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ARTICLE INFO ABSTRACT

Keywords: Thermal bridges are weak points of building envelopes that can lead to energy losses, collection of moisture,
Building analysis and formation of mould in the building fabric. To detect thermal bridges of large building stocks, drones with
Thermal bridges thermographic cameras can be used. As the manual analysis of comprehensive image datasets is very time-
Drones

consuming, we investigate deep learning approaches for its automation. For this, we focus on thermal bridges
on building rooftops recorded in panorama drone images from our updated dataset of Thermal Bridges on
Building Rooftops (TBBRv2), containing 926 images with 6,927 annotations. The images include RGB, thermal,
and height information. We compare state-of-the-art models with and without pretraining from five different
neural network architectures: MaskRCNN R50, Swin-T transformer, TridentNet, FSAF, and a MaskRCNN R18
baseline. We find promising results, especially for pretrained models, scoring an Average Recall above 50 %

Deep learning
Computer vision
Object detection

for detecting large thermal bridges with a pretrained Swin-T Transformer model.

1. Introduction

The emissions of carbon dioxide (CO,) from the operation of build-
ings have increased to their highest level yet to around 27% of total
global energy-related CO, emissions [1]. Thermal energy is particularly
pertinent as more than half of global household energy use is for space
and water heating [2]. A common reason for heat losses of buildings
are thermal bridges. Thermal bridges are areas of the building envelope
with low thermal resistance that conduct heat faster from the warmer
inside to the colder outside than adjacent areas. Reasons for this are
the geometry of constructions, different thermal conductivities of used
materials, or air leaks of the building envelope. Energy losses caused
by thermal bridges can make up to one third of the transmission heat
loss of an entire building [3]. Moreover, they may lead to dampness
and mould growth, which in the long term degrades the building
fabric and is associated with health concerns caused by poor indoor
air quality. For buildings inhabitants, thermal bridges also can lead to
uncomfortable spaces due to cold interior surfaces [4,5].

To detect thermal bridges, thermography is currently the state-of-
the-art [6]. Recording thermographic images with a terrestrial cam-
era is a method that has been used for building audits and thermal
bridge detection for many years [7]. Classical terrestrial thermography,
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though, lacks the ability to record rooftops or other parts of high build-
ings inaccessible from the ground [8]. Moreover, manually recorded
thermographic images are not suitable for efficiently analysing the
thermal quality of multiple buildings within a short time due to the
time-consuming nature of the method and property rights, which only
allow the capturing of street-views without owner permissions to enter
properties [9,10]. The analysis of many buildings at urban scales,
however, is becoming increasingly in demand. Examples include the
development of retrofit plans for whole city districts like Community
Energy Strategic Planning in the USA [11], Community Energy Plan-
ning in Canada [12], Positive Energy Districts in Europe [13], and
“energetische Quartierskonzepte” in Germany [14].

To use thermography in urban environments, Unmanned Aerial
Vehicles (UAVs, drones)! can be used for the scalable and automated
recording of building images [8]. In this work, we compare the ability
of five popular, state-of-the-art neural network architectures to auto-
matically detect thermal bridges in aerial panorama images obtained
using drones. In doing so, we also investigate the benefits of utilising
additional height map information. We focus exclusively on thermal
bridges of building rooftops as they can be exceptionally well captured
from the aerial perspective. To perform this investigation, we utilise
open-source computer vision libraries and analyse an updated Thermal
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Bridges on Building Rooftops (TBBRv2). We have made the dataset,
code, and all neural network configurations used in this work pub-
licly available on Zenodo [15] and https://github.com/Helmholtz-AlI-
Energy/TBBRDet.

2. Related work

Non-stationary thermography with automated thermal bridge detec-
tion software has been investigated to speed up and simplify the process
of building audits for large building stocks. In 2018, Garrido et al. [16]
performed a study where they placed an infrared camera on the roof
of a vehicle to record images of a building facade at an angle of 45°.
They used an automatic detection approach and characterised thermal
bridges based on geometric properties, measured temperature differ-
ences, and the calculation of the thermophysical properties of the linear
heat transfer. The proportion of false positive detected thermal bridges
was 45%, the proportion of missing thermal bridges was 32%, and the
dataset used to evaluate the methodology only includes three images
shown in the publication. Macher et al. [17] also installed an infrared
camera on a vehicle. They intended to detect windows and thermal
bridges by taking geometric and thermal characteristics into account
and by modelling a thermographic 3D point cloud. For identification
they used an iterative histogram approach to analyse global and local
temperature maxima. They were able to reliably detect thermal bridges
between floors and under balconies, and most windows could also be
recognised automatically. The authors stated that windows located on
the ground floor or basement are difficult to extract due to the limited
field of view of the camera. Windows behind plants or objects cannot
be detected in this way either. No quantitative information was given
on the precision of the used algorithm.

A disadvantage of thermography with terrestrial vehicles is that no
rooftops and only low facades facing the street can be analysed. Drones
overcome this limitation. Due to their almost unlimited mobility, the
entire outer envelope of a building can be recorded. In addition,
the interference due to facade covering by e.g. trees or pedestrians
walking past is reduced. Therefore, research is increasingly focusing
on non-stationary thermographic audits by drones. Dios and Ollero [18]
attempted to automatically detect and quantify heat losses through win-
dows after a thermographic survey of buildings with a drone helicopter.
They created heat maps of thermal images and defined a temperature
difference of more than 7°C to the facade as a criterion for a thermal
bridge. Thermal irregularities were then classified according to their
temperature distributions. This approach was suitable for detecting
thermal bridges on windows, however it lacked the precise quantitative
information for evaluating the results. Furthermore, this approach is
not suitable for a fully automated evaluation. Rakha et al. [19] used
a drone with a thermal camera to visually identify areas of thermal
anomalies on building envelopes. They worked with a manual temper-
ature thresholding approach and automatic edge filtering to generate
a 3D model of a building with its detected thermal bridges. They state
the overall precision of their algorithm of about 75%. Mirzabeigi and
Razkenari [20] used thermographic cameras installed on a drone to
collect close-up images from building sites. They designed a drone flight
path for data collection and implemented a computer vision algorithm
working with a dynamic thresholding approach to identify thermal
anomalies of the building envelope. The study lacks in quantitative
information on the quality of the thermal anomaly detection approach.

In all the aforementioned non-stationary thermography studies,
thresholding and histogram approaches were applied. While they are
applicable to close-up images, they encounter problems in panorama
settings, which record multiple buildings and infrastructure in between
with varying angles. There is a high likelihood of falsely identify
thermal bridges coming from thermal anomalies in the background of
buildings or to miss true thermal bridges with irregular shapes due to
the varying recording perspectives. To detect thermal bridges only on
buildings or specific building parts, like rooftops, a segmentation step
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to extract the building or building parts from the rest of the image
is usually required, which is computationally expensive for images
covering large areas such as a city district.

Supervised learning methods can aid in improving thresholding
approaches. Utilising manually annotated training data, they are able
to generalise and automatically annotate thermal bridges in previously
unseen aerial images. Recently, Barahona et al. [21] used a camera
on a car vehicle to detect thermal anomalies on building envelopes,
such as thermal bridges, trained on 2000 labelled infrared images. They
achieved a precision score of 89.2% and recall of 75.6% on a test dataset
of 1184 infrared images. They used supervised learning with a linear
model for panorama images to identify those containing anomalies, but
segmented the anomalies and particular building components manually
in a second, non-trained step to complement their results. Kim et al.
[22] focused on terrestrial thermographic images and employed a
neural network approach to detect thermal bridges. The study used
a multi-step method including thermal anomaly area clustering, fea-
ture extraction, and an artificial-neural-network for thermal bridge
detection. The average precision and recall of the detected thermal
bridges for eight test images was 89% and 87%, respectively. However,
the images used in the study are also close-ups of buildings and not
panorama images.

Studies using deep learning approaches to detect thermal bridges on
aerial thermographic panorama images are not known to the authors. In
this study, we present deep learning neural network based approaches
for detecting thermal bridges on panorama drone images on rooftops
without building part segmentation. In doing so, we build on a previous
publication [23] in which the authors presented the first results of
the Al-based detection of thermal bridges on rooftops. To maximise
the quality of our automated thermal bridge detection results, we use
and compare multiple neural network architectures with and without
pretraining on an open access dataset.

3. Methods and materials
3.1. Dataset

The dataset used in this study is an updated version of Thermal
Bridges on Building Rooftops (TBBRv2) [15], consisting of five channels
which are combined RGB? and thermal panorama drone images with a
height map. Fig. 1 shows the RGB, thermal, and height map channels of
an example image. The raw images for the dataset were recorded early
in the morning in March 2019 in the inner city of Karlsruhe, Germany.
All images are panorama images that, in addition to the actual objects
of interest (buildings), also show the surrounding environment and
infrastructure, such as streets, people, cars, trams, and trees.

The recorded area contains six large city perimeter blocks of roughly
20 buildings per block. Each building appears in the dataset around
20 times from different angles due to a high overlap rate during the
recording process. The images were recorded with a normal (RGB) and
a FLIR-XT2 (thermal) camera on a DJI M600 drone and are converted
to a constant format of 2680 x 3370 pixels. Each image contains GPS
information and flight altitudes (between 60-80 m above ground).

TBBRv2 contains 926 panorama images and annotations of 6927
thermal bridges on rooftops, split into train and test subsets. The
training subset covers five building blocks recorded on 723 images with
5614 annotations, the test subset covers one building block recorded
on 203 images with 1313 annotations. The updated TBBRv2 dataset
provides more precise annotations due to better overlaps of the five
information channels. These annotations only include thermal bridges
that are visually clearly identifiable by experts, and thus also include
thermal bridges that are not annotated due to being unclear. Because of

2 RGB (Red Green Blue) images contain an information channel for each
colour.
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Fig. 1. Example annotations from the TBBRv2 dataset for RGB (left), thermal (centre), and height map (right).

image overlap, each thermal bridge is annotated on average about 20
times from different angles. The original TBBR dataset was published
on Zenodo [24], full details of the image recording and dataset creation
procedure can be found in Mayer et al. [23].

3.2. Object detection libraries

For the experiments in this paper, two popular computer vision
libraries were used: Facebook AI Research’s Detectron2 (v0.6) [25]
and OpenMMLab’s MMDetection (v2.21.0) [26]. Both of these libraries
offer a framework within which object detection neural networks can
be implemented, evaluated, and visualised. Our intention is to utilise
popular, open-source libraries which offer ready-to-use, state-of-the-art
(SOTA) object detection neural network architecture implementations.
Given the significantly larger choice of object detection model imple-
mentations available in MMDetection, this library was used as the main
implementation platform for the performed experiments in this work.
Detectron2 was used only for comparing the results of this study to for-
mer results achieved with the TBBRv1 dataset [23]. There is otherwise
no significant difference between the two libraries’ capabilities.

3.3. Neural network architectures

While the specific implementations of object detection architectures
varies, they predominantly follow the same procedure of first extracting
meaningful features from the input image, and then translating these
into task-specific predictions. Specifically, one can divide the compo-
nents into a backbone to extract meaningful representations (feature
maps) from the image pixels, a neck which is commonly used to further
extract features for handling objects of different sizes/scales within the
image (feature pyramid), and a head which uses the extracted features
to make the output predictions [27]. In addition, there is generally a
region proposal mechanism, which selects specific regions of interest
within an image for the head to focus its predictions on. How these
components are arranged and implemented in practice we will refer to
as the framework.

For the first experiments in this work, performed using Detectron2,
a MaskRCNN framework [28] with a ResNet-18 (R18) [29] backbone is
used.® This is chosen for a direct comparison with that of Mayer et al.
[23].

For the second experiments using MMDetection, of the implemented
frameworks and backbones available, we consider only those with
available pretrained models, as is required in our experiments. We first
select a MaskRCNN with a ResNet-50 (R50) backbone for our base-
line. The MaskRCNN R50 is a standard baseline comparison in object
detection tasks. We then selected the following for comparison with
the baseline: Swin-T Transformer [30], TridentNet [31], and Feature

3 The 18 in ResNet-18 here indicates the number of convolutional layers
within the neural network.

Selective Anchor-Free (FSAF) [32], with the explanation for each choice
detailed in the following.

Transformer-based computer vision networks have outperformed
popular object detection and instance segmentation benchmarks in
recent years. In particular, the Shifted Windows (Swin) Transformer
[30] and its variants, such as the Swin-V2 [33] and DINO [34], have
dominated the popular Common Objects in Context (COCO) [35] ob-
ject detection and instance segmentation benchmarks. In this work,
the Swin-T transformer is tested as an alternative backbone for the
MaskRCNN, which is roughly equivalent in size to a ResNet-50. An
illustration of a Swin Transformer architecture is shown in Fig. 2.

Given the angled view of building rooftops in TBBRv2, the dataset
contains different sized instances of same thermal bridges across mul-
tiple images. The TridentNet [31] architecture attempted to adapt the
standard ResNet backbone of the Faster-RCNN framework [36] to be
scale-aware.* We hypothesise that this will offer an advantage over the
regular convolutions used in the baseline model.

The FSAF [32] model is a near-SOTA, single-shot, anchor-free
framework, which unlike the Mask/FasterRCNN-based approaches,
does not separate the region proposal and feature extraction stages.
This has the advantage of removing the dependence on anchor boxes,
whose predefined sizes will determine which objects in an image are
processed at which scale (which feature map they are associated with).
As with the scale-awareness issue that TridentNet attempts to address,
this anchor dependence causes the same thermal bridge object, cap-
tured at different distances across multiple images, to be redundantly
processed by different feature maps within the network. FSAF instead
allows the model to dynamically learn the most appropriate feature
map.

4. Experimental procedure

The experiments in this work are divided into two parts: first we
demonstrate, using Detectron2, the performance improvements due to
the updated TBBRv2 dataset and investigate the benefits of the height
map inputs, then, using MMDetection, we explore the various object
detection frameworks outlined in Section 3.3 to determine the optimal
model and performance. An example of the experiment workflow for
the pretrained MaskRCNN R50 baseline from MMDetection is shown
in Fig. 3. In line with Mayer et al. [23], Average Recall (AR) scores
averaged over the intersection over union (IoU) range 0.5700.95 on the
test set are used to assess model performance. The AR score is defined
as the ratio of correctly identified thermal bridges to all present thermal
bridges. The IoU ranges which define what is considered an identified
thermal bridge follow those of the commonly used COCO benchmark
for object detection [35]. The reported AR score in all cases is that with

4 Scale-awareness means that a model is able to recognise the same object
at different scales (sizes) in an image as being the same object, rather than
learning each size as its own individual object.
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Fig. 2. Swin architecture overview. The input image is divided in 4 x 4 patches, which are then projected into a linear embedding and passed through successive Swin transformer
blocks and patch merging layers until the final output representation of the image which is used to produce thermal bridge predictions. Image adapted from Liu et al. [30], where

full details of each component can be found.
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Fig. 3. Example experiment workflow for a pretrained MaskRCNN R50.

the highest AR for the top 100 detections per image (ARQ100) across
all training epochs. As the Average Precision (AP) penalises finding
unannotated but correct thermal bridges, this metric is unsuitable for
the TBBR dataset and not used here.

Five trainings are performed for each architecture tested, and the
results are used to produce a mean and standard deviation.® We set
the following five (randomly chosen) seeds to initialise the neural
network weights, listed here for reproducibility: 3000, 10117, 10001,
20770001, 1008111. The same five seeds are used for all architecture
trainings. The deterministic flag of MMDetection is also enabled
in all experiments to maximise reproducibility. In all cases, the same
pixel mean and standard deviation input normalisations are used as in
Mayer et al. [23].

All trainings are performed on a single node of the HoreKa super
computing system, located at Karlsruhe Institute of Technology (KIT),
with four NVIDIA A100 40 GB GPUs in a data-distributed [37] manner.
The nodes are reserved exclusively for each individual training and we
report the total computing time and energy consumption [38] of the
nodes used during training. Full details of all training configurations,
along with the code used for training and evaluation, can be found
at https://github.com/Helmholtz-Al-Energy/TBBRDet. Node hardware
specifications are shown in Table A.3.

5 While five trainings is not enough for a statistically significant standard
deviation, this does provide a useful insight into the fluctuation in performance
due to the random seed.

4.1. Detectron2 experiments

The experiments begin with an investigation into the improvements
given by the updated alignments in TBBRv2. For this, the MaskRCNN
R18 is configured according to Mayer et al. [23], running with the
random seed used in that work (56689614). We follow this up with
an ablation study in which we remove the height map data from the
inputs. All other hyperparameters® are kept fixed, and the five random
seeds described above used to estimate the variance in performance.
Our aim is to investigate the benefit of height map information in en-
suring predicted thermal bridges are located only on building rooftops
and not on street level.

4.2. MMDetection experiments

In these experiments, a baseline model is trained using the MMDe-
tection library. For this, the MaskRCNN framework with a ResNet-50
backbone is used. The baseline is trained both from scratch and us-
ing pretrained models from the MMDetection model zoo, trained on
the popular computer vision benchmark Common Objects in Context
(COCO 2017) [35]. The COCO dataset contains scenes with everyday
objects in their regular context. We use it as model pretraining for two

6 Hyperparameters are all parameters used to configure the architecture
and training procedure that are not derived during the training itself. For
example the number and type of layers in the network architecture, the
random initialisation seeds, etc.
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Fig. 4. Example predictions from MaskRCNN R50 baselines, numbers show model prediction scores. Left predictions are based on trainings from scratch and right predictions are
based on trainings with pretraining. The top row shows predictions based on trainings with the full RGB + Thermal + Height inputs and bottom based on trainings of the RGB +

Thermal ablation study.

reasons: first, OpenMMLab provides COCO pretrained versions of all
models implemented in MMDetection, enabling accessible reproduction
of our work, and second, the large corpus of everyday objects requires
identifying edges, colour changes, etc., which, when finetuned on
TBBRv2, we expect will transfer well to identifying thermal bridges on
objects.

Using the baseline, the height map ablation study performed with
Detectron2 is repeated. Based on both of these experiments’ results,
we determine the utility of the height map inputs, and proceed with
training several other MMDetection architectures for comparison with
the baseline.

Given the lack of a validation subset in TBBRv2, for all MMDetection-
based experiments we forego hyperparameter optimisation, instead
using the model configurations as-is wherever reasonably possible,
making changes only to accommodate for the image sizes and extra
input channels of our dataset. In particular, for multi-scale trainings,
i.e. where inputs images are randomly resized as a form of data
augmentation, we adjust the scales to their equivalent from our image
sizes. All models are trained for a maximum of 36 epochs. In cases when
the memory consumption exceeds that of the GPUs used (e.g. for the
Swin Transformer), we use FP16 half precision’ (floating point 16) for
the neural network weights. According to the benchmarks of mixed
precision trainings provided by MMDetection [26], this has a negligible
impact on overall performance.

7 IEEE 754-2019 [39] compliant binary representation of floating numbers
using 16 bits, 1 for the sign, 5 for the exponent and 11 for the significant.

5. Results and discussion

In the following, we present the results of all experiments. We note
here that these results are qualitative, in that they allow one to deduce
thermal bridge locations and sizes across a large area. Due to high
distances (>20 m) and varying recording angles of the drone relative
to the buildings, a precise quantitative measurement of the thermal
bridges cannot be made [40]. The interpretation of detected thermal
bridges, e.g. for characterising them in terms of their risk of mould
formation, energy losses, retrofit costs, or retrofit benefits, must be
performed in a further step, for example using the methods presented
by Mayer et al. [41].

Test results for the bounding box and segmentation AR scores, total
node energy consumption in Megajoules (MJ) [38], and computing
time in minutes are shown in Tables 1 and 2. We report the AR scores
according to the standard object detection COCO benchmark [35]. The
total AR is averaged across an Intersection-over-Union (IoU) between
the predicted and ground truth thermal bridges of 0.5 10 0.95, at different
numbers of top-N (by prediction confidence) predictions: 1, 10, and 100
predictions. An additional score separation into medium (AR_m) and
large (AR_1) objects is also given, for objects with an area between
32? and 967 pixels and greater than 962 pixels, respectively. The scores
for small detection regions (less than 322 pixels) are not shown as they
contain no thermal bridges. In the following subsections interpretations
are given for the results of each architecture.
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Energy usage and bounding box Average Recall scores for each model’s training. The ablation column indicates whether height information was excluded from the input. The
MaskRCNN R18 architectures were trained using Detectron2. MaskRCNN R18* indicates the model initialised with random seed 56689614, used by Mayer et al. [23]. The best

results are marked in bold.

Architecture Pretrained Ablation Energy (MJ) Time (min) AR@1 AR@10 AR@100 AR_m@100 AR_1@100
MaskRCNN R18* 20.5 205.5 0.060 0.169 0.169 0.119 0.250
MaskRCNN R18 20.00 +0.20 205.3+0.5 0.061 + 0.002 0.165 + 0.007 0.166 + 0.006 0.129 £ 0.007 0.227 £ 0.010
v 19.42 +0.10 199.7 +0.6 0.060 + 0.005 0.170 £0.010 0.170 +£ 0.010 0.130 + 0.020 0.230 £ 0.010
3.00+0.03 39.5+0.6 0.072 £ 0.008 0.270 £ 0.020 0.308 + 0.008 0.270 + 0.020 0.380 +0.010
MaskRCNN R50 v 2.83£0.01 356+04 0.076 + 0.008 0.310 + 0.020 0.370 £ 0.010 0.350 + 0.020 0.420 +0.010
v 2.91 +0.03 38.1+0.4 0.060 +0.010 0.260 + 0.040 0.304 + 0.007 0.280 + 0.020 0.350 +0.020
v v 274 +0.01 345+04 0.068 + 0.004 0.290 + 0.030 0.360 + 0.020 0.350 £ 0.020 0.400 £ 0.020
Swin-T 7.90 +0.10 1253+ 1.3 0.069 + 0.003 0.239 +0.007 0.318 + 0.004 0.290 +0.010 0.370 £ 0.010
v 7.09 +0.03 107.3+£19 0.089 + 0.006 0.380 + 0.020 0.454 +0.007 0.430 +0.010 0.507 + 0.007
TridentNet 4.92 +0.08 577+ 1.0 0.031 £ 0.003 0.140 £ 0.010 0.215 +0.007 0.160 + 0.010 0.311 £0.010
v 4.70 +£0.10 51.9+0.8 0.060 +0.010 0.210 £ 0.040 0.300 + 0.050 0.220 + 0.050 0.420 £ 0.070
FSAF 10.20 £ 0.09 103.7 £ 0.3 0.049 + 0.008 0.150 + 0.020 0.248 +0.008 0.223 + 0.006 0.300 + 0.010
v 10.00 +0.10 102203 0.070 +0.010 0.270 + 0.020 0.380 +0.010 0.370 + 0.020 0.410 £ 0.020
Table 2

Segmentation Average Recall scores for each model’s training. As both FSAF and TridentNet are object detection architectures only and do not perform instance segmentation,
they have no scores to report. Note that the FSAF and TridentNet are object detection frameworks and hence only predict bounding boxes. MaskRCNN R18* indicates the model
initialised using the seed 56689614 used by Mayer et al. [23]. The best results are marked in bold.

Architecture Pretrained Ablation AR@1 AR@10 AR@100 AR_m@100 AR_1@100
MaskRCNN R18* 0.040 0.094 0.094 0.069 0.134
0.037 +0.003 0.086 + 0.002 0.086 + 0.002 0.067 + 0.004 0.119 + 0.006
MaskRCNN R18 v 0.036 + 0.001 0.089 + 0.003 0.090 + 0.003 0.073 £ 0.008 0.118 +0.004
0.047 + 0.005 0.179 +0.008 0.201 + 0.009 0.190 + 0.010 0.225 +0.008
v 0.047 £ 0.005 0.190 + 0.020 0.219 + 0.008 0.217 £ 0.006 0.230 £ 0.020
MaskRCNN RS0 v 0.041 + 0.009 0.160 + 0.020 0.191 £ 0.009 0.190 £ 0.010 0.210 + 0.020
v v 0.040 + 0.003 0.180 + 0.030 0.220 + 0.020 0.230 + 0.020 0.220 + 0.030
Swin-T 0.046 + 0.002 0.153 +0.005 0.206 + 0.004 0.203 + 0.006 0.220 + 0.007
v 0.054 + 0.004 0.230 + 0.020 0.280 +0.010 0.280 + 0.010 0.280 + 0.020

5.1. Detectron2 experiments

Comparing the bounding box average recall (AR@100) of the
MaskRCNN R18* from Table 1 with that reported in Mayer et al.
[23] of 9.4% (14.4% for large regions), we see an almost doubling
of the performance. Given all else was equal, we can attribute this
improvement to the improved annotations in TBBRv2 alone. Looking
then at the training of the same model with the five random seeds,
we see that they are relatively consistent with the MaskRCNN R18*
result. We also observe that the ablation study results without height
information are in agreement with those using the full RGB + Thermal
+ Height inputs, though we do note several falsely predicted thermal
bridges on ground-level in the ablation trained model. Given there
are only a small number of ground-level predictions, and that there
appears to be no significant changes to the overall AR scores, we
would therefore expect such false predictions to disappear given a
larger training dataset. This is important, as the height map creation
procedure used [42] is non-trivial, and therefore an obstacle to the ease
of use of the preprocessing during the training procedure.

An interesting finding in the trainings using Detectron2 is the high
energy consumption used during training. This was primarily due to
extensive training times, which we found difficult to reduce, even when
leveraging many dataloader processes to minimise data-loading times.
While further expert optimisations are certainly possible to bring this
down, we regard this result as a rather significant point against the
ease-of-use factor when considering the Detectron2 library.

5.2. MaskRCNN Rb50 baseline

In all metrics, we observe agreement between the full and ablation
trainings without height information. This holds for both trainings from
scratch and those using a pretrained model. Fig. 4 shows an example
of the predictions on a sample image from the test dataset for all
training scenarios. Similar to the Detectron2 trained MaskRCNN R18,
we observe several predictions on ground level in the ablation trained
models. For this reason, we proceed with the remainder of experiments
in this work using the full RGB + Thermal + Height input. However, as
the ground-level predictions only detect 16 unique objects appearing
across 23 images within the entire test dataset for the ablation training
from scratch, we again believe that a larger labelled training dataset
would resolve this and allow the RGB + Thermal information to be
sufficient. We also observe a significant improvement in performance
given by the pretraining, including a 5%t07% higher score for all
AR@100 metrics.

The AR scores significantly outperform the MaskRCNN R18, almost
doubling the AR@100. While this is likely due to the increased model
size, i.e. more layers, we also note the drastically lower energy con-
sumption due to a significant speedup observed in model training time.
This demonstrates an excellent overall out-of-the-box performance of
the MMDetection library.

5.3. Comparison with baseline

The pretrained Swin-T transformer achieves the highest AR by a
significant margin. Interestingly, the from-scratch training (without
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pretraining) only scores as well as the baseline. Transformer-based
models are notoriously memory-hungry, and we see this reflected in
a longer overall training time and hence larger energy consumption.®

The TridentNet architecture performs worse than the baseline on
all metrics. We found that the pretrained model was especially unsta-
ble during training, regularly suffering from exploding gradients (and
hence loss values), only stabilising when the learning rate was turned
down an order of magnitude from the default 0.02 to 0.002.

FSAF also performs worse than the baseline in the from-scratch
training, but the same when pretrained. Due to its ResNet-101 back-
bone, the training times were significantly longer, something we see
reflected in the fact that it has the largest energy consumption of all
MMDetection trainings.

Overall, the use of COCO [35] pretrained model weights proved
to be an advantage regardless of the architecture. We therefore rec-
ommend this as an essential component in thermal bridge detection
when utilising learned object detection approaches, and suggest it as an
avenue of investigation for further improving detection performance.

6. Conclusion and outlook

The detection of thermal bridges on building rooftops can be au-
tomated by using deep learning approaches on thermographic images.
For aerial panorama images, the main advantage of neural networks in-
stead of computer vision approaches working with temperature thresh-
olds is the ability to learn identifying building parts of interest and to
include changing shapes of thermal bridges due to different recording
angles.

In this study, the best results were achieved with the MMDetec-
tion library using a pretrained Swin-T Transformer model, scoring
an Average Recall of 50.7% for large thermal bridges. Overall, we
find consistently better results for pretrained models than for models
without pretraining. Moreover, this work showed the ability of neural
networks to propose predictions of thermal bridges only on rooftops
by using height information to the input images. While this work
has demonstrated promising results in identifying individual thermal
bridges from drone images, we believe there is still significant potential
for improvement with a larger annotated dataset. A larger dataset
would allow for the allocation of a validation subset, enabling tuning
of hyperparameters to improve training performance.

While no existing works target the detection of thermal bridges
on aerial panorama images with deep learning approaches, we can
compare our results with other existing thermal bridge detection proce-
dures. Barahona et al. [21] achieved an Average Recall of 75% for the
binary classification of images containing thermal anomalies, however
they segmented the anomalies as a subsequent manual step, something
that our approach automates entirely. Kim et al. [22] used a multi-
step procedure on close-up images to achieve an Average Recall of 87%,
which does not deal with the presence of multiple buildings and non-
building objects within images. However, both of these works, the latter
in particular, represent an optimal benchmark that may be achieved by
our approach with the larger dataset proposed above.

Our scoring for this work has only considered the raw Average
Recall score across each individual image, yet the images are not inde-
pendent and instead contain significant overlap. We therefore propose
in future to consider the scores across all instances of the same thermal
bridge. For this, it is possible to track instances across all images
containing the same thermal bridge or to set a threshold for requiring
at least two detections of a thermal bridge to count it [43]. Identifying
which thermal bridges are matching instances, however, would result
in additional effort when creating the dataset.

Further improvements can also be made in the pretraining proce-
dure, which has already proven successful in improving performance.

8 Memory itself is has a substantial power draw.
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Performing additional pretraining on existing UAV datasets, such as
UAVDT [44] or iSAID [45], is one example that would closer align the
pretrained models with the TBBR images. Self-supervised pretraining,
used with great success in BERT [46], performed on the larger set of
unannotated TBBR images presents another avenue for investigation.

Despite these limitations of our study, we believe we have provided
important insights into the benefits of deep learning for automated
building analysis in an urban context, which is becoming increasingly
important in building and district management. In future, our approach
could also be transferred to the analysis of other thermal anomalies on
panorama drone images, such as the detection of district heating pipe
leakages at ground level.
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See Table A.3.
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Table A.3

Hardware details for nodes used in all model trainings.

CPUs

CPU Sockets per node
CPU Cores per node
CPU Threads per node
Cache L1

Intel Xeon Platinum 8368
2

76

152

64k (per core)

Cache L2 1 MB (per core)
Cache L3 57 MB (shared, per CPU)
Main memory 512 GB
Accelerators 4x NVIDIA A100-40
Memory per accelerator 40 GB
Local discs 960 GB NVMe SSD
Interconnect InfiniBand
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