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MouseGAN++: Unsupervised Disentanglement
and Contrastive Representation for Multiple MRI
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Abstract— Segmenting the fine structure of the mouse
brain on magnetic resonance (MR) images is critical for
delineating morphological regions, analyzing brain func-
tion, and understanding their relationships. Compared to
a single MRI modality, multimodal MRI data provide com-
plementary tissue features that can be exploited by deep
learning models, resulting in better segmentation results.
However, multimodal mouse brain MRI data is often lack-
ing, making automatic segmentation of mouse brain fine
structure a very challenging task. To address this issue, it
is necessary to fuse multimodal MRI data to produce distin-
guished contrasts in different brain structures. Hence, we
propose a novel disentangled and contrastive GAN-based
framework, named MouseGAN++, to synthesize multiple
MR modalities from single ones in a structure-preserving
manner, thus improving the segmentation performance by
imputing missing modalities and multi-modality fusion. Our
results demonstrate that the translation performance of our
method outperforms the state-of-the-art methods. Using
the subsequently learned modality-invariant information as
well as the modality-translated images, MouseGAN++ can
segment fine brain structures with averaged dice coeffi-
cients of 90.0% (T2w) and 87.9% (T1w), respectively, achiev-
ing around +10% performance improvement compared to
the state-of-the-art algorithms. Our results demonstrate
that MouseGAN++, as a simultaneous image synthesis and
segmentation method, can be used to fuse cross-modality
information in an unpaired manner and yield more robust
performance in the absence of multimodal data. We release
our method as a mouse brain structural segmentation tool
for free academic usage at https://github.com/yu02019.
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[. INTRODUCTION

CCURATE segmentation of brain structures on magnetic

resonance (MR) images is crucial for delineating mor-
phological structures, analyzing brain functions, and under-
standing their relationships. As one of the most important
model organisms, the mouse plays an important role in neu-
roscience, drug discovery, and translational medicine. Since
the mouse and human brains are evolutionarily conserved,
the mouse brain has proven to be a powerful model for
understanding human brain.

Currently, automatic segmentation methods of brain struc-
tures have been developed to segment human brains. However,
when they are applied to MRI data of mouse brains, their
performance remarkably suffers from the differences in image
contrast, image size, and anatomy. Segmenting fine mouse
brain structures on MRI data using automatic methods has
remained a challenging task until now. The main reason is
that accurate segmentation of fine brain structures usually
requires multi-modality MRI with high-resolution, which pro-
vides much more complementary feature information than
a single modality [1]. For example, Tlw images provide
contrast differences between grey and white matter; T2w im-
ages are more sensitive to water-rich tissues; and quantitative
susceptibility mapping (QSM) is suitable for differentiating
deep brain tissues. These modalities described above provide
complementary information for accurate segmentation of brain
anatomical structures. However, such multi-modal mouse brain
MRI data are often lacking because collecting such data takes
too much scan time, which is impractical in most preclinical
MR facilities. Therefore, mouse brain fine structure segmenta-
tion suffers from missing some MRI modalities in practice, but
multi-modality fusion is expected to alleviate this dilemma.

Due to the restriction on acquiring a series of multi-
modality images followed by segmentation, imputing the miss-
ing modality and decoupling semantic features has emerged as
a crucial research area. In the computer vision field, image-to-
image translation methods based on a generative adversarial
network (GAN) have been demonstrated to be successful
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in image synthesis [2]-[4]. Particularly, [5] attempted to
disentangle the modality-specific information and modality-
invariant representations. In the medical image field, several
existing cross-modality works have been applied to segment
brain lesions [6], [7]. Whilst performing satisfactorily for
human brain lesion segmentation tasks, these methods are not
readily applicable to our mouse brain segmentation problem
as they have several unsolved issues, such as patch-level
context might not be appropriate for mouse brain regions
due to their finer structures. Moreover, unlike lesions with
distinguishable contrast on one specific MRI modality, there
are often no significant contrast differences between different
brain structures on single-modality MRI images. As a result, it
is difficult to accurately delineate their anatomical boundaries
using single-modal MRI data. To solve this problem, we
aim to propose a synthesis-and-segmentation deep learning
framework to first synthesize multi-modality MRI data, hence
achieving more accurate segmentation of fine structures in the
mouse brain via multimodal image fusion.

Specifically, we propose a disentangled and contrastive
GAN-based framework, termed as MouseGAN++, which is a
unified model that combines modality synthesis and structure
segmentation. MouseGAN++ contains a modality translation
module with two novel contrastive losses to project multi-
modality image features into a shared latent content space
that encodes modality-invariant brain structures and modality-
specific attributes. Subsequently, the latent contents are com-
bined with other modality-specific attributes to impute images
of other modalities. Concretely, in MouseGAN++, the content
contrastive loss is proposed to compel the network to avoid
confusing structure-wise information during translation. We
reuse attribute and content encoders during adversarial training
to produce contrastive learning concurrently. The shared con-
tent space also facilitates decoder training in the segmentation
module. Moreover, imputing modality with this model can
enlarge the dataset, enabling the network to jointly learn
modality-invariant semantic representations, thereby enhanc-
ing attention to multi-modality fusion.

This work significantly improves our previous model,
MouseGAN, published in MICCALI conference [8]. Compared
with MouseGAN and other related state-of-the-art (SOTA)
work, MouseGAN++ has the following contributions:

o MouseGAN++ uses an unsupervised disentanglement and
contrastive framework that concurrently optimizes adver-
sarial loss and contrastive loss without designing and pre-
training on additional pretext tasks, thus eliminating the
gap between pretext and translation tasks.

¢ MouseGAN++ disentangles MR images into attribute
and content spaces, where the modality-agnostic con-
tent features can be flexibly recovered by various at-
tributes or segmented by the decoder. Notably, two novel
attribute and content contrastive losses introduced in
MouseGAN++ further improve the disentanglement and
the downstream segmentation performance.

o We performed extensive experiments to evaluate both
translation and segmentation tasks for the mouse brain,
and provided the packaged MouseGAN++ as a pipeline
that could further assist the mouse community.

Il. RELATED WORK
A. Mouse Brain Segmentation

Brain structure segmentation in mouse MR images is a fun-
damental step in neuroimaging and preclinical studies. With
the development of the active mouse research community,
there have been many efforts to address this segmentation
problem. To date, they can be mainly grouped into two
categories based on their methodologies: atlas-based meth-
ods and deep learning methods. The atlas-based methods,
which use image registration to propagate structural label
information from a specific atlas volume to a native space
corresponding to each subject volume, are primarily used in
mouse brain segmentation pipelines [9], [10]. So far, only a
few registration-based toolboxes, e.g., [11], [12], can be used
for brain segmentation. However, small and elongated regions
are more susceptible to biases introduced by the registration
procedure. Besides, the accessibility of suitable atlases and the
complexity of making them further impede the spread of these
atlas-based methods.

Recently, despite the successful application of deep learning
in the field of segmentation, only a few attempts have been
made to segment mouse brain structures, e.g., MU-Net [13].
However, due to the lack of prior knowledge of multi-modality
contrasts, there is still a considerable performance gap when
dealing with fine structure segmentation. In addition, how to
disentangle these semantic representations in multimodal MRI
data also presents challenges for the network design.

B. Image Synthesis and Disentangled Representation

Image synthesis techniques have made significant strides
in recent years. Since modality synthesis can be deemed as
an image-to-image translation task, GAN is considered the
ideal model as it can be constrained on the conditional image,
thus it has been widely used in medical images including
MRI, CT, and PET [14]-[17]. Additionally, GAN brings strong
disentanglement prior because of its hierarchical structure [18],
which naturally serves our purpose.

CycleGAN is a seminal paper dealing with this task [2].
Following the success of CycleGAN, recent efforts to exploit
GAN mainly focus on the different construction strategies for
the encoder and decoder, such as DiscoGAN [4] and DualGAN
[3]. UNIT [19] proposes a shared latent space assumption
for a better perceptual appearance. As most previous models
consider a mapping between two domains, the scalability is
limited when dealing with multiple-domain translation. Then
MUNIT [20], DRIT++ [5] and StarGAN-v2 [21] are proposed
to address this limitation. Nevertheless, [5], [20], [22] assume
the latent attribute spaces are under the constraint of the
Gaussian prior, and [21] uses a Gaussian noise-into-style
mapping network, which might lead to inadequate disentan-
glement. Thus, unlike the existing works, we explicitly impose
a disentanglement prior to our MouseGAN++.

The core idea of disentangled representation learning ap-
proaches follows a prior that one model can learn to embed
images into two spaces: a modality-specific attribute space
and a modality-independent content space. By assuming that
a shared modality-independent content space that maintains
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structural information can be exploited for both modalities,
previous work mainly concentrated on unsupervised domain
adaptation. For instance, Chen et al. [23] proposes a method
that conducts synergistic alignment of modalities from both
image and feature perspectives. For fusing the complementary
information from multimodal data, Chen et al. [7] proposes a
learning framework with feature disentanglement and gated
feature fusion for robust segmentation and Yang et al. [6]
adopts contrastive loss for brain tumor segmentation, however,
the paired training data they used is prohibitively expensive
in clinics for the research. Recently, extensive efforts on
GAN-based disentanglement methods have been explored.
In [14], [24]-[30], they share the key idea of disentangling
input images into modality-specific and modality-independent
features. Since a majority of them introduce Gaussian priors
into their latent attribute spaces, it might cause confusion
in multi-modality feature distribution. In contrast to previ-
ous works, our method proposes contrastive learning prior
into latent spaces by combining attribute features and shared
content features with contrastive loss to facilitate learning
various cross-modality mappings and improve segmentation
performance.

C. Contrastive Learning

As a popular branch of self-supervised learning, the network
guided by contrastive learning can learn hierarchical features
from vast unlabeled datasets, which benefits the training of
downstream tasks. Specifically, a contrastive loss is used to
push positive pair representations to be similar and negative
pair representations to be differentiated. SimCLR [31] and
MoCo [32] are two representative methods that provide two
training strategies with SOTA performance. Note that most
contrastive learning methods focus on image classification,
assuming that the instances in two individual images have
distinct characteristics. However, when applied to brain MR
images, the structural similarity patterns may confuse the
network. For example,a recent work [33] utilizes the patch-
wise contrastive losses for training. However, patch-level
information fails to consider global context, as the same
anatomical structure belonging to symmetrical left and right
brain hemispheres should have similar features, so if we expect
the network to distinguish them, it will lead to false negative
results. Besides, the same structure in different modalities may
present different features, which possibly results in a large
number of false negative pairs. Several other works have also
deployed contrastive learning in medical images successfully
[30], [34], however, the design of pretext tasks or the network
architectures are decoupled from downstream applications.
Inspired by SimCLR [31], we reuse two encoders in our model
to seamlessly provide embedding features from each batch
to conduct contrastive learning to guide both disentangled
representation and the quality of generated images.

Ill. METHODS AND CONCEPT FORMULATION
A. Overview

Fig. 1 depicts our proposed method for multi-modality im-
age translation via unsupervised disentangled and contrastive

representation, which improves the downstream segmentation
model as it can leverage well-learned anatomical knowledge
combined with imputed modalities which were originally
missing.

The details of disentanglement learning are given in Section
3.B. To advance the disentangling operation and alleviate
mode collapse during the training stage, we further propose
two novel unsupervised contrastive learning strategies: one for
attribute learning and the other for content learning as add-
on inductive priors detailed in Section 3.C and 3.D, respec-
tively. Together, they complement disentanglement learning as
the attribute contrastive learning forces the modality-specific
features to be separable in latent attribute space, whilst the
content contrastive learning ensures subject-specific features
are aligned in content space. The mathematical formulation of
each loss function in the modality transfer module is given in
Section 3.E. After successful feature disentanglement by the
above-mentioned modality transfer module, we could utilize
the learned content encoder as the encoder of our segmentation
model, as stated in Section 3.F. As the building blocks are
adopted from our previous MouseGAN [8], which uses a
modified version of DRIT++ [5] as the translation module, the
content and attribute encoders’ architectures remain the same
as [8] and then be reused seamlessly for contrastive losses.

B. Basic Disentanglement Building Blocks

Based on the consensus that unsupervised disentanglement
is impossible unless appropriate inductive biases are imposed
[18], we introduce our basic assumption here that anatomical
semantic information should be included in content factors,
whereas style factors only differ in image appearance. We
believe this assumption should fit well with the fundamental
nature of multi-modality MR images. Thus, in this section,
we describe how we decouple multi-modality images into
modality-specific attribute space and subject-specific (and
modality-independent) content simultaneously, and then fur-
ther introduce the derivation of contrastive learning priors in
the subsequent sections.

Denoting %k as the number of modalities in the dataset,
{M;};=1—r be the descriptor for each modality, (m;,m;) €
M be the two randomly-sampled images from two exemplary
modalities, respectively, and their corresponding modality
codes in one-hot format (2, , 15, ), where 2% C R¥. As shown
in Fig. 3, the model consists of modality-specific content
encoders {E7, , E, }, attribute encoders {Ey, , E7, }, gener-
ators {G7,., G7, }, and modality discriminators {Dyy,,, Dy, }
as well as a content discriminator D€. In the encoding path,
for given input images (m;,m;) , we obtain the disentan-
gled modality-independent content features z;, = Ej, (m;),
Zm, = FEp,,(m;) in the shared content space {€f}—i—y
via the content encoders and simultaneously, the modality-
specific attribute codes z7;,, = E7, (m;) and 275, = Ey, (m;)
in the latent attribute space {2¢},—;_; via the attribute
encoders. The first forward image style translation cycle is
achieved by a generator by combining the content feature
from m; as well as the swapped attribute feature from
my, ie., mij= G, (25, , 2% , 2% ). The disentanglement of

m;? Tm;) Tmj
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Fig. 1. Schematic of MouseGAN++. Given an input which can be any of the five modalities (T1w, T2w, T2*w, QSM, and Mag), (a) we first
train a modality translation module based on feature disentanglement and contrastive learning to synthesize all modalities. (b) Then, we employ
this modality translation module as an auxiliary network in the subsequent segmentation pipeline by reusing the content encoder parameters and
imputed missing modalities. We demonstrate that the learning of structural features shared between different modalities in a self-supervised manner
can better characterize brain structures, thereby leading to better segmentation.
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Fig. 2. lllustration of the attribute discrimination (left) and content discrimination (right) achieved by contrastive learning. In the attribute spaces,
samples from the same modalities are defined as positive pairs and are driven close to each other, whilst samples from different modalities are
negative pairs and are pushed away from each other. In the content space, samples from the same subject are defined as positive pairs and should
have similar features in the embedding space, whilst samples from different subjects form negative pairs with distinct features.

modality-independent content features zy, is desirable for us  crucial for medical image synthesis and downstream applica-
as it well conserves the structural properties which could be tions, albeit the generated image m;_,; have a similar high-
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level style representation like m;. Similarly, we can generate m; E® m; E€ Decoder
mj—i= Gm, (zfnj,zfn > d.) by exchanglng its attribute and | 1 [ i
: | |
modality codes z7, , z ,mj for 2. zmi while preserving its | | 7X7l@64 | i}| YX71@64
own content feature z, : u
i [ 4x4@128 ||| 3x3@128
1 l Il l
C. Modality-Specific Attribute Discrimination ! | 4xa@256 | i | 3x3@256
| I
To promote learning a better disentangled feature represen- | H !
. . . . . I 1 3x3@256
tation, we introduce a task-specific prior here, as our desirable : I |
. . . . . I Il
attribute embedding space should satisfy the following require- | | 3x3@256
ments: | I |
| I
o The attribute features of the same modality, even those | I 3x3@256
. . . | |
from different subjects, are close to each other in latent ! :; |
. i I 3x3@256
attribute space. Memmp
o The attribute features of different modalities, even those A S { ﬁﬁﬁﬁﬁﬁ
from the same subject, are pushed away. i
These requirements are in accordance with the key idea N,
from contrastive learning theory [35], [36], which learns (o
feature representation for positive pairs to be similar while

pushing features from negative pairs apart. To this end, in-
spired by the work of [31], [37]-[39], we introduce contrast
learning to guide the attribute encoder to achieve a more
effective and discriminative modality-specific attribute em-
bedding. Specifically, considering we have two input images
m; and m; in one batch. Note that ¢ could be equal to j
here, when the two randomly sampled images are coinci-
dentally from the same modality. After feeding them into
the attribute encoder E;‘,‘% and E“], we have embedding
attribute features zjj, = E7, (m;) and 27, = E7, (m;), as
shown in Fig. 2. Unlike the most commonly used contrastive
learning technology that employs instance discrimination, e.g.,
regarding each image as a separate individual, we extend the
contrastive learning concept to attribute (modality) discrimi-
nation here. More specifically, the positive pairs contributed
to QF = {m;,m;_;|Vi,j} are deﬁned by the images that
share the same modality code z e which could be either
originated from or translated to the same modality, whereas the
the negative ones {m;, m;_;|Vi,jandé # j} from different
modalities. We optimize the attribute space by minimizing the
contrastive loss, which could be formulated as follows:

exp (CLT/71,)
log ; (D
Z| +| Jrze;zi Zmaega(ma)exp(CL/Ta)
where CL* = sim(z, ,2%.), CL = sim(zg,,, 2% ) and

Qq(mg) = Qu\{m;} . 7, is the temperature scaling parameter.
sim(-,-) is pairwise similarity function which calculates the
similarity of two vectors in the attribute space and is defined
by cosine distance:

Qf'yT

sim(x,y) = —————.
=9 = 3 T

2)

D. Instance-Specific Content Discrimination

In medical image synthesis, one of the grimmest issues
to contend with is how to retain the anatomical structure
information fidelity during translation. Many recent image
synthesis methods mainly focus on global visual similarity
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Fig. 3.  The network architecture of attribute (E¢), content (E°€)

encoder, decoder, generator and discriminator (D ;/Dm; and D€)in
our framework.

or the rationality of perception. These may work well for
natural images but are difficult to transfer to medical images in
practice. Here, we propose an inductive prior that the content
features zy,, are modality-agnostic and preserve only structural
information, which should be subject-specific. Hence, we
formulate two criteria to constrain the content space:

« For a specific subject, the content features of input image
m,; and translated images m;_,; are close to each other
in latent content space since they share the same intrinsic
structures.

o For different subjects, the content features are pushed
away, regardless of their image modalities.

Concretely, as shown in Fig. 2, given the images m}

and m? from two subjects the embedding content features
zfnl = E°(m{) and 26, = E°(m?) are generated via
content encoders, whereas their translated content features
are denoted by z¢ and z¢ L respectively. Similarly as
attribute dlSCI‘lmlnatbl?);l in above sectlon we des1gn the content
discrimination pretext task here, which denotes m} and m} , j
as a positive palr € QF (same subject, different modalities)

but m; and mj _,; as a negative pair (different subject, same
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modalities). Mathematically, we have:

exp (CL*/7.)
log . (3
Z 12 +| 1+Z€QC+ Emieﬂc(mg) exp (CL/7.)
where CL* = sim/(z¢, L2, +) and CL = sim(z¢, 1 2, ) and

Q.(ml) = Q\{ml}. 7. is the temperature scahng parameter.
In our experiments, we set temperature of 7., 7, = 0.1.

E. The Overall Loss Function of Modality Translation

As bidirectional reconstruction loss further encourages dis-
entanglement by synergistically updating the gradient prop-
agation among blocks, we reconstruct synthetic images
(m;—j,m;—;) back via a second modality transfer step and
enforce (7i;, ;) to match the real input image (m;, m;) with
cross-cycle consistency loss:

LYNEy, Egy Gr) = [l —mllr + ||y —mylli, (4

In addition, to compel the task of unsupervised translation
during training, we use a self-reconstruction loss £/~ "¢co"
to constrain encoders and decoders for the generation of high
quality translations, and can be formulated as follows:

Eselffrecon (Emegn,Gm) _
1Gomi (2, 2, ) = Ml + (|G (25, 20,)

mﬂ ™my

®)

—mjll,

The latent space reconstruction loss L£{*¢"* is adopted
from [40]. The £ is used to classify the modality of
images [22]. To enforce the translated images to be as real
as possible, following the successful practice of [2], [5], [8],
the discriminators { D€, Dy, D,y } and corresponding losses

{ceont, Ldomainy are implemented for adversarial learning:

the former discriminator enforces that one cannot infer image
modality from content codes only, whilst the later one guaran-
tees the synthesized images has the modality-specific features
as the real ones. We formulate these losses as follows:

cont __

min max L7 =

(E°,G) D¢

Emi[ilogDc(Zﬁl )+ log(l — D(z )1+ (6)

Eon, [LlogD*( .

log(1 — D¢
2og( (2

domain __

min adv =

(E¢,E*,G)
Emi [IOgDmi (ml)} + Emjﬂi [log(l - Dmi (mJ—>l)+ )
]Emj [lOgij (mj))] + Emiaj [lOg(l - ij (miﬁj)]ﬂ

max L
D

Besides, we impose L2 regularization £5“ to make latent
space compact. The overall objective loss function of the
translation module is:

Lirans = [domain + [eont + Alﬁidf—TECO’ﬂ + )\2£in+

adv adv

Ag Lt L\ L5 4 A LI L N\ LY 4 A7 LS.

cls

®)

F. Semantic Segmentation Model

The pretrained modality translation model above serves as
an auxiliary network for image segmentation by imputing
missing modality in the input, since it is too expensive
and time-consuming to collect all modality data for every
mouse. After modality translation, an original image and its
synthesized ones are fed to a depth-wise convolution before
an encoder to preprocess the context modality-by-modality
(Fig. 1b). We reuse the architecture and the parameters of the
content encoder obtained in the modality translation training
stage as the encoder of the segmentation module and update
the decoder first. This is motivated by the fact that the content
encoder in the modality translation model has already learned
modality-independent anatomical features in a self-supervised
manner and could extract and distill these representative
features in a shared latent content space, leading to a better
segmentation of anatomical structures for different modalities.
Moreover, in contrast to a typical segmentation task, which
is only trained by labelled data in a supervised fashion, our
segmentation model also leverages information from unlabeled
data via the unsupervised modality translation model. Our
segmentation loss is defined as:

K

- Z(yz);€ log(Decoder(EC(mi)))f, 9)

k=1

‘Cseg =

where y; is the segmenation ground truth of m;, Decoder(-)*

J
denote the probability prediction of voxel j for class k.

V. EXPERIMENTAL SETUP
A. Dataset Acquisition

1) Multi-Modality Dataset: The multi-modality structure im-
ages of the mouse brain were generated by a 3D-mGRE
sequence acquired with a 11.7T MR scanner, including
T2w imaging, Tlw imaging, T2*w imaging, quantitative
susceptibility mapping (QSM), and Magnitude MR images
(Mag). 3D-mGRE was acquired with the following param-
eters: TR/TE/ATE = 100/2/2 ms, echo number = 12,
flip angle = 15°, and resolution = 0.07 x 0.07 x 0.07 mm?>.
The multi-modality structure images covered 75 mouse brains
with 56,970 MR slices. All images were preprocessed by skull
stripping and bias field correction. The ground truth of 50 brain
structures was generated via an atlas-based method and then
manually corrected by a brain anatomy expert.

2) MRM NeAt Dataset: To further verify our proposed
method, we also tested it on external data from the MRM
NeAt dataset [41], which includes 10 T2w MR images ac-
quired with a 16.7T MR scanner. Each scan was manually
annotated into 37 structures. All images had the resolution
= 0.10 x 0.10 x 0.10 mm?3, covered 960 slices, and were
preprocessed by skull stripping, denoising, and bias field
correction. Since this dataset included mono-modality, we only
executed segmentation tasks on this dataset for comparison.

B. Implementation Details

1) Multi-Modality Datset: The architecture of MouseGAN++
is presented in Fig. 3. To conduct 5-fold cross-validation, we
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randomly split 80% scans (60 subjects) as training sets and
20% scans (15 subjects) as testing sets at subject-level in each
modality and further utilize unpaired data in experiments for
both translation module and segmentation module training. In
the preprocessing process, each slice was resized to 256 x 256
matrix size and the intensity distribution was normalized into
zero mean and unit variance. Data augmentation was also
introduced to alleviate overfitting, including random cropping
to 216 x 216 matrix size and random flip. In addition, to train
the translation module, we used one-hot modality codes to
indicate each modality of input images in the training stage. In
the test stage, the input single-modality images were encoded
into shared content space and generated to all modalities
with different one-hot modality codes. Empirically, we set
A1, A2, Az =10, Ay = 0.01, A5, Ag, A7 = 1.

For segmentation model training, we first froze the param-
eters of the shared content encoder and then trained only
the decoder and depth-wise convolution filter. The images are
resized to 224 x 160. For all training procedures, we used the
Adam optimizer with a learning rate of 0.0001, and set the
size of the batch to 16. Finally, we finetuned the segmentation
model with a learning rate of 0.00001 to update and refine
all parameters, including the content encoder. The proposed
framework was deployed in the Pytorch library and trained
on a NVIDIA Tesla V100 GPU (32 GB memory) with 400
and 100 epochs for the translation and segmentation modules,
taking 40 and 8 hours on average, respectively.

2) MRM NeAt Dataset: On this external dataset, we ex-
ecuted only the segmentation module of MouseGAN++ to
investigate how the disentanglement representation pretrained
on multiple modalities facilitates downstream segmentation
tasks. We conducted the 5-fold cross validation study at the
subject-level, using 8 subjects for training and the remaining
2 subjects for testing in each equal-size fold. The parameter
setting and training steps were kept in line with the multi-
modality dataset other than the number of output channels.

C. Evaluation Metrics

These metrics were used to evaluate the quality of trans-
lation images, Learned Perceptual Image Patch Similarity
(LPIPS) [42], Visual Information Fidelity (VIF) [43], Peak
Signal Noise Rate (PSNR), Structural Similarity Index Mea-
sure (SSIM), and Multi-Scale Structural Similarity (MS-
SSIM). Lower LPIPS, higher VIF, PSNR, SSIM, and MS-
SSIM refer to a better translation. The dice coefficient and
average surface distance (ASD) were used for evaluating
segmentation performance at subject-level in 3D volumes for
both multi-modality dataset and MRM NeAt dataset. All the
results were presented with mean=std to exhibit both the mean
performance and cross-subject variance.

D. Comparison to SOTA Methods

We first compared the translation module of MouseGAN++
with the following state-of-the-art (SOTA) image translation
methods: CycleGAN [2], UNIT [19], MUNIT [20], StarGAN-
v2 [21] and our prior MouseGAN [8]. As for segmentation,

we further compared our method with two atlas-based meth-
ods, aMAP [11] and Natverse [12]; two direct segmentation
methods: U-Net [44] and MU-Net [13]; one disentangle-
ment method: D?-Net [6]; in addition to four synthesis-and-
segmentation methods: CycleGAN [2], SynSeg [45], UNIT
[19], MUNIT [20]. For SOTA synthesis-and-segmentation
methods, we trained a segmentation network on both real
images in the original modality M; and the synthetic ones
M;_,; in the transferred modalities, thus the network training
can be benefited from the expansion of training data both in
terms of size and modality. For SynSeg revised from [45],
we conducted translation and segmentation simultaneously,
not separately like in CycleGAN. As for MouseGAN and
MouseGAN++ (the backbone, U-Net, is identical to that
utilized in comparison methods), we utilized the translation
module in our framework for imputing modalities, allowing
the fused multi-modality semantic information to directly pass
into the segmentation network. All comparison methods are
either directly taken from original implementation from the
corresponding github repository (if the codes are released) or
implemented followed the original paper. The impact of each
module in MouseGAN++ is detailed in the ablation study.
Additionally, we directly deployed U-Net [44] as a baseline
with only real images input for training. Since synthesis-and-
segmentation methods require multiple modalities for image
synthesis training, they fail to apply to the MRM NeAt dataset,
which contains only one modality (T2w). Thus, we compared
U-Net, the backbone of synthesis-and-segmentation methods,
as well as other SOTA methods. Then, using several metrics,
we evaluated the segmentation performance of these methods
on several critical brain structures, including hippocampus,
superior colliculus, striatum, and thalamus.

TABLE |
TRANSLATION PERFORMANCE COMPARISON WITH DIFFERENT
METHODS FROM T1w TO T2W AND VICE VERSA

Tiw — T2w
Method PSNR 1 SSIM 1 MS-SSIM 1t VIF 1 LPIPS |
CycleGAN 20.51+1.36  0.685+0.021 0.726+0.046 0.178+0.010 0.239+0.012
SynSeg 20.10+1.32  0.677+0.035 0.725+0.036 0.182+0.013 0.252+0.015
UNIT 19.98+1.32  0.579+0.075 0.727+0.039 0.145+0.018 0.240+0.012
MUNIT 20.88+1.21  0.602+0.085 0.751+0.039 0.160+0.017 0.202+0.018
StarGAN-v2 | 21.13+1.68 0.677+0.071 0.717+0.026 0.126+0.021 0.212+0.014
MouseGAN | 20.46+1.13 0.693+0.036 0.775+0.033 0.197+0.015 0.186+0.014
MouseGAN++ | 22.72+1.02 0.716%0.031 0.796+0.029 0.215+0.017 0.173+0.010
T2w — T1w
Method PSNR 1 SSIM 1t MS-SSIM 1t VIF 1 LPIPS |
CycleGAN 25.61+1.38  0.813+0.018 0.842+0.032 0.256+0.013 0.248+0.021
SynSeg 23.39+1.54 0.789+0.024 0.809+0.028 0.241+0.016 0.246+0.018
UNIT 25.17+2.02 0.754+0.059 0.871+0.019 0.261+0.020 0.178+0.014
MUNIT 24.39+1.83  0.740+0.070 0.871+0.015 0.231+0.026 0.177+0.015
StarGAN-v2 | 23.05+1.47 0.810+0.028 0.836+0.044 0.179+0.050 0.188+0.017
MouseGAN | 24.39+1.53 0.820+0.023 0.873+0.016 0.304+0.033 0.169+0.011
MouseGAN++ | 26.70+1.30 0.841%0.019 0.899+0.013 0.349+0.025 0.151+0.012

V. RESULTS AND DISCUSSION
A. Evaluation on Two-Modality Image Translation

As recent state-of-the-art methods mostly focus on one-to-
one domain translation (i.e., one-to-one modality translation in
our case), we first conducted T1w-T2w modality translation
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Fig. 4. Visualization of modality translation results between T1w and T2w. From left to right: raw input images (1st column), the synthetic images
produced by different translation methods (2nd-7th column), and the ground truth target images (last column). For each real or synthetic image,
we also show the zoomed-in regions of interest (ROI) in gray tunes as well as the zoomed-in residual image between the synthetic image and the
ground truth of the same ROI. The colorbar indicates the magnitude of the normalised residual.
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Fig. 5. Visualization of MouseGAN++ modality translation results on
all five modalities. From top to bottom are the exemplary samples from
the results when T1w, T2w, T2*w, Mag, or QSM is used as a single
input modality, respectively. Yellow boxes represent input real images
for each row, and could also serve as ground truth for each column.
SSIMs between the synthetic and ground-truth real images are shown
on the top of each image.

experiments in order to ensure comparability. The quantitative
results of T1w-T2w translation are summarized in Table 1 and
a few exemplary synthetic images are shown in Fig. 4. We can
observe that for both two-direction translations, Mouse GAN++
surpasses other methods in terms of all five metrics that are
used to measure image synthesis quality. More specifically,
for the translation from T1w to T2w, MouseGAN++ achieves
the best performance with the highest SSIM of 0.716 and the
lowest LPIPS of 0.173. We can also observe from Fig. 4 that
MouseGAN++ produces sharper and more realistic textures,
with the content better aligned with anatomy than other
methods. For example, the lateral ventricles (zoomed-in ROIs
from the second example) ought to have low contrast in T1w
and, conversely, high contrast in T2w. Unlike MouseGAN++,
synthetic images obtained from CycleGAN and SynSeg ig-
nore these contrast features. While images synthesized by
StarGAN-v2 show better contrast features, unexpected image
deformation is present in the third ventricle and fourth ventri-
cle (the second row, Fig.4). Moreover, MouseGAN++ yields
significantly less pixel-level bias than others, especially in the
cerebellar cortex. From our perspective, a fundamental reason
for the better performance of MouseGAN++ is the attribute
and content disentanglement, which enables more precise
translation to different modalities. For the inverse translation
task from T2w to Tlw, MouseGAN++ achieves the best
performance with an average SSIM of 0.841 and an average
PSNR of 26.70, which is consistent with the Tlw to T2w
task. By contrast, the competing methods, CycleGAN, SynSeg,
and StarGAN-v2, produce erroneous contrast or deformation
in some brain regions during translation (zoomed-in ROIs in
the last row).
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B. Evaluation on Multi-Modality Image Translation

Here we further test MouseGAN++ on the five-modality
translation task, where only images from a single modality
were used as input to synthesize images of the other four
modalities. Figure 5 reports the exemplary synthetic images
along with the average SSIM for each test modality. Each row
represents the test samples of the same subject from T1w, T2w,
T2*w, Mag, and QSM, respectively.

We have two important observations from Fig. 5. First,
some modalities are easier to synthesize than others: e.g.,
the averaged SSIMs of Mag and Tlw being the target are
0.807 and 0.790, which are much higher than other modalities,
e.g., QSM, with an averaged SSIM of 0.584. The suboptimal
translation performance of QSM could be due to its immense
different intensity distribution from other modalities, making
this translation task particularly challenging. On the other
hand, T2w, T2*w, and Mag can be good candidates for
source modality, yielding average SSIMs of 0.762, 0.739,
and 0.753 when being transferred into other modalities. By
contrast, Tlw and QSM generate lower SSIM (0.686 and
0.677, respectively). Particularly, we observe an asymmetric
translation between Tlw and T2w, the two most commonly
used MRI modalities in practice: T2w — Tlw has a SSIM
of 0.793, whilst Tlw — T2w lies only 0.673, which suggests
that T2w could provide more structural information than T1w
for mouse studies.

C. Evaluation on Brain Structure Segmentation

The quantitative results of brain structural segmentation
on Tlw and T2w, the two most important MR modalities
used in mouse brain studies, are summarized in Table 2,
with a few exemplary segmentation results presented in Fig.
6. In both modalities, MouseGAN++ consistently surpasses
comparison methods, demonstrating the effectiveness of our
proposed framework. Compared to the baseline U-Net segmen-
tation with an average Dice of 73.6%, conventional translation
methods (CycleGAN, SynSeg, UNIT, MUNIT) contribute to
an improved Dice of around 76.3%-79.7%, which could be
attributed to the synthetic images that increase both the amount
and the diversity of training data. As one of the SOTA dis-
entanglement methods, D?-Net also outperforms the baseline
U-Net (yet inferior to MouseGAN and MouseGAN++), owing
to the advantage of untangling during multi-modality training.
In comparison, the two atlas-based segmentation methods,
aMAP and Natverse, obtain average Dice scores of 82.9%
and 75.5%, respectively. Their segmentation performance is
largely determined by the quality of atlas registration. As we
know, registration is not an easy task, as the heterogeneous
contrasts existing in different image spaces might not provide
enough guidance for intensity-based registration metrics, such
as mutual information. Finally, MouseGAN++ achieves the
best Dice scores (89.0%) and generates delicate segmentation
results, e.g., in the regions of deep brain structures and cere-
bellum (Fig. 6), which demonstrates that the content encoder
in the modality transfer model can successfully encode the
structural information shared between different modalities,
thus mitigating the influence of the domain gap and the

restriction of scarce information in a single modality. The
additional incremented performance of MouseGAN++ as com-
pared to MouseGAN could be due to a better disentanglement
of the latent properties thanks to contrastive learning. Also,
when making use of five modalities, MouseGAN++ gains a
further 1% increment of Dice and 0.06 lower distance of
ASD compared to the two-modality version, demonstrating
different modalities do provide complementary information.
Last but not least, the segmentation performance of T2w is
slightly better than T1w images, which may be due to the
fact that T1w images provide less structural information than
T2w, consistent with our previous modality transfer analysis
in Section 4.B.

D. Evaluation Over MRM NeAt Dataset

It is interesting to compare the performance of
MouseGAN++ with SOTA methods on an additional
dataset, MRM NeAt. As shown in Table 3 and Fig. 7,
atlas-based methods produce unsatisfied results as the
registration procedure causes brain structural deformation,
especially for the elongated structures (e.g., corpus callosum).
Note that these small regions are also challenging for
deep learning methods, especially when the training set is
limited in size. Encouragingly, on this challenging small
dataset, MouseGAN++ achieves the best Dice and ASD,
outperforming U-Net, MU-Net, D?-Net and the previous
MouseGAN. Even without the translation module, the
pretrained weight learnt from disentanglement representation
in MouseGAN++ is superior to other networks due to the
decoupled modality-agnostic knowledge, hence improving the
performance of downstream tasks.

E. Ablation Study and Understanding of Contrastive
Learning

In this section, we investigate why MouseGAN++ further
improves the performance of our previous MouseGAN, i.e.,
how attribute and content contrastive learning improves modal-
ity translation. We first conduct an ablation experiment on
the five modality translation tasks to show the effectiveness
of each contrastive learning strategy. The baseline method is
MouseGAN, which is deployed without attribute £¢, and con-
tent £, contrastive losses. To fully understand the advantages
of our method, we exhibit the following experiment results and
analyses from three aspects, the effectiveness of contrastive
losses over mouse brain structural MR images, visualization
of latent spaces, and comparison between Gaussian prior and
contrastive learning prior.

1) Effectiveness of Contrastive Losses: As shown in Table 4,
compared with the baseline, the attribute contrastive loss alone
gains an average SSIM of 0.665 and 0.742 when taking T1w
and T2w as input, respectively. A similar performance increase
is observed when we add the content contrastive loss alone
(0.671 to 0.751). Adding both components together makes
MouseGAN++, which achieves 0.686 and 0.762 in terms of
average SSIM. This incessant increase illustrates that attribute
and content discrimination can be jointly implemented to
produce better disentanglement representation in translation
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TABLE Il
COMPARISON OF SEGMENTATION PERFORMANCE OF DIFFERENT METHODS ON T1W AND T2W USING MULTI-MODALITY DATASET
T2w
Method Dice [%] 1 ASD [Voxel] |
Hippocampus SC Striatum Thalamus Mean P-value |Hippocampus SC Striatum Thalamus Mean P-value
aMAP 84.4+20 825+3.2 83.0£t1.9 81.7+28  82.9+2.7 1e-6 1.20+0.18 0.96+0.22 1.27+0.15 1.13+0.20 1.14+0.22 7e-9
Natverse 78.2+t4.4  75.3+3.7 755+2.8 73.1+4.6  75.5+4.1 6e-6 2.11+0.24 2.26+0.43 2.06+0.35 2.32+0.40 2.19+0.46 5e-8
U-Net 77.9+7.0 70.6+6.1 76.1£55  69.9+6.2  73.6+6.6 2e-12 | 2.77+0.82 3.97+0.61 4.09+1.65 3.67+1.48 3.63+1.37 1e-12
MU-Net 80.5+t2.9  74.6+2.1 82.0+t2.5 70.1+3.5 76.8+4.0 3e-8 2.14+0.43 3.14+0.51 2.64+0.47 2.14+0.59 2.52+0.48 | 2e-11
D?-Net 83.3£t3.2 77.8+6.6 85.4+4.2 724+3.8 79.7+5.9 1e-11 1.82+0.24 2.09+0.31 1.96+0.29 2.32+0.40 2.05+0.36 | 5e-11
CycleGAN 80.9+7.4  69.4+9.2 79.8+£3.0 75.6+2.4  76.4+57 6e-11 2.28+0.39 3.53+0.56 2.68+0.62 2.47+0.43 2.74+0.54 1e-12
SynSeg 82.5+6.4  74.3+58 80.2+t4.2 76.2+t4.6  78.3%55 4e-12 | 2.20£0.44 2.28+0.38 2.54:x0.51 2.63+0.49 2.41:0.47 | 2e-10
UNIT 84.2+4.4 75.6+58 81.8+t53 74.6+56  79.1+5.8 3e-10 | 2.53+0.46 2.34+0.42 2.26+0.54 2.54+0.58 2.42+0.52 7e-9
MUNIT 81.8£t4.0 73.8+6.5 78.9+44 70.8+6.3 76.3+5.6 4e-6 2.20£0.57 2.43+0.48 2.17+0.64 2.30+0.68 2.28+0.61 2e-8
MouseGAN (2-M) | 87.2+3.6  84.6+4.7 87.6+3.3  82.3+3.1 85.4+4.2 1e-6 1.07+0.32 0.69+0.23 1.26+0.36 1.14+0.48 1.04+0.38 3e-8
MouseGAN (5-M) | 88.5+3.4  86.4+3.8 89.2+3.6 855+4.2 87.4%3.9 2e-7 0.94+0.28 0.66+0.12 0.91+0.22 1.04+0.50 0.89+0.33 1e-9
MouseGAN++ (2-M) | 91.4+1.2  88.7+1.2  92.0£t1.9  83.9+4.0 89.0+2.2 1e-5 0.72+0.07 0.60+0.06 0.63+0.24 0.81+0.31 0.69+0.19 3e-7
MouseGAN++ (5-M) | 91.8+1.5  90.0+x1.2  92.1+1.5 86.0+1.4  90.0+1.6 - 0.67+0.12  0.53+0.07 0.63+0.26 0.68+0.31 0.63+0.20 -
Tiw
Method Dice [%] 1 ASD [Voxel] |
Hippocampus SC Striatum Thalamus Mean P-value [Hippocampus SC Striatum Thalamus Mean P-value
Amap 83.7+2.2  81.9+3.5  81.9+24  81.4+27  82.2+29 3e-6 1.25+0.18 1.00+0.24 1.39+0.19 1.15+0.20 1.20+0.25 2e-7
Natverse 77.3+5.2 74.8+4.1 759+3.5 734+4.2  754+4.4 4e-7 2.24+0.26  2.45+0.48 1.92+0.36 2.26+0.39 2.22+0.40 1e-8
U-Net 74859  69.2+8.9 77.1+6.7 70.8+45  73.0+6.8 3e-10 | 3.35+0.78 4.15+0.79 3.93+0.62 2.87+1.09 3.58+0.93 4e-9
MU-Net 78.1+£3.7 74.0+4.8 79.2+45 T74.9+42 76.6+4.6 1e-11 2.05+0.33 1.85+0.44 2.21+0.59 3.07+0.52 2.29+0.54 7e-9
D?-Net 81.7+2.1 76.5+4.1 83.5+4.6  75.2+2.7 79.2+3.6 2e-9 2.21+0.42 2.07+0.35 1.96+0.27 1.63+0.26 1.97+0.38 | 2e-10
CycleGAN 79.5t46  68.1+3.8 78.8+4.0 74.3+3.4 752142 6e-10 | 2.43+0.37 3.07+0.63 2.27+0.48 2.59+0.42 259+0.49 | 4e-10
SynSeg 80.6t4.5 752+3.9 76.9+3.0 75.9+3.8 77.2+4.0 4e-10 | 2.68+0.64 2.87+0.54 2.79+0.54 2.48+0.43 2.71+0.58 | 3e-11
UNIT 81.1£35 76.2+3.6 78.8+3.3 755+3.9  77.9+3.7 3e-9 2.32+0.38 2.18+0.56 2.34+0.40 2.40+0.52 2.31+0.51 5e-9
MUNIT 78.2+2.6 74.0+3.0 76.1+2.8  73.6+3.1 75.5+3.1 1e-11 2.39+0.69 2.07+0.22 2.16+0.30 2.25+0.45 2.22+0.43 1e-12
MouseGAN (2-M) | 86.3+3.6  83.5+3.5 84.2+3.7 81.6+4.0 83.9+3.9 3e-10 1.31£0.36  1.24+0.27 1.46+0.37 1.29+0.34 1.78+0.36 2e-9
MouseGAN (5-M) | 87.4+2.4  84.3+t3.0 89.0+2.6 83.5+t3.2 86.1+3.9 1e-9 1.16+0.27 0.85+0.23 1.28+0.30 0.75+0.31 1.21+0.29 3e-9
MouseGAN++ (2-M) | 88.8+2.4  85.2+1.8  90.9+1.7  83.8+2.1 87.2+2.1 4e-8 0.73+0.23 0.79+0.32 0.68+0.27 0.53+0.27 0.68+0.28 5e-8
MouseGAN++ (5-M) | 89.7+2.0 86.3x1.6 91.4+1.5 84.1+1.8 87.9+1.9 - 0.71+0.17  0.72+0.13  0.62+0.25 0.56+0.20 0.65+0.21 -

SC: Superior colliculus; 2-M: two-modality dataset; 5-M: five-modality dataset; P-value: paired t-test.

D2-Net

MRI image aMAP Natverse U-Net MU-Net

CycleGAN

SynSeg UNIT MUNIT MouseGAN  MouseGAN++ Ground truth

Fig. 6. Exemplary segmentation results on T1w and T2w. From left to right: images to be segmented(1st column), segmentation results of different
comparative methods (2rd-11th column), results of our MouseGAN++ (12th column), and the ground truth segmentation (the last column). Our
model can segment up to 50 mouse brain structures shown in different colors. White circles and arrows indicate erroneous segmentation details.

tasks. In Fig. 8, we present the training loss curve of self-
modality reconstruction £/ 77" ag well as £, which is
associated with the quality of translation. The MouseGAN++
with contrastive losses shows a more stable training procedure
than the original MouseGAN as the adversarial losses achieve
the balance between the discriminator and generator in the

multi-modality dataset.

One corner case we intend to clarify here is how the network
knows to deal with two very similar mouse brains in one
mini-batch. Even though this case can be deemed as a hard
example for network discrimination, the anatomical contents
from the same subject should be located closest to each other
in the latent content space despite the presence of modality
translation. Additionally, some works report that attribute



Z.YU et al.: MOUSEGAN++

MRI image aMAP Natverse U-Net

MU-Net

MouseGAN MouseGAN++ Ground truth

D2-Net

Fig. 7. Exemplary segmentation results on MRM NeAt T2w dataset. From left to right: images to be segmented(1st column), segmentation results
of different comparative methods (2rd-7th column), results of our MouseGAN++ (8th column), and the ground truth segmentation (the last column).

White circles and arrows indicate erroneous segmentation details.

TABLE Il
COMPARISON OF SEGMENTATION PERFORMANCE OF DIFFERENT METHODS ON T2W USING MRM NEAT DATASET
Method Dice [%] ASD [Voxel] |
Hippocampus SC Striatum Thalamus Mean P-value |Hippocampus SC Striatum Thalamus Mean P-value
aMAP 83.9:1.9 71.8+4.1 84.2+16 67.9+2.7 77.0:28 | 9e-9 | 1.11:0.13 1.60£0.55 0.99+0.07 2.94+0.17 1.66+0.27 | 3e-10
Natverse 81.3+3.4  69.4+7.2 84.4+23 66.5+1.2 754%39 1e-8 | 1.30£0.22 1.76+0.46 1.00+0.12 3.28+0.27 1.84+0.32 | 2e-10
U-Net 82.3+56 78.5+4.7 81.8+41 814453 81.0+52 | 2e-6 | 1.82+0.75 3.24+0.54 2.64+0.69 237+0.68 2.52+0.72 | 7e-8
MU-Net 85.9+3.8 81.5:4.0 83.9:+34 842+47 839+45 | 8e-5 | 1.34:x0.35 205048 2.18+0.59 2.19+0.47 1941051 | 5e-6
D?-Net 87.3+2.9 83.6+2.1 87.0+25 87.2+35 86.3x+4.0 | 4e-4 | 1.04+044 1.49+051 1.26+047 2.11x0.59 1484059 | 1e-5
MouseGAN 89.7+1.8  85.3+2.0 90.2+22 916+2.8 89.2+40 | 6e-3 | 0.84+0.33 0.94+0.31 0.74+0.37 0.98+0.35 0.82+0.32 | 2e-4
MouseGAN++ 90.6+1.5 87.1+25 91.7+1.0 92.8+0.7 90.6+2.6 - 0.64+0.11 0.66+0.08 0.57+0.06 0.60+0.06 0.62:+0.09 -
SC: Superior colliculus; P-value: paired t-test.
et —recon Ldomain gor generator TABLE IV
] ] s o
25 mwsegm THE ABLATION STUDY FOR TRANSLATION RESULTS TAKING T2W OR
"
" e 4o T1W AS A SINGLE INPUT, RESPECTIVELY. THE AVERAGE METRICS ARE
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1.5 30
10 T2w
25 Method PSNR 1 SSIM7 _ MS-SSIM 1 VIF 1 LPIPS |
05 . MouseGAN 19.46+3.69 0.737:0.124 0.752:0.134 0.204:0.046 0.222+0.028
MouseGAN +£& | 19.76:3.71 0.742+0.126 0.761:0.133 0.180+0.052 0.225+0.025
00 15 MouseGAN + £, | 20.82+3.37 0.751£0.132 0.781:0.127 0.246:0.048 0.193+0.024
0 50 100 150 Ao 0 300 390 400 O 50 100 150 R, 0 300 390 400 MouseGAN++ 21.28+3.46  0.762+0.110 0.7910.126 0.281+0.046 0.187:+0.024
cyc domain il Tiw
! b5 Laav for discriminator Method PSNR 1 SSIMt ___ MS-SSIM1 VIF 1 LPIPS |
30 MouseGAN 18.16+3.77 0.645:0.104 0.683+0.119 0.167+0.089 0.250+0.028
24 MouseGAN + £& | 19.01£3.37 0.665:0.111 0.692+0.121 0.188+0.076 0.246+0.025
25 MouseGAN + £, | 19.68+3.42 0.671+0.110 0.721:0.114 0.191:0.066 0.214+0.024
20 23 MouseGAN++ 20.42+3.15  0.686£0.100 0.722+0.114 0.227+0.087 0.205:0.024
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Fig. 8. Comparison of translation training loss curves in ablation study
between previous MouseGAN (blue) and MouseGAN++ (orange).

features may be further divided into domain-specific style
and domain-invariant style [46], [47]. In MouseGAN++, the
modality-related (domain-specific) features are preserved in
attribute space, while the modality-invariant (domain-invariant,
or in other words, structure-related) information is condensed
in the content space, which is adequate for MR image disen-
tanglement.

Furthermore, we qualitatively analyze the contribution of
each individual module of MouseGAN++ with regard to

a baseline model without shared content encoder weight and
translation module (baseline U-Net). Then we add each mod-
ule one by one into the baseline model. We evaluate different
methods on five modalities with every single modality as input
successively and compute the average metrics. As shown in
Table 5, both the shared content encoder and the translation
module bring significant performance advancement, indicating
that each module can work collaboratively in our proposed
framework.

2) Visualization of Latent Spaces: To illustrate how con-
trastive learning improves attribute and content feature em-
bedding themselves, we visualize attribute features of five
modalities via t-SNE [48]. As shown in Fig. 9a, the attribute
features of our proposed methods are well separated in at-
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Fig. 9. Visualization of latent attribute and content embedding
space without (MouseGAN) and with contrastive learning losses
(MouseGAN++). (a) Scatter plot of attribute feature clusters using t-SNE.
(b) The cosine similarity distributions of content features.

TABLE V
THE ABLATION STUDY FOR EXEMPLARY BRAIN STRUCTURE
SEGMENTATION EVALUATED BY DICE SCORES ON THE 5-MODALITY
DATASET

Hippo-  Superior
campus colliculus
75.5+6.0 69.4x5.4 74.0t4.7 70.7t6.6 72.416.2
79.0+3.7 72.6+4.2 79.3+3.3 75.4+3.6 76.6+3.8
86.7+2.1 83.1+3.2 85.9+2.6 81.3+3.0 84.3+2.9

Method Striatum Thalamus Mean

Backbone (U-Net)
Backbone + shared E°
Backbone + translation module

Backbone + shared E¢ + translation

module = MouseGAN++ 90.4+1.6 87.2+2.0 88.9+1.8 83.6:+2.2 87.5:2.0

tribute space, while the baseline method confuses all modality
features except T2*w modality, which further demonstrates
the capacity of MouseGAN++ to achieve better attribute
discrimination.

Then we further evaluate the instance-specific content
discrimination. We calculate the cosine similarity between
content features from the input modality and the modality-
translated images of the same subject (positive pairs), as
well as features from different subjects (negative pairs). As
shown in Fig. 9b, a better feature embedding is denoted by
a more separable distribution between positive and negative
samples, which demonstrates that MouseGAN++ is able to
learn more instance-specific and less modality-relevant fea-
tures, hence conducting better semantic information retention
during modality translation.

3) Gaussian Prior vs. Contrastive Learning Prior: By contrast
with existing approaches [27]-[30] that assume the Gaussian
approximation over the latent attribute space as the primary
bias or prior to promote decoupling, we claim that the con-
trastive learning prior is more appropriate for approaching an
ideal latent distribution of a multi-modality dataset. Unlike
MouseGAN, which follows Gaussian priors, MouseGAN++
follows contrastive learning priors. The comprehensive results

of the above-mentioned comparisons, ablation study, and vi-
sualization of latent space demonstrate that the MouseGAN++
achieves better performance as well as translation quality
compared with SOTA methods.

Nowadays, in practice, multimodal images are commonly
unpaired, which can be a major obstacle to deploying such
paired training methods [6]. Our efforts also extend this
promising direction via fusing cross-modality information in
an unpaired manner and yielding more robust performance
when the modality is missing. Another point we want to
emphasize is the maximum flexibility of our framework as
we trained separately rather than jointly. This is reflected in
the flexibility in choosing pretext tasks, which is important for
disentanglement and downstream tasks. In order to impute a
missing modality, we chose modality translation as our pretext
task in this work. However, one limitation of our work is the
dilemma caused by domain shifts, since the image quality and
contrast from various centers may differ greatly. An appealing
and promising solution is to convert our pretext task to cross-
center image translation so that the learned center-agnostic
features in the content space would alleviate the segmentation
performance degradation.

VI. CONCLUSION

In summary, we propose a novel GAN-based framework,
MouseGAN++, for simultaneous image synthesis and seg-
mentation for mouse brain MRI. Based on a disentangled
representation of content and style attributes strengthened
by contrastive learning, MouseGAN++ is able to synthesize
multiple MR modalities from single ones in a structure-
preserving manner and can hence handle cases with missing
modalities. Furthermore, it uses the learned modality-invariant
information to improve structural segmentation. Our results
demonstrate that MouseGAN++ achieves significant perfor-
mance improvement over both translation and segmentation
tasks and has the potential to be applied in more neuroimaging
applications.

The broader implications of our work are the publicly
available packaged pipeline provided by MouseGAN++ and
the multiple modality MR dataset for facilitating preclinical
research, especially for the communities interested in rodent
brain. In addition, the unsupervised pretext task alleviates the
cost of deployment and promotes the clinical use of cutting-
edge machine learning techniques. In the future work, one
of the attractive directions is to integrate our previous brain
extraction tool [49] with MouseGAN++ as an end-to-end
neuroimaging processing pipeline.
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