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Abstract— In Radiomics, deep learning-based systems for 

medical image analysis play an increasing role. However, due to 

the better explainability, feature-based systems are still 

preferred, especially by physicians. Often, high-dimensional 

data and low sample size pose different challenges (e.g. increased 

risk of overfitting) to machine learning systems. By removing 

irrelevant and redundant features from the data, feature 

selection is an effective way of pre-processing. The research in 

this study is focused on unsupervised deep learning-based 

methods for feature selection. Five recently proposed algorithms 

are compared regarding their applicability and efficiency on 

seven data sets in three different sample applications. It was 

found that deep learning-based feature selection leads to 

improved classification results compared to conventional 

methods, especially for small feature subsets. 

Clinical Relevance— The exploration of distinctive features 

and the ability to rank their importance without the need for 

outcome information is a potential field of application for 

unsupervised feature selection methods. Especially in 

multiparametric radiology, the number of features is increasing. 

The identification of new potential biomarkers is important both 

for treatment and prevention. 

I. INTRODUCTION 

Medical imaging technologies have become a core pillar of 
modern clinical diagnostics, enabling fast and reliable insights 
into a patient’s body and thus accelerating the diagnostic 
process as well as increasing patient outcome significantly, 
e.g. in oncology. Due to the continuous advances, the 
complexity of the acquired imaging data has been increasing 
steadily regarding both data quality and quantity. While 
yielding great potential for all kinds of clinical research based 
on radiological images, the increasing amount of data poses a 
challenge when it comes to analyzing said data manually. 
Especially in the context of large epidemiological imaging 
studies, like the German National Cohort [1] or UK Biobank 
[2], the overwhelming amount of data calls for dedicated, 
automated image analysis methods to facilitate an efficient and 
reliable processing of the information contained in such data 
sets. Automated post-processing methods, including machine 
learning (ML), has hence become increasingly important 
within the medical imaging community. One approach to ML-
based image analysis, which has been gaining attention over 
the past years, is Radiomics [3], where large numbers of 
statistical image features are extracted from radiological 
images and then used to analyze a data set statistically or train 
a classifier to solve a scientific problem [4–6]. 

 
*This work was not supported by any organization. 
1,2T. Haueise is with the Section on Experimental Radiology, University 

Hospital Tuebingen, Tuebingen, Germany and the Institute of Diabetes 
Research and Metabolic Diseases at Helmholtz Munich, Tuebingen, 

Germany tobias.haueise@med.uni-tuebingen.de   

However, high-dimensional data sets pose a challenge for 
ML models. On the one hand, there are often a lot of features 
which are highly correlated. On the other hand, a feature space 
that exceeds the number of samples in the data set significantly 
can easily lead to overfitting of the classifier. The latter is 
especially crucial in medical image analysis, as the number of 
available subjects is limited in most clinical applications. 
Moreover, the higher the number of features used to train a 
classifier, the harder it gets to explain how the ML algorithm 
decides, which is especially important in clinical applications 
involved in diagnostic processes leading to e.g. decisions 
about the treatment of a patient. Another drawback of too high 
dimensional feature spaces is a longer time for both training of 
a model and inference, which becomes increasingly important 
if the system in question is supposed to be a real-time 
application. All these issues make choosing the right features 
out of all extracted metrics in an efficient, automated way a 
crucial task in Radiomics-based image analysis. 

Feature selection (FS) algorithms have been successfully 
used in many different ML applications for years, e.g. SFFS 
[7], ReliefF [8] or Fisher score [9]. Most of them are 
supervised algorithms requiring label information for the 
selection process. Unsupervised FS algorithms, e.g. Laplacian 
score [10] or UDFS [11], have the advantage of reducing the 
dimensionality of the feature space without the requirement of 
label information.  More recently, with deep learning (DL) 
gaining more and more popularity amongst the ML 
community, several DL-based FS algorithms have been 
proposed. Such methods aim to exploit the ability of neural 
networks (NN) to autonomously identify meaningful 
structures within a given data set to find the most informative 
features in a feature space. In this study, we employed some 
promising DL-based FS techniques to different radiological 
ML applications in order to investigate the potential of such 
approaches for Radiomics-based research. In the past years, 
there have been a lot of studies on FS-related topics. However, 
to the best of our knowledge, there has not been a publication 
comparing conventional FS and DL-based FS focused on 
Radiomics applications at the point of submission of this work. 
Most Radiomics-related studies investigate the best FS 
methods for specific applications, e.g. Delzell et al. [12], 
Shakir et al. [13] and Zhang et al. [14]. Instead of drawing 
general conclusions about FS in Radiomics, they rather discuss 
the potential value of Radiomics for diagnostic or predictive 
purposes in the respective application. Kuncheva et al. recently 
investigated the stability of various FS techniques for very 
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small data sets with large numbers of features in a more 
general way, including some medical imaging applications 
[15]. However, in contrast to this study, [15] did not employ 
DL-based FS methods. 

In light of current discussions about the feasibility of 
feature-based ML systems compared to DL-based systems, 
which require no explicit feature extractions but are harder to 
interpret, this work is intended to investigate whether DL-
based FS can serve to combine the advantages of both methods 
to further improve feasibility and reliability of ML-based 
medical image analysis. 

II. MATERIALS AND METHODS 

A. Deep learning-based feature selection 

DL-based FS uses concepts from general DL research and 
applies them to the problem of FS, namely to select a subset 
from the columns of the feature matrix 𝑿 ∈ ℝ𝑁×𝐷 with N 
samples and D features. Recently proposed unsupervised 
methods included in this study are: auto encoder inspired FS 
(AEFS) [16], deep FS using a teacher-student network (TSFS) 
[17], Attention-based FS (AFS) [18], FS using batch-wise 
attenuation and feature mask normalization (FM) [19] and 
Concrete auto encoders (CAE) [20]. 

Similar to conventional filter methods, AEFS, TSFS, AFS 
and FM compute weights for each input feature to create a 
ranking by relevance. Therefore, in case of AEFS, the 
nonlinear relationship of X is modeled using a single-layer 
auto encoder (AE) by solving the optimization problem (1) 

min
𝜃

‖𝑿 −  𝑿̂‖
F

+ 𝜆‖𝑾1‖2,1         (1) 
 

where 𝑿̂ = 𝑔(𝑓(𝑿, 𝜃1), 𝜃2) = 𝜙(𝑿𝑾1 + 𝑏1)𝑾2 + 𝑏2  is the 
output of the AE with tunable parameters 𝜃 = 𝜃1 + 𝜃2 =
{𝑾1,2, 𝑏1,2}. The L2,1-norm regularization imposes sparse rows 

in W1. Similarly, in TSFS, the nonlinear transformation to the 
low-dimensional subspace is modeled by a “teacher” function 

𝑿̂ = ℱ(𝑿), e.g. t-SNE [21] as proposed in [17]. The “student” 
network is a single hidden-layer NN, trained to recreate ℱ. The 
loss function is similar to (1) with 𝑾1,2 and 𝑏1,2 being the 

parameters of the first or second transformation of the NN, 

respectively. To rank the features, a score 𝑠 = 𝑑𝑖𝑎𝑔(𝑾1𝑾1
T) 

is calculated and the input features are sorted in descending 
order according to s. 

In an unsupervised setting, AFS combines the training of a 
single hidden-layer AE with the training of shallow NNs 
(“attention nets”) for each input feature to determine its 
probability of selection [18]. The resulting output matrix of the 
attention nets 𝑨 ∈ ℝ𝑁×𝐷 is multiplied elementwise with 𝑿 
such that the AE is trained on 𝑿 ⊙ 𝑨. Therefore, the attention 
nets and the AE are trained jointly. Based on the same concept, 
FM computes a nonlinear transformation of 𝑿, batch-wise 
average and a softmax normalization resulting in a feature 
mask 𝑴 ∈ ℝ𝑁×𝐷. Similarly, a single hidden-layer AE is 
subsequently trained on 𝑿 ⊙ 𝑴. The learning objective of 
both methods is summarized in (2) where ℒ(⋅) denotes the 
mean squared error (MSE) reconstruction loss of the AE 𝑔(⋅) 
with parameters Θ1 and the FS network 𝑓(⋅) with parameters 
Θ2. Θ = Θ1 + Θ2 summarizes the trainable parameters of both 
sub-networks and reflects their joint optimization. 

𝑎𝑟𝑔 min
Θ

 ℒ[𝑔(𝑓(𝑿, Θ1), Θ2)]      (2) 

In contrast to the other methods, CAE is selecting a 
specific number of features instead of generating a ranking. 
From an architectural point of view, CAE is a single hidden-
layer AE, similar to AEFS. However, the hidden-layer uses the 
properties of the Concrete distribution [22] to implement a 
differentiable “Concrete selector” layer that directly 
parameterizes the selection of input features. 

B. Data sets 

The DL-based FS methods are compared on seven data sets 
derived from three tasks with different properties (number and 
type of image modalities, sample size, number of target 
regions) from the Medical Segmentation Decathlon (MSD) 
[23]. The usage of these data sets is in accordance to the 
guidelines of the Declaration of Helsinki. For each task, the 
data sets share the same dimensionality and number of target 
regions (number of classes in downstream classification task). 

• Task 1 – Brain tumor: This task contains 

multiparametric MR data from 484 patients 

diagnosed with either glioblastoma or lower-grade 

glioma. The sequences used were native T1-

weighted (T1w), post-Gadolinium (Gd) contrast T1-

weighted (T1gd), native T2-weighted (T2w) and T2 

Fluid-Attenuated Inversion Recovery (FLAIR). The 

corresponding target regions are the three tumor sub-

regions, namely edema, enhancing, and non-

enhancing tumor (D1-4).  

• Task 2 – Prostate delineation: This task contains 

multiparametric MR data from 30 patients and 

includes T2w MR images and the apparent diffusion 

coefficient (ADC) from diffusion-weighted MRI. 

The target regions are image background, peripheral 

zone and transition zone of the prostate (D5-6). 

• Task 3 – Pancreas cancer: This task contains portal-

venous phase CT scans from 281 patients 

undergoing resection of pancreas masses. The target 

regions are pancreatic parenchyma and pancreatic 

mass (D7). 
For all data sets, PyRadiomics 3.0.1 [24] was used to 

extract 107 Radiomics features from the original gray-level 
images. The extracted features are following the feature 
definitions as described by the Imaging Biomarker 
Standardization Initiative (IBSI) [25]. Additional parameters 
(e.g. the fixed bin width during gray-level quantization) of the 
extractor have not been optimized. 

C. Experimental setup 

For all experiments, the data sets were split 5 times in 80% 
training data and 20% test data. Each FS algorithm is used to 
select feature subsets of different sizes using the training data 
of each split successively. The number of selected features NF 

ranges from NF = 5 to the full set of 107 features in 14 steps. 
Potential hyperparameters of the FS methods (e.g. number of 
nodes in the hidden-layer of the auto encoder in AEFS, the 
number of nodes in the NN in TSFS) were not optimized and 
follow the default settings provided in the respective 
publications. The performance of the FS algorithms is 
evaluated in terms of the mean balanced classification 
accuracy (BAcc, mean of specificity and sensitivity) over all 5 
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runs in a classification task using three conceptually different 
classifiers on the hold-out test data sets. The selected 
classifiers are support vector machines (SVM), random forests 
(RF) and k-nearest neighbors (kNN). RF and kNN are used in 
their out-of-the-box implementation in scikit-learn 1.0.2 [26]. 
The SVM was implemented as a multi-class soft margin SVM 
with radial basis function kernel. For each data set, the kernel 

parameter  and the soft-margin weight C have been optimized 
using a 5-fold cross-validated grid search on a logarithmic 
grid. The DL-based methods are compared to conventional 
unsupervised FS algorithms, namely Laplacian score (LAP) 
and principal feature analysis (PFA) [27]. As a baseline, a 
random selection (RND) of features of each subset size is 
included. 

III. RESULTS 

Fig. 1 shows the mean BAcc of the three classifiers when 
selecting 25 features using the DL-based FS methods on four 
examples, representing the three MSD tasks. FS on both 
imaging modalities of Task 2 (D5, D6) shows larger influence 
of the classifier used compared to D1 and D7. Table I 
summarizes the mean BAcc and standard deviation of the three 
classifiers for all data sets, using DL-based FS methods, 
conventional methods as well as the random selection of 25 
features. Additionally, mean BAcc using all extracted features 
is shown. Considering D1–4, AFS, FM and CAE perform better 
than the conventional methods whereas TSFS and LAP show 
significantly lower performance than RND. In the case of D5, 
features selected by CAE improve the mean BAcc by 5.8% 
compared to all features. Using AFS on D6, 4.6% improvement 
compared to the full set of features can be reported. 
Considering D7, all methods yield similar performance within 
the standard deviation. Fig. 2 shows the mean BAcc of the three 
classifiers in dependence of the number of selected features on 
D1. AEFS, TSFS and LAP show similar low performance on 
the smallest subset, mean BAcc using features obtained from 
the other methods is up to 10% higher. 

 

 

Figure 1: Comparison of mean BAcc of SVM, RF and kNN classifiers using 

DL-based FS methods to select 25 features. MSD Task 1 is represented by 

T1w MR images (D1). 

IV. DISCUSSION 

As shown in Table I, the application of DL-based FS can 
lead to competitive or better results compared to the 
conventional approaches (D1–4) as well as the significant 
improvement compared to the full set of features (D5–6). These 
data sets with a small number of samples compared to the 
number of features benefit most from the potential reduction 
of redundancy imposed by FS. The mean improvement is 
higher for some of the DL-based methods (TSFS, AFS, CAE) 
compared to the conventional methods. Considering D7, all 
studied methods, including RND, yield surprisingly similar 
BAcc compared to the full set of features. The main difference 
of D7 is the imaging modality, namely CT. It is possible that 
the distinctness of the extracted Radiomics features from CT 
scans is higher compared to MRI. Among the MRI data sets, 

only the post-Gd (D2) reached a Acc above 90%. The 
reproducibility and robustness of CT and MRI Radiomics 
features is subject of current research [28–30], their predictive 
capability should be further studied as non-uniform intensity 
scaling or noise in MRI could possibly harm the 
distinctiveness of the extracted features. 

Following the methodology of [19] and studies 
investigating supervised FS techniques [31, 32], this study 
evaluates the performance of unsupervised FS methods in 
terms of a downstream classification task. However, especially 
in explorative analyses of potential new imaging biomarkers, 
studies requiring outcome information may lead to biased 
results. Comparing the features selected by the FS method with 
highest BAcc obtained from the two T2w data sets D3 and D6 

over the five selections performed, a similarity of 84% is 
found. Comparing the similarity of the features selected by 
AFS across data sets, a mean similarity of equally 84% is 
achieved. CAE has a slightly higher similarity across data sets 
of 86%. 

However, this study has some limitations. First, only a 
small number of features with low complexity, but according 
to the IBSI standard, was included. A higher number and 
complexity of the features, e.g. by including spectral 
transformations of the input images similar to [31, 32], could 
yield further differences between DL-based and conventional 
FS methods. Second, data set composition in terms of the  

TABLE I.  MEAN BALANCED CLASSIFICATION ACCURACY (%) AND 

STANDARD DEVIATION (%) OF THE THREE CLASSIFIERS USING DL-BASED 

AND CONVENTIONAL FS METHODS TO SELECT 25 FEATURES. 

 D1 D2 D3 D4 D5 D6 D7 

RND 
69.7 

± 3.2 
84.3 
± 2.0 

75.7 
± 4.0 

72.5 
± 6.2 

81.6 
± 1.7 

85.0 
± 2.1 

98.2 
± 0.7 

all 
75.4 
± 4.1 

90.6 
± 3.5 

82.2 
± 5.4 

78.1 
± 6.2 

81.1 
± 0.0 

83.3 
± 3.1 

98.7 
± 0.9 

AEFS 69.3 
± 1.1 

83.1 
± 2.7 

74.2 
± 3.9 

71.1 
± 4.1 

82.1 
± 2.7 

82.2 
± 1.6 

98.8 
± 1.1 

TSFS 58.4 
± 2.4 

76.5 
± 3.1 

69.4 
± 2.2 

61.8 
± 2.9 

75.9 
± 6.7 

85.6 
± 3.1 

98.9 
± 1.0 

AFS 75.2 
± 1.4 

87.8 
± 2.9 

80.0 
± 3.1 

77.3 
± 3.7 

83.5 
± 1.3 

87.9 
± 2.9 

99.2 
± 0.7 

FM 72.7 
± 1.8 

88.0 
± 2.3 

79.5 
± 2.5 

74.2 
± 3.5 

83.0 
± 1.7 

84.7 
± 2.7 

98.3 
± 1.0 

CAE 73.1 
±2.8 

88.0 
± 1.8 

80.7 
± 2.0 

73.4 
± 3.1 

86.9 
± 2.5 

86.4 
± 3.3 

98.4 
± 0.9 

LAP 65.8 
± 4.5 

78.7 
± 1.8 

67.5 
± 2.7 

66.1 
± 4.3 

78.4 
± 4.9 

79.4 
± 3.2 

98.2 
± 1.1 

PFA 
68.4 

± 3.2 
85.3 

± 2.6 
76.3 

± 2.6 
72.5 

± 4.5 
81.8 

± 2.0 
84.9 

± 2.6 
99.0 

± 0.9 
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Figure 2: Mean BAcc of SVM, RF and kNN in dependence of the number of 

selected features by DL-based FS and conventional FS methods on D1. 

dimensionality of the feature matrix is limited since no larger 

imbalances between N and D were studied. Finally, a 

comprehensive study of the algorithms should include further 

relevant aspects like computational complexity and selection 

efficiency since FS is still “just” a preprocessing step in a 

Radiomics pipeline. 

V. CONCLUSION 

It was found that the presented unsupervised DL-based FS 
methods are competitive to other unsupervised conventional 
FS methods and can lead to improved classification results 
compared to conventional methods, especially for small 
feature subsets. The similarity of the selected features across 
different data sets is promising for future research on potential 
imaging biomarkers. A systematic comparison with 
conventional as well as DL-based supervised FS algorithms or 
the examination of the applicability of self-supervision to the 
task of feature selection can further pave the way for future 
applications in feature-based medical image analysis. 
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