon and the Bayes factor representing the likelihood ratio 
of CNVs to normal copies were calculated. CNVs with high 
Bayes factor were more likely to be true positive. Common 
CNVs among patients and reference were excluded. The 
CNVs were interpreted based on the Database of Genomic 

Variants and Database of Chromosomal Imbalance and  
Phenotype in Humans Using Ensembl Resources (DECI-
PHER). After quality control and removing sequencing 
artifacts, we filtered data for non-synonymous variants and 
insertions-deletions (indels). The minor allele frequency 
(MAF) threshold was considered 0.1%, using control data 
from gnomAD (Karczewski et al. 2020), and in-house exome 
collections consisted of 20,000 samples with mean age of 
49.6 years (male:female of 1:2). Prioritized variants were 
visually verified with the Integrative Genomics Viewer and 
the analysis did not screen repeat expansions. At first, every 
gene listed in the Parkinson’s Disease and Complex Parkin-
sonism (version 1.108) panel was screened (the genes were 
listed in Supplementary Table 1) (Martin et al. 2019). In the 
next step, to check other possible variants, we performed 
the filter algorithm based on the frequency of the remain-
ing variant, its impact, and pathogenicity. In order to evalu-
ate the clinical significance of variants, publicly available 
databases including the Human Gene Mutation Database  
(HGMD) (Stenson et al. 2003), Varsome (Kopanos et al. 2019),  
and ClinVar (Landrum et al. 2018) were used. Pathogenic-
ity prediction tools including Polymorphism Phenotyping  
v2 (PolyPhen-2) (Adzhubei et al. 2013), Sorting Intolerant  
from Tolerant (SIFT) (Sim et al. 2012), MutationTaster2 
(Schwarz et al. 2014), Mutation Assessor (Reva et al. 2007), 
PROVEAN (Choi and Chan 2015), and Combined Annota-
tion Dependent Depletion (CADD) (Rentzsch et al. 2019) 
were used to predict the impact of variants on structure and 
function in protein and messenger RNA (mRNA). For splice  
site variants, MaxEntScan (http:// holly wood. mit. edu/ burge lab/  
maxent/ Xmaxe ntscan_ score seq. html) algorithm was used 
which implements the maximum entropy distribution 

Fig. 1  The study flowchart 
indicating the final number of 
reported novel and previously 
known genetic variants causing 
PD

http://hollywood.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html
http://hollywood.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html
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approach. The delta consensus values of 20% or more is 
considered significant based on empirical studies (Houdayer 
et al. 2008). Also, all the candidate variants were assessed 
for population frequency in the Iranome database, which 
includes information on the frequency of variants in the data 
of 800 exome cases from the eight main ethnic groups in 
Iran (http:// www. irano me. ir/). Variants considered likely 
related to the patient’s phenotype were confirmed by Sanger 
sequencing and the identified variants were sequenced in all 
available family members.

Sanger Sequencing and Segregation Analysis

Probands and at least three members per family were 
sequenced for variant validation and segregation studies. 
All the primers were designed by online Primer3 software, 
and PCR products were amplified under standard condi-
tions. ExoSAP-IT™ (Applied Biosystem, Foster City, CA, 
USA) was used to purify the amplicons. Sanger sequencing 
was performed on the ABI 3500 genetic analyzer platform 
(Applied Biosystems) using the Big-Dye Terminator v3.1 
Cycling Sequencing Kit (Applied Biosystems). Sequence 
data were analyzed and aligned with reference sequences 
using SeqScape™ Software v4.0 (Thermo Fisher Scientific, 
Waltham, MA, USA) and Chromas Lite v2.01 software.

Results

Among the patients with familial EOPD, most were male 
(9 versus 3 patients), and the mean ± standard deviation 
age of the study participants was 37.08 ± 6.06 years. Most 
of the participants were non-smokers (84%), non-alcohol 
users (92%), non-caffeine users (84%), and non-opium users 
(92%). Genetic variants and the results of clinical findings 
of patients with novel mutations are summarized in Table 1.

WES of 12 consanguineous EOPD families revealed 12 
homozygous variants in three genes linked to autosomal 
recessive PD. All the probands were offspring of consan-
guineous marriages. Among the 12 pedigrees, six families 
(50%) had homozygous variants in PRKN gene (c.8del, 
c.171G > C, c.412 + 1G > T, c.356_357del, c.429C > A, 
and c.534 + 1G > T), two families (17%) had homozygous 
variants in PARK7 gene (c.192 + 1G > C and c.181del), and 
homozygous variants in PINK1 gene (c.669del, c.1223del, 
c.1124-2A > T, and c.488del) were found in four families 
(33%). Half of all variants were frameshift deletion causing 
a premature termination site in the protein sequence. One 
third of all patients had splice site substitution that disrupts 
the mechanism of exon–intron splicing with delta consensus 
values greater than 20% (Supplementary Table 2). Also, we 
demonstrated that two families (17%) had a missense variant 
and a family harboring a nonsense variant which makes a 

premature stop codon. All the 12 patients had novel homozy-
gous variants in PRKN, PARK7, and PINK1 genes. Accord-
ing to ACMG criteria, only one family was found with a 
likely pathogenic variant (c.171G > C) and the remaining 
families had pathogenic variants (Tables 2 and 3). There 
were no CNVs detected in Parkinson-related genes among 
the study population. The patient’s family pedigrees appar-
ently were autosomal recessive and these inheritance pat-
terns were approved by the variants in the mentioned genes. 
Furthermore, segregation analysis by Sanger sequencing in 
at least three available members of each family demonstrated 
strict genotype–phenotype correlation for all variants. Fam-
ily pedigrees and the status of their genotype in related mem-
bers are shown in Fig. 2 and Supplementary Fig. 1.

The patients’ genetic variants and their clinical pheno-
types based on the questionnaires score and demographic 
data are summarized in Table 1.

Discussion

The present study revealed 12 novel genetic variants in 
PINK1, PARK7, and PRKN genes in 12 Iranian consan-
guineous families with EOPD. The present study revealed 
that most of the patients with EOPD had variants in PRKN 
gene. PRKN encodes a protein which is a component of 
multiprotein E3 ubiquitin ligase complex. Mutation in 
PRKN gene has been linked to the development of PD 
and autosomal recessive PD. Although different mutations 
inherited as homozygous or compound heterozygous forms 
cause PD phenotype, rare heterozygous mutations have 
also been related to an increased risk of developing EOPD 
(Lesage et al. 2008). Similar findings have been reported 
for heterozygous variants in other genes, including PINK1, 
which was the second most common gene with pathogenic 
variant (Marder et al. 2010). Patients carrying homozy-
gous or compound heterozygous mutations in PRKN 
develop cardinal signs of PD at an earlier age. These 
patients may develop further clinical symptoms includ-
ing dystonia or show coexisting comorbidities including 
depression and other psychiatric disorders (Hayashi et al. 
2000). Even the patients in the same family may develop 
variable PD phenotype following the loss of PRKN func-
tion (Hayashi et al. 2000). Therefore, the patients may 
show different ages of onset, progression, presentations, 
and even responses to treatment with the same genetic 
mutation (Hayashi et al. 2000). Lücking et al.’s study on 
EOPD patients carrying PRKN gene mutation demon-
strated that patients with missense mutations did not have 
different clinical manifestations from those with truncating 
mutations, suggesting that other genetic or environmental 
factors may contribute to the PD phenotype of patients 
(Lücking et al. 2000). Although the initial mutations of 

http://www.iranome.ir/
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PRKN gene were large homozygous deletions, missense 
and small deletion/insertion have also been reported in the 
literature (Mata et al. 2004). A study in the Japanese popu-
lation demonstrated that among 184 PD patients, PRKN 
gene deletions are present in 40% of patients younger than 
40 with a family history of PD. They also demonstrated 
that none of PD patients older than 40 did not carry PRKN 
gene deletions. Moreover, half of the patients with PRKN-
related PD did not have any consanguinity and heredity 
(Ujike et al. 2001). Our study demonstrated that half of 
the Iranian families with EOPD had homozygous vari-
ants in PRKN gene (c.8del, c.171G > C, c.412 + 1G > T, 
c.356_357del, c.429C > A, and c.534 + 1G > T) which 
have not been previously reported in other populations. 
Although genetic variants in PRKN have not been widely 
studied in the Iranian population, studies on other popu-
lations including Hispanics reported that 255delA is the 
second most common mutation in PD patients. Ten percent 
of Hispanic PD patients who were younger than 40 or had 
a recessive pattern for PD had 255delA homozygous muta-
tion in the PRKN gene (Muñoz et al. 2002). Other ethnic 
populations, including the Caribbean Hispanic population, 
did not report such a frameshift mutation, suggesting the 

255delA mutation as an ancestral European mutation 
(Periquet et al. 2001).

The PINK1 was the second gene carrying novel variants 
in our Iranian population. PINK1 is the second most com-
mon gene responsible for autosomal recessive EOPD after 
PRKN (Gandhi and Plun-Favreau 2017). The gene encodes 
a protein called PTEN-induced putative kinase 1 which is 
located in the mitochondria. The two specific regions of this 
protein, which are the kinase domain and mitochondrial-
targeting motif domains, are crucial for the appropriate func-
tion of the protein in human cells (Zhou et al. 2008). Most 
of the genetic alterations in PINK1 eliminating the kinase 
domain lead to loss of function of the protein and develop-
ment of mitochondrial malfunction. Our study demonstrated 
four patients with novel homozygous mutations in PINK1 
(c.669del, c.1223del, c.1124-2A > T, and c.488del) which 
none of them were previously reported in the literature. All 
of the four variants were located in the kinase domain of 
PTEN protein which is linked to the development of PD 
phenotype. Either homozygous or compound heterozygous 
mutations in PINK1 mutation cause a disease resembling 
sporadic PD with akinetic rigidity responding to levo-
dopa (Gandhi and Plun-Favreau 2017). Similar to PRKN 

Table 2  List of genetic variants identified in 12 Iranian families

Hom, homozygous

Family ID Gene Location Transcript cDNA Protein Zygosity Novelty ACMG ACMG 
criteria

F01 PRKN 
(PARK2)

Chr6 
162,864,505

NM_004562.3 c.8del p.Val3GlyfsTer41 Hom Yes Pathogenic PVS1, PM2, 
PP1

F02 Chr6 
162,864,342

c.171G > C p.Gln57His Hom Yes Likely 
pathogenic

PM1, PM2, 
PP1, PP3

F03 Chr6 
162,683,556

c.412 + 1G > T –––– Hom Yes Pathogenic PVS1, PM2, 
PP1

F04 Chr6 
162,683,612

c.356_357del p.Leu119ArgfsTer7 Hom Yes Pathogenic PVS1, PM2, 
PP1

F05 Chr6 
162,622,268

c.429C > A p.Tyr143Ter Hom Yes Pathogenic PVS1, PM2, 
PP1

F06 Chr6 
162,622,162

c.534 + 1G > T –––– Hom Yes Pathogenic PVS1, PM2, 
PP1

F07 PARK7(DJ1) Chr1 8,025,486 NM_001123377.1 c.192 + 1G > C –––– Hom Yes Pathogenic PVS1, PM2, 
PP1

F08 Chr1 8,025,474 c.181del p.Ala61GlnfsTer28 Hom Yes Pathogenic PVS1, PM2, 
PP1

F09 PINK1 Chr1 
20,964,616

NM_032409.3 c.669del p.Asn223LysfsTer12 Hom Yes Pathogenic PVS1, PM2, 
PP1

F10 Chr1 
20,975,094

c.1223del p.Gly408AlafsTer6 Hom Yes Pathogenic PVS1, PM2, 
PP1

F11 Chr1 
20,974,996

c.1124-2A > T –––– Hom Yes Pathogenic PVS1, PM2, 
PP1

F12 Chr1 
20,964,435

c.488del p.Gly163ValfsTer22 Hom Yes Pathogenic PVS1, PM2, 
PP1
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mutations, patients with heterozygous mutations in PINK1 
are more likely to develop PD phenotype. However, in con-
trast to homozygous patients, the heterozygous tend to have 
milder clinical PD phenotype and later age of onset (Hedrich 
et al. 2006). Homozygous mutations in PINK1 genes causing 
PD have been reported in multiple cohort studies on different 
populations. A study on 414 PD patients who were negative 
for PRKN mutations from 13 Asian countries demonstrated 
that 10 PD patients from 9 families had PINK1 mutations. 
The frequency of homozygous mutation in PINK1 in fami-
lies with autosomal recessive PD was reported to be 4.26% 
(Kumazawa et al. 2008). Other large studies from Europe 
demonstrated similar findings regarding the role of homozy-
gous mutations of PINK1 in the development of EOPD 
(Valente et al. 2004, 2001).

The third gene carrying novel genetic variants in EOPD 
was PARK7. Alongside PRKN and PINK1, PARK7 is a gene 
that is responsible for most cases of autosomal recessive 
PD in a common biological pathway (Taipa et al. 2016). 
The gene encodes DJ-1 causing levodopa-responsive par-
kinsonism with juvenile or early onset (Delva et al. 2021). 
Although the mechanism of developing PD in patients car-
rying PARK7 mutations is not widely studied, there are 
some different activities suggested for the normal DJ-1 
protein. The main function of the protein is acting as a gly-
oxalase for restoring the function of proteins damaged by 
oxidative stress (Andreeva et al. 2019). Moreover, the pro-
tein plays an important role in maintaining mitochondrial 
function in responding to reactive oxygen species and also 
protects neurons from oxidative stress (Dolgacheva et al. 
2019). PD patients with PARK7 mutations may have dis-
rupted oxidative stress response to electron transport chain 
dysfunction in the mitochondrion. Therefore, the negative 
effect of reactive oxygen species and dyshomeostasis of iron 
results in damaging of dopaminergic neurons (Chin et al. 
2021). While only two patients (17%) in our study carried 
novel mutations in the PARK7 gene (c.192 + 1G > C and 
c.181del), other studies reported much less prevalence. The 
prevalence of EOPD caused by PARK7 has been reported 
to be less than 1% in the USA (Kasten et al. 2018). Both 
the missense and truncating mutations in PARK7 cause 
complete lack or inactivation of the DJ-1 protein which is 
responsible for specific PD phenotype with early leg dys-
tonia, slow disease progression, and favorable response to 
levodopa (Bonifati et al. 2003). Most of the patients affected 
with PARK7 mutations age between 24 and 40 years but 
earlier presentations have also been reported (Taipa et al. 
2016). Similar to sporadic PD, PARK7-related EOPD 

patients may develop dense Lewy bodies in intralaminar 
regions of the thalamus and predominant Lewy bodies in 
deep cortical layers (Taipa et al. 2016).

Limitations

Although analysis of exome data is not the accurate way 
of studying CNVs, further molecular diagnostic techniques 
including multiple ligation probe assay (MLPA) (although 
both using ExomeDepth and MLPA study copy numbers, 
using MLPA is more accurate) and genomic array should be 
considered to validate the absence of CNVs. One of the limi-
tations of our study is the lack of using such confirmatory 
methods because of financial shortcoming. Moreover, for the 
splice site variants, and variants that have not finished com-
plete co-segregation analysis within corresponding families, 
the computational studies were considered, and alongside of 
the other reported variants in our population, we believe that 
further functional studies and replication in larger samples 
for confirming our findings are warranted.

In conclusion, this paper represents 12 new mutations in 
patients with EOPD. The present study is the first research 
on patients with EOPD in the Iranian population, which has 
a high rate of consanguineous marriages. Further researches 
with bigger sample sizes are recommended to investigate 
the prevalence of these new mutations in different regions 
of Iran and to clarify their phenotype-genotype association.
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