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ABSTRACT [max word count 150, currently 155]

Background: Causal inference approaches have been proposed as alternative to traditional ones but comparisons are scarce. We applied “causal” and “traditional” methods to investigate the association between long-term air pollution exposure (PM2.5 and NO2) and mortality.
Methods: We analyzed pooled data from eight well-characterized cohorts and one administrative cohort in Europe. We defined the generalized propensity score (GPS) as the conditional likelihood of exposure given confounders, and derived corresponding inverse-probability weights (IPW). We applied Cox-proportional hazard models i) weighted by IPW, ii) adjusted for GPS, and iii) directly adjusting for all confounders. 
Results: In IPW models, PM2.5 5µg/m3 and NO2 10µg/m3 increases were associated with hazard ratios (HR)=1.141 (95% confidence interval (CI): 1.107,1.176) and HR=1.059 (1.038,1.080) in the pooled, and HR=1.050 (1.014,1.088) and 1.024 (1.012,1.036) in the administrative cohort. Almost identical results were found for all approaches.
Conclusions: Traditional and causal approaches provide consistent results of association between long-term exposure to air pollution and mortality. 
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The association between long-term exposure to ambient air pollution and mortality has been well established.1–4 In the Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE) project, we previously analyzed data from a pooled database of eight European cohorts (“pooled cohort”) and seven large administrative cohorts from Europe.5,6 We applied standard multivariable Cox models adjusted for individual-level and area-level confounders, and performed extensive sensitivity analyses to reduce potential residual confounding from omitted covariates.3

Recently, causal inference approaches have been proposed as a valid alternative to traditional Cox models, also in the case of continuous exposures or treatments.4,7 Attracting features of these methods are their implicit parallel with randomized controlled trials (making exposure independent from confounders) and the separation between the design and the analysis stage (knowledge of the outcome status of an individual doesn’t inform exposure assignment).

In this study, we applied causal inference methods based on generalized propensity scores (GPS) and inverse probability weighting (IPW) to estimate the association between fine particulate matter (PM2.5) and nitrogen dioxide (NO2) with natural-cause mortality in the pooled cohort and in one of the administrative cohorts from ELAPSE. We compare effect estimates with the previously published estimates from traditional Cox models. We opted for the application using i) two pollutants with accepted effects to allow for differences in the underlying range and variance of the exposure; and ii) a traditional cohort with extensive individual level covariates vs an administrative cohort with mainly area-level covariates.

METHODS

The data
The pooled cohort consists of eight European population-based cohorts from Sweden, Denmark, France, the Netherlands, Germany, and Austria, with a total of 325,367 subjects. Enrolment was between 1990s and early 2000s, and individuals were followed up until death, emigration, loss to follow-up or end of the study. Harmonized data were available on age, sex, smoking status, duration and intensity of smoking, body mass index, marital status, employment status and neighborhood-level income.5 The Rome Longitudinal Study (RoLS) is an administrative cohort of 1,263,712 subjects 30+ years old enrolled on October 2001 and followed-up until December 2015. Individual-level data were available on age, sex, marital status, place of birth, education level, and occupation; area-level data were available on income, socio-economic deprivation, education level and unemployment rate.8 For all cohorts, we defined mortality from natural causes based on codes from International Classification of Diseases, 9th revision (ICD-9) or 10th revision (ICD-10) as ICD-9: 001-779 or ICD-10: A00-R99.

Annual (2010) mean concentrations of PM2.5 and NO2 were estimated at 100m x 100m resolution from a European hybrid land-use regression model.9 All models were cross-validated (CV) by splitting the monitors into training and testing sets. They performed well, with a CV R² of 66% for PM2.5 and 58% for NO2.9 Finally, PM2.5 and NO2 concentration estimates were assigned to the residential addresses of the study subjects.

Causal modelling: the design stage
The GPS represents the conditional likelihood of being exposed to the observed exposure level given the covariates. We applied multivariable linear regression, as in the following formula:
									[1]
where  represents the annual mean PM2.5 or NO2 concentration for subject i, α is the model intercept, and … are regression coefficients for the available confounders ….
Once the previous model for each pollutant was defined, we built the GPS as follows:
		[2]
where  represents the GPS estimated for subject i.
Finally, we derived the IPW by first defining the null model for weights stabilization:
	[3]
and then computing the IPWs:
										[4]

Causal inference models rely on three major assumptions: consistency (the potential outcome for a given observation is not affected by the exposure of any other observation), positivity (each subject has a positive probability of receiving any exposure level independent on the confounders) and no unmeasured confounding (the available covariates are sufficient to adjust for confounding).7,10 We assumed consistency a priori, because, as ambient exposures are exogenous, individual mortality risks are not  affected by exposures of other individuals in the cohort. We checked the positivity assumption by plotting the distribution of the GPS for each quintile of the two exposures. Finally, although the assumption of no unmeasured confounding cannot be tested, previous extensive sensitivity analyses with increasing confounding control in the models decreases this possibility.3 To check that the available confounders were properly controlled for, we plotted the regression coefficients of each confounder against the exposures from the model in formula [1], without and with use of IPWs. 

The analysis stage
We applied weighted Cox proportional hazards models, with weights equal to the IPWs estimated in formula [4]. We also truncated IPWs at the 1st and 99th percentiles of their distribution to mitigate the effect of outlying weights.11 We estimated standard errors, and 95% confidence intervals (95% CI), by applying robust variance estimators.12 In the pooled cohort, we adjusted by indicator variables for the individual sub-cohorts as these differed by design. In the administrative cohort, we further adjusted for area-level covariates, since we found evidence of insufficient balancing in the design stage. 
We also applied unweighted Cox model adjusting for GPS either by adding a categorical variable for the GPS ventiles (e.g., 20 equally spaced quantiles), or by inserting GPS as a linear term. Finally, in order to compare our causal estimates with the previously published ones, we fitted a standard unweighted multivariable Cox model adjusted for the same covariates used for GPS estimation.

RESULTS
A description of the two cohorts is reported in eTable 1. Since all exposure quintiles were represented (e.g., there is a positive probability of receiving any exposure level) at the same value of the GPS (e.g., conditional on the covariates), the positivity assumption was met for both pollutants and cohorts (eFigures 1 and 2). The balancing plots showed good balancing for all covariates in the pooled cohort and all individual-level covariates in the administrative cohort; while area-level covariates in the administrative cohort were not adequately balanced, especially for NO2 (Figure 1 and eFigure 3). 
In the pooled cohort, a 5 µg/m3 increment in PM2.5 increased mortality risk by 14.1% (95% CI: 10.7%, 17.6%) in the IPW-weighted model, with results almost identical when adjusting by either GPS or directly for all covariates as in our previous ELAPSE model (Table 1). Similarly, a 10 µg/m3 increment in NO2 produced more variable but largely comparable risk estimates across models, ranging between 5.9% (95% CI: 3.8%, 8.0%) in the IPW-weighted model and 10.6% (95% CI: 8.9%, 12.4%) in the model adjusted for ventiles of GPS. In the administrative cohort, results of the causal models were almost identical to the traditional Cox model results only after adjusting for unbalanced area-level confounders. When we did not adjust for unbalanced covariates, HRs in the Rome cohort for NO2 were below unity.

DISCUSSION
In this study we applied causal models to estimate associations between long-term exposure to ambient air pollutants and natural-cause mortality, and compared the results with estimates obtained using standard multivariable Cox models. We found similar results across methods, both in a pooled cohort of eight well-characterized cohorts and in a large administrative cohort in Europe.

Our results are consistent with previous applications that compared causal with standard approaches. Higbee et al. applied IPW methods to estimate associations between PM2.5 and mortality in a large dataset from the National Health Interview Survey (NHIS). They found similar results between IPW Cox models and unweighted baseline multivariate Cox model, with the former displaying marginally lower point estimates and higher standard errors.13 In a study conducted among 68.5 million Medicare enrollees in the US, Dominici et al.4 and Wu et al.7 applied two standard approaches (Cox models, Poisson regression) and three causal methods (IPW, matching by GPS or adjustment for GPS) and found consistent results in the full population, and minor deviations across methods in the sub-population exposed to concentrations < 12 µg/m3. 

Our study has several strengths. It is the first in Europe which applied causal models to investigate associations between long-term exposure to air pollutants and mortality. Although the set of available covariates differed (more detailed individual information for the pooled cohort, but better characterization of contextual confounders for the administrative cohort), causal and traditional models provided converging results in both cohorts, increasing confidence in the estimated associations. We proposed a novel method to check the balancing assumption, by plotting the regression coefficients of each confounder against the exposures from multivariate models, rather than presenting the univariate correlations pre- and post-IPW weighting. Finally, the proposed (causal and non-causal) methods are based on standard software and opensource statistical packages, and therefore easily applicable in other settings.
An important aspect emerging from the causal approaches was the inadequate balancing of the area-level covariates in the administrative cohort, an issue that required careful checking as it largely impacted the estimated HRs. Furthermore, the potential for residual confounding from omitted covariates cannot be entirely ruled out, although extensive sensitivity analyses conducted in the ELAPSE project, and the use of indirect methods of adjustment by smoking and BMI, makes that possibility highly unlikely. We note this is a limitation of both standard and causal modelling methods.

In conclusion, we found consistent associations between long-term air pollution exposure and natural-cause mortality when applying standard and causal approaches, only after adjustment for poorly balanced covariates. We urge for the careful use of any approach with extensive investigation of the underlying modelling assumptions.
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[bookmark: _Hlk117767437]Table 1. Association between long-term exposure to PM2.5 and NO2 on natural-cause mortality in the pooled and administrative cohorts: HR of mortality, and 95% CI, per 5 µg/m3 increment in PM2.5 and 10 µg/m3 increment in NO2. Results of alternative models for confounding adjustment
 
	 
	Pooled cohort 
	 
	Administrative cohort

	 
	PM2.5
per 5 μg/m3
	NO2
per 10 μg/m3
	 
	PM2.5
per 5 μg/m3
	NO2
per 10 μg/m3

	Adjustment by IPWa
	
	
	
	
	

	Main modelb
	1.141
(1.107, 1.176)
	1.059
(1.038, 1.080)
	
	1.037
(1.003, 1.073)
	1.004
(0.993, 1.015)

	[bookmark: RANGE!A6][bookmark: _Hlk117677394]Further adjusted for unbalanced covariatesc
	-
	-
	
	1.050
(1.014, 1.088)
	1.024
(1.012, 1.036)

	Adjustment by GPS (ventiles)
	
	
	
	
	

	Main modeld
	1.131
(1.103, 1.160)
	1.106
(1.089,1.124)
	
	0.917
(0.893, 0.942)
	0.969
(0.962, 0.977)

	Further adjusted for unbalanced covariatesc
	-
	-
	
	1.051
(1.019, 1.083)
	1.031
(1.021, 1.040)

	Adjustment by GPS (linear)
	
	
	
	
	

	Main modele
	
	
	
	0.915
(0.891, 0.940)
	0.970
(0.963, 0.977)

	Further adjusted for unbalanced covariatesc
	-
	-
	
	1.052
(1.021, 1.084)
	1.031
(1.022, 1.040)

	ELAPSE model on trimmed datasetf
	1.132
(1.107, 1.158)
	1.088
(1.071, 1.106)
	 
	1.057
(1.025, 1.089)
	1.029
(1.020, 1.039)

	
	
	
	
	
	



HR: Hazard Ratio, CI: confidence interval, IPW: inverse probability weighting, GPS: generalized propensity score
a Trimmed IPWs based on 1st and 99th percentile
b Model adjusted for sub-cohorts in the pooled cohort; crude model for the administrative cohort
c These include all the area-level covariates for the administrative cohort only: income, socio-economic deprivation index, unemployment rate, %high education rate, % very low education rate
d Model adjusted for sub-cohorts and GPS ventiles for the pooled cohort; only for GPS ventiles in the administrative cohort
e Model adjusted for sub-cohorts and linear GPS for the pooled cohort; only for linear GPS in the administrative cohort
f Standard multivariate Cox model adjusted for all individual-level and area-level covariates. This is applied on a trimmed dataset where observations below 1st percentile and above 99th percentile have been deleted

Figure 1. Balancing plot for PM2.5: coefficients of the multivariate regression between PM2.5 and confounders, from an unweighted model (light blue) or a IPW-weighted model (light red)

(a) 	Pooled cohort
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(b) 	Administrative cohort
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eTable 1. Description of the cohorts
	 
	 
	Pooled cohort
	 
	Administrative cohort

	Subjects
	N
	325,367
	
	1,263,712

	Person-years at risk
	N
	6,339,553
	
	15,300,400

	Natural cause mortality
	N
	47,131
	
	231,213

	Individual-level covariates
	
	
	
	

	Age (years)
	Mean (SD)
	48.7 (13.4)
	
	55.1 (15.4)

	Sex
	% women
	66.0
	
	54.5

	Marital status
	% married
	71.7
	
	66.3

	Education
	% low
	-
	
	24.9

	Occupational status
	% not employed
	30.0
	
	54.4

	Smoking status
	 % current smokers
	24.2
	
	-

	Smoking intensity (packs)
	Mean (SD)
	15.2 (8.9)
	
	-

	Smoking duration (years)
	Mean (SD)
	25.5 (13.1)
	
	-

	BMI
	% overweight/obese
	43.3
	
	-

	Area-level covariates
	
	
	
	

	Income (in thousand euros)
	Mean (SD)
	20.1 (5.8)
	
	24.8 (8.1)

	Unemployment rate
	Mean (SD)
	-
	
	14.9 (4.0)

	% very low education
	Mean (SD)
	-
	
	25.2 (6.6)

	% high education
	Mean (SD)
	-
	
	13.1 (8.5)

	Socio-economic deprivation
	% first quintile
	-
	
	19.9

	
	% last quintile
	-
	
	19.5

	Exposures
	
	
	
	

	PM2.5 (μg/m3)
	Mean (SD)
	15.0 (3.2)
	
	16.7 (0.8)

	NO2 (μg/m3)
	Mean (SD)
	25.0 (8.0)
	 
	32.3 (5.8)





eFigure 1. Distribution of GPS against quintile of PM2.5 in the pooled cohort (a) and administrative cohort (b)

(a) 	Pooled cohort
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(b) 	Administrative cohort
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eFigure 2. Distribution of GPS against quintile of NO2 in the pooled cohort (a) and administrative cohort (b)

(a) 	Pooled cohort
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(b) 	Administrative cohort
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eFigure 3. Balancing plot for NO2: coefficients of the multivariate regression between NO2 and confounders, from an unweighted model (light blue) or a IPW-weighted model (light red)

(a) 	Pooled cohort
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(b) 	Administrative cohort
[image: ]
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