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Atherosclerotic cardiovascular disease (ASCVD) is the most common cause of

death globally. Increasing amounts of highly diverse ASCVD data are becoming

available and artificial intelligence (AI) techniques now bear the promise of utilizing

them to improve diagnosis, advance understanding of disease pathogenesis, enable

outcome prediction, assist with clinical decision making and promote precision

medicine approaches. Machine learning (ML) algorithms in particular, are already

employed in cardiovascular imaging applications to facilitate automated disease

detection and experts believe that ML will transform the field in the coming years.

Current review first describes the key concepts of AI applications from a clinical

standpoint. We then provide a focused overview of current AI applications in four

main ASCVD domains: coronary artery disease (CAD), peripheral arterial disease

(PAD), abdominal aortic aneurysm (AAA), and carotid artery disease. For each domain,

applications are presented with refer to the primary imaging modality used [e.g.,

computed tomography (CT) or invasive angiography] and the key aim of the applied

AI approaches, which include disease detection, phenotyping, outcome prediction,

and assistance with clinical decision making. We conclude with the strengths and

limitations of AI applications and provide future perspectives.

KEYWORDS

artificial intelligence, machine learning, atherosclerosis, coronary artery disease, peripheral
arterial disease, carotid artery disease
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1. Introduction

Atherosclerotic
Q8

cardiovascular
Q9

disease (ASCVD) affects the
coronary, cerebral and peripheral arteries and remains the most
common cause of death globally (1). Over the last 60 years,
numerous clinical trials, registries and prospective studies along with
advances in basic science and biomedicine have formed our current
understanding of the pathogenesis of ASCVD and have established
the current clinical standards regarding diagnosis, prevention and
treatment (2, 3). With the advent of digitalization and information
era, large amounts of heterogenous ASCVD data, such as clinical,
imaging, biosensing, administrative and basic science data, are
now available (4). Big data analytics, artificial intelligence (AI) and
particularly their computational branch of machine learning (ML)
bear the promise of incorporating and utilizing these large amounts of
heterogenous information to enhance our armament against ASCVD
(5). Specifically, ML applications have already been employed, or
are currently being researched, to improve ASCVD detection, assist
with diagnosis, advance our understanding of ASCVD phenotypes in
order to promote precision cardiovascular medicine, and to improve
outcome prediction (Figure 1) (6–8). Experts in the field of ASCVD
anticipate significant advancements and changes in the next 10
years (9). The broad spectrum of ML applications in ASCVD in
combination with the lack of familiarity with ML methodologies
for most cardiovascular physicians may create boundaries in the
understanding and potential use of this technology in clinical
practice.

Several reviews have been published to address this issue in
ASCVD. In fact, the majority of existing reviews focus on coronary
artery (CAD) and cardiac disease, in general (10, 11), or, more
specifically, on imaging applications in CAD (12–14). For this reason,
a separate category of reviews concentrates solely on non-cardiac
ASCVD (15, 16). Also, complementary to the above-mentioned
works, other studies provide more “technical” aspects by describing
specific AI concepts and methods within the field of ASCVD (17–
19). In our work, we attempt to provide not only a “clinical”
aspect via an overview of AI applications in four forms of ASCVD
(peripheral arterial disease—PAD, carotid artery disease—CAD, and
aortic aneurysm—AA) but also “technical” insights about the specific
AI concepts and algorithms. Thus, our focused overview of key AI
concepts for the ASCVD specialist enriches the description of the use
of AI in ASCVD clinical practice/research and the discussion about
the future insights of AI as a tool to improve the personalized care in
patients with ASCVD.

2. Key concepts

The term “big data” was coined to describe large quantities
of information that is typically derived from different sources, in
different formats and are produced at a high rate. AI is a broad
term and refers to how human intelligence can be approached by
artificial systems (20). The term includes theoretical approaches
of what constitutes intelligence, as well as practical aspects such
as computational methods. ML and pattern recognition constitute
a computational branch of AI that aims to develop and apply
algorithms for the purpose of recognizing patterns/regularities in
data. ML algorithms require training, typically with the use of big
data which are large and highly diverse datasets. For example, ML

algorithms could be trained to recognize atherosclerotic plaques in
cardiac computed tomography angiographies (CTAs). Training of
such Machine learning algorithms would require supervision, so that
the algorithm would be given previously labeled CTA images as an
input, and its training would entail optimization of its parameters
to a forced output (whether an atherosclerotic plaque is present or
not). Accuracy of such ML algorithms would be then judged by their
ability to correctly recognize the presence or absence of plaques in
new CTA pictures. In another example, supervised ML may aim at
predicting clinical outcomes. In this case, ML models are trained by
forcing a known clinical outcome, e.g., long-term survival or death,
to corresponding patient (e.g., cardiovascular) profiles (21).

Machine learning algorithms can be also trained without
supervision (non-labeled data). Such an option is particularly helpful
when the inherent structure of the available dataset, e.g., patient
demographics/biometrics, medical images, or biosignals, is not
known a priori (22). Moreover, there is often a need to perform
phenotyping where groups of patients (clinical phenotypes) or images
(imaging phenotypes) with similar characteristics are automatically
identified within an initial population/dataset (23). ML can offer
unparalleled ways for the identification of unknown phenotypes in
“big data.” Most importantly, the identification of new, unknown
phenotypes that are closer to individual patient characteristics,
essentially promotes personalized medicine and its integration in
everyday clinical practice (24).

The main representatives of commonly used ML algorithms
include, but are not limited to neural networks, naive Bayes models,
decision making trees, clustering algorithms, k nearest neighbor, and
SVM. Deep learning (DL) essentially refers to neural networks with
complex computational architectures and the use of additional layers
of neurons to enhance performance (25, 26). We summarize key
terms in Table 1, whereas Table 2 provides an overview of the ML
applications in ASCVD described in the current work.

Regardless of the data or algorithms used, one can recognize four
broad categories of clinical ML applications: (i) detection of disease,
(ii) outcome prediction and risk assessment, (iii) phenotyping for
better understanding of disease and precision medicine, and (iv)
clinical decision support. Oftentimes, applications may serve more
than one purpose, e.g., phenotyping may assist outcome prediction.
In addition, many AI applications fall into the preclinical setting
and are mostly the subject of engineers or data scientists who
collaborate with ASCVD experts. In this work, we focus on AI
applications that are mostly clinical or describe the clinical aspect of
preclinical applications.

3. Coronary artery disease

3.1. Disease detection via medical
recordings

Several studies have already focused on applying a wide variety
of ML models to diagnose CAD using clinical recordings, or
else patient demographics, symptoms and examination reports,
electrocardiographic (EKG) and imaging data along with laboratory
tests (27).

For example, Alizadehsani et al. employed different ML
algorithms/methods, such as the Sequential Minimal Optimization
(SMO), Naïve Bayes, Bagging SMO, and neural networks to diagnose
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FIGURE 1

UsualQ10 workflow

Q11

of AI approaches in ASCVD. Highly diverse biomedical data from patients with ASCVD are collected and used as input in AI algorithms to
provide intelligent analytics. The developed AI algorithms (ML and DL) undergo supervised or unsupervised training to enable disease detection,
outcome prediction, clinical decision support, and phenotyping.

TABLE 1 Definitions of commonly used terms in artificial intelligence applications.

Term Definition

Artificial intelligence (AI) A broad term referring to how human intelligence can be approached and utilized by artificial systems.

Big data Large quantities of digital data that are typically heterogenous and derived from different data sources and at high speed

Machine learning (ML) A computational branch of AI referring to algorithms that perform intelligent tasks via recognition of patterns within Big Data. The term
Pattern Recognition is essentially synonymous.

ML training In the context of ML, it refers to the process of identifying the required parameters of a ML algorithm for a specific AI task via repetitive data
analysis.

Supervised ML training Training that is performed by forcing specific outputs to specific data.

Unsupervised ML training Training that is performed without forcing specific outputs. In this case, ML algorithms create data patterns automatically, i.e., by utilizing
specific mathematical criteria.

Artificial neural networks
(ANN)

ML algorithms comprised of algorithmically interconnected nodes that resemble neural networks.

Deep learning (DL) Refers to ANN that utilize complex, intermediate layers of nodes/neurons.

CAD. The best predictive performance with an accuracy of 94.08%
was achieved by the SMO models trained on the features selected
using SVM weights (28). In another study, the same group proposed
a hybrid ML method based on combining genetic algorithms to put
forward the initial weights of the shallow neural network approach.
The hybrid model outperformed the neural network model by 10%
improvement in CAD diagnosis accuracy by achieving 93.85% (29).
Similarly, Alizadehsani et al. applied the C4.5, Adaboost, SMO,

and Naïve Bayes algorithms on more comprehensive recordings
of laboratory and echocardiographic information. In this case, the
SMO reported the best predictive capability with 82.16 ± 5.45%
accuracy (30). Furthermore, Alizadehsani et al. explored the effect
of adding a MetaCost algorithm to improve the efficacy of the ML
models to detect/diagnose CAD. The authors implemented different
ML models: Naïve Bayes, SMO, K-Nearest Neighbors (KNN), SVM,
and C4.5. The study concluded that the combination of the SMO
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TABLE 2 Studies using machine-learning applications in ASCVD.

Study Objective Data type (number
of patients or

images)

ML algorithm Supervised/unsupervised

Disease detection/assisted diagnosis

Zreik et al. (50)
10.1109/TMI.2018.2883807

Detection and classification of
coronary artery plaques

CCTA scans (163) Convolutional recurrent
neural network

Unsupervised feature extraction,
supervised classification

Kang et al. (46)
10.1117/1.jmi.2.1.014003

Detection of non-obstructive and
obstructive coronary plaques

CCTA scans (42) Support vector machine Supervised

Yoneyama et al. (47)
10.1186/s41824-019-0052-8

Detection of CAD Hybrid SPECT/CCTA scans
(59)

Artificial neural network Supervised

Takx et al. (54)
10.1371/journal.pone.0091239

Automated CAC score
classification

Non-gated CT scans (1,793) Convolutional neural
network pair

Unsupervised feature extraction,
supervised classification

Wolterink et al. (55)
10.1016/j.media.2016.04.004

Automated CAC score
classification

CT scans (250) Convolutional neural
network pair

Unsupervised feature extraction,
supervised classification

Sandstedt et al. (56)
10.1007/s00330-019-06489-x

Automated CAC score
classification

CT scans (315) Not reported Not reported

van Velzen et al. (57)
10.1148/radiol.2020191621

Automated CAC score
classification

Non-contrast CT (7,240) Deep learning network Supervised

Tesche et al. (69)
10.1148/radiol.2018171291

Detection of lesion-specific
ischemia based on non-invasive

FFR

CCTA (85) Deep learning framework Supervised (FFR measured
computationally)

Du et al. (72)
10.1016/j.jacc.2018.08.1360

Detection of stenosis Invasive coronary angiography
(5,050)

Deep learning convolutional
neural network

Supervised

Cha et al. (77)
10.1038/s41598-020-77507-y

FFR via OCT-derived data OCT data (141) Random forest Supervised

McCarthy et al. (104)
10.1002/clc.22939

Detect obstructive PAD Clinical/biomarker data (354) LASSO logistic regression Supervised

Afzal et al. (106)
10.1016/j.jvs.2016.11.031

Detect PAD EHR logs (1,569) Natural language processing Supervised

Kolossvary et al. (60)
10.1161/CIRCIMAGING.117.006843

Detection of napkin-ring sign
(high-risk feature)

CCTA scans (69) Logistic regression model Supervised

Yin et al. (74)
10.3389/fcvm.2021.670502

Detection of plaque type
(fibrofatty, calcified or lipid)

OCT images (2,000 images, 31
patients)

Convolutional neural
network

Supervised

Chu et al. (75)
10.4244/EIJ-D-20-01355

Detection of plaque burden and
plaque composition

CT scans (391) Deep learning convolutional
neural network

Supervised (manual annotation)

Oikonomou et al. (91)
10.1093/eurheartj/ehz592

Identify periarterial tissue
inflammation

CCTA and biopsy-derived
periarterial inflammation data
(training-167, validation-44)

Random forest Supervised

Qutrio Baloch et al. (111)
(10.3390/diagnostics10080515)

Detect association between PAD
severity and functional limitation

Clinical data from the
STRIDES clinical program

(703)

Ensemble strategy that
compared random forest,

neural networks and
generalized linear model

Supervised

Phenotyping/clustering

Oikonomou et al. (88) Identify phenotypes that favor
functional vs. anatomic

evaluation of CAD

Clinical data from the
PROMISE trial (9,572)

-validated on SCOT-HEART
trial

Extreme gradient boosting Unsupervised

Yoon et al. (22)
10.1038/s41598-021-96616-w

Identify coronary plaque
phenotypes

CCTA scans from PARADIGM
(947)

K-means clustering Unsupervised

Clinical decision making

Buzaev et al. (101)
10.1016/j.cdtm.2016.09.007

PCI vs. CABG Clinical/outcome data (4,679) Artificial neural network Supervised

Outcome prediction

Le et al. (129)
10.1038/s41598-021-82760-w

Predict stroke based on carotid
plaque features

Carotid CT scans (41) Logistic regression model
(ElasticNet)

Supervised

(Continued)
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TABLE 2 (Continued)

Study Objective Data type (number
of patients or

images)

ML algorithm Supervised/unsupervised

Christodoulou et al. (137)
10.1109/TMI.2003.815066

Predict stroke based on carotid
plaque features

Carotid ultrasound images
(230)

K-nearest neighbor Supervised

Jiang et al. (122)
10.3389/fphy.2019.00235

Predict AAA expansion Clinical data (20) Deep belief network Supervised

López-Linares et al. (140)
10.3389/fbioe.2019.00267

Predict EVAR outcome Displacement Field-Based
Strain (22)

Support vector machine Supervised

Davis et al. (113)
10.1016/j.jvs.2016.11.053

Predict surgical site infection after
lower extremity revascularization

Clinical data from the BMC2
VIC registry (3,033)

Ensemble strategy of 13
different techniques (Super

Learner)

Supervised

Ambale-Venkatesh et al. (21)
10.1161/CIRCRESAHA.117.311312

Predict adverse cardiovascular
events

MESA data (6,814) Random forest Supervised

Hathaway et al. (97)
10.1016/j.compbiomed.2021.104983

Predict adverse cardiovascular
events

MESA data (6,814) Deep neural survival network
(DeepSurv)

Supervised

Kakadiaris et al. (7)
10.1161/JAHA.118.009476

Predict adverse cardiovascular
events

MESA data (6,459)—validated
on the FLEMENGHO study

Support vector machine Supervised

Ward et al. (141)
10.1038/s41746-020-00331-1

Predict cardiovascular events in a
multi-ethnic population

Outpatient EHR data (797,505
patients)

Ensemble strategy that
compared gradient boosting

machine, random forest,
XGBoost

Supervised

Han et al. (98)
10.1161/JAHA.119.013958

Predict coronary atherosclerotic
plaques at risk of rapid

progression

CTCA scans from
PARADIGM registry (1,083)

LogitBoost Supervised

Bertsimas et al. (142)
10.1007/s10729-020-09522-4

Predict 10-year CAD-related
adverse event

Clinical/outcome data (21,460) ML voting system (ORT,
CART, RF, LRM)

Supervised

Rao et al. (99)
10.1016/j.jcin.2013.04.016

Predict bleeding risk post-PCI CathPCI registry (1,043,759
PCIs)

Binomial regression Supervised

Motwani et al. (143)
10.1093/eurheartj/ehw188

Predict all-cause mortality in
patients with suspected CAD

Clinical data from CONFIRM
registry (8,844 patients)

LogitBoost Supervised

van Rosendael et al. (144)
10.1016/j.jcct.2018.04.011

Predict CAD onset Data from the CONFIRM
registry study (8,844 patients)

XGBoost Supervised

Kim et al. (145)
10.1016/j.jcmg.2018.04.009

Predict coronary atherosclerotic
plaques at risk of rapid

progression

CTCA variables from
PARADIGM registry (1,083)

LogitBoost Supervised

Motwani et al. (143)
10.1093/eurheartj/ehw188

Predict 5-year mortality in
patients with suspected CAD

Clinical and CCTA variables
(10,030)

Boosted ensemble algorithm Supervised

ML, machine learning; CCTA, coronary computed tomography angiography; CAD, coronary artery disease; CAC, coronary artery calcium; SPECT, single positron emission computed tomography;
FFR, fractional flow reserve; DL, deep learning; CNN, convolutional neural network; OCT, optical coherence tomography; RF, random forest; PAD, peripheral artery disease; LASSO, least absolute
shrinkage and selection operator; EHR, electronic health records; LRM, logistic regression model; NRS, napkin ring sign; DCN, deconvolutional neural network; PVAT, perivascular adipose tissue;
PCI, percutaneous coronary intervention; CABG, coronary artery bypass graft; CT, computed tomography; KNN, k-nearest neighbor; AAA, abdominal artery aneurysm; EVAR, endovascular
aneurysm repair; GLM, generalized linear model; XGBoost, extreme gradient boosting; ORT, optimal regression tree; CART, classification and regression trees.

and MetaCost algorithms yielded very high sensitivity 97.22% and
accuracy 92.09% in comparison to other models (31, 32). In another
notable attempt by Nasarian et al. additional stress-, work-related and
environmental features enriched an initial traditional clinical dataset
in order to improve performance. The authors proposed a novel
hybrid feature selection algorithm named heterogeneous hybrid
feature selection (2HFS). The study trained different algorithms:
Decision tree, Gaussian Naive Bayes, RF, and XGBoost classifiers.
Outcome showed that the XGBoost classifier achieved a classification
accuracy of 81.23% by employing the additional features (33).
Moreover, Hassannataj Joloudari et al. proposed a novel hybrid ML
model called “Genetic Support Vector Machine ANOVA” (GSVMA)
method. The study combined a genetic optimization algorithm for
feature selection and SVM with ANOVA kernel. The model achieved

89.45% accuracy in CAD prediction (34). Finally, Khozeimeh et al.
employed cardiac magnetic resonance (CMR) image data for CAD
detection. The newly developed ML model was based on a RF,
trained on a new image features representation extracted from a
convolutional neural network (CNN). The novel model achieved a
99.18% accuracy compared to the 93.91% of the CNN (35).

Apart from simply diagnosing CAD, several studies focused on
detecting the location of stenosis in the coronary tree. For example,
Alizadehsani et al. applied C4.5, Naïve Bayes, and KNN with the
C4.5 model reporting the best performance for stenosis diagnosis by
achieving 74.20 ± 5.51% for the LAD, 63.76 ± 9.73% for the LCX,
and 68.33 ± 6.90% for the RCA (36). The later work was extended in
Alizadehsani et al. (37), where the Bagging algorithm was employed
for the same tasks and achieved 79.54, 61.46, and 68.96% for the
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LAD-, LCX-, and RCA-stenosis, respectively. Another study used
SVM, which outperformed the reported results in the literature by
achieving accuracy rates of 86.14% (LAD), 83.17% (LCX), and 83.50%
(RCA), respectively (38). Alizadehsani et al. further elaborated
on their previous work by training several SVM machines with
different kernel methods: polynomial, linear, sigmoid, and radial
basis functions to quantify the uncertainty in the RCA-, LCX-,
and LAD-stenosis diagnosis based on the sample distance from the
hyperplane. The SVM highest accuracies achieved were: 82.67±2.3%
(linear kernel), 83.67±2.1% (sigmoid kernel), and 86.43±2.1% (linear
kernel) for RCA, LCX, and LAD prediction, respectively (39).
Recently, Alizadehsani et al. proposed a novel and improved feature
selection method named “assurance feature selection.” Extracted
features were again used to train SVM with different kernel methods
achieving accuracies of 86.64% (LAD), 83.47% (LCX), and 82.85%
(RCA) (40). In another approach, Alizadehsani et al. developed and
proposed a two-stage ML model to improve the accuracy of CAD
prediction. In the first stage, three classifiers were trained on weighted
SVM extracted features to detect the stenosis in the three coronary
arteries and a fourth classifier was built to predict/detect CAD cases.
In the second stage, a new classifier was trained on the outcomes
of the four first-stage classifiers to diagnose CAD. The proposed
pipeline achieved a high accuracy rate of 96.40% in predicting
CAD (41). Finally, Alizadehsani et al. introduced a comprehensive
database to encapsulate all previous work in CAD diagnosis using ML
techniques (42). Such an approach might facilitate the development
of meta-databases and give a further boost to the use of ML in
the management of future patients with CAD in order to improve
prognosis and optimize outcomes.

3.2. Non-invasive imaging

3.2.1. Automated plaque detection and coronary
artery calcium calculation

Cardiac CTA is a widely used non-invasive modality for
the diagnosis of coronary artery disease (CAD) (43, 44). Several
studies have reported AI algorithms for the automatic detection
of atherosclerotic plaques from CTA images (45). For example,
Kang et al. developed a ML algorithm that identified coronary
stenosis of 25% or more with an accuracy of 94% compared to
visual identification of lesions with stenosis by expert readers using
consensus reading (46). Yoneyama et al. developed a neural network
for the detection of coronary stenoses from CTA images that
cause perfusion defects on single-photon emission CT, achieving
comparable results with physician experts (47). Several studies have
reported neural networks that automatically grade CAD severity from
CTA images according to the Coronary Artery Disease Reporting
and Data System (CAD-RADS) (48–51), with satisfactory results
(46, 47, 50). Such approaches could reduce the physician workload,
time needed for diagnosis and the diagnostic accuracy (46, 49,
50, 52). Coronary artery calcium score (CACS) as assessed by
computed tomography (CT) correlates with clinical ASCVD events
and is used for risk stratification of asymptomatic individuals (51).
CACS is typically calculated via a time-consuming semi-automatic
methodology by physicians with the help of a software based on the
Agatston score (51, 53).

Fully automated software assessing coronary calcification has
been developed using AI algorithms with satisfactory reliability

and agreement when compared to manual scores (54). Automated
quantification of CACS can reduce the time of assessment without
additional costs or exposure to radiation (55–57). In a recent study,
van Velzen et al. developed and validated a DL method for automatic
calcium scoring using different types of CT examinations that
included the heart (e.g., diagnostic CT of the chest, PET attenuation
correction CT, CAC scoring CT). The performance of the ML
algorithm was evaluated against manual Agatson score and the results
showed that the DL calcium scoring algorithm was robust, regardless
of differences in CT protocol and subject population. Nevertheless,
training of the algorithm with dedicated, protocol-specific images
further augmented algorithm performance (57).

3.2.2. Plaque characterization and detection of
high-risk features

Machine learning algorithms have been developed to assist with
atherosclerotic coronary plaque evaluation beyond the degree of
stenosis. Masuda et al. for instance, developed a ML algorithm for
identification of fatty vs. fibro-fatty atherosclerotic plaques from
cardiac CTA with an area under the curve (AUC) of 0.92. ML
could also be used to automatically identify high-risk features in
coronary plaques, such as the napkin-ring sign (58). The latter
identification has an additional importance, since the napkin-ring
sign is a qualitative finding, thus automated identification could
decrease inter-reader variability (59). Another interesting approach
is ability of ML models to process hundreds of imaging features in
order to identify known or discover new high-risk patterns in non-
invasive studies. For example, a study showed that a large number
of features are different between plaques with vs. without napkin-
ring sign and exhibit remarkable discriminatory value, superior to
conventional quantitative CT metrics (60).

3.2.3. Derivation of functional indices
Machine learning can also assist with automatic evaluation of

CT-derived functional indices such as fractional flow reserve (FFR)
(61). FFR is a coronary physiology index that is considered the gold
standard for ruling out obstructive CAD and assessing lesion severity
of intermediate stenosis in patients with chronic CAD (62). FFR is
derived during invasive coronary angiography with the insertion of a
pressure-wire catheter, and it is defined as the ratio between maximal
achievable blood flow in the presence of coronary artery stenosis and
maximal blood flow in the absence of that stenosis. Notably, based
on the results of several studies including the FFR vs. Angiography
for Multivessel Evaluation (FAME I) trial, have suggested that an FFR
below 0.8 corresponds to a hemodynamically significant stenosis that
requires PCI, whereas an FFR above 0.8 suggests that optimal medical
therapy is sufficient (63).

Several methods have been developed to estimate FFR based
on computational flow dynamics (CFD) techniques applied to
three-dimensional modeling of the coronary artery derived from
angiogram or CT images without the use of invasive intracoronary
wires. Example of software applications that have been developed
and validated include Quantitative Flow Ratio (QFR), Vessel
Fractional Flow Reserve (vFFR), and Fractional Flow Reserve Derived
from Coronary Angiography (FFRangio). A number of studies
have also developed methods to derive CT-FFR based on CFD
techniques, and CT-FFR has been reported to have good diagnostic
accuracy, prognostic value and therefore potential for clinical utility.
Nevertheless, commercially available CFD software platforms to
derive angiography-based or CT-based FFR have been restricted due

Frontiers in Cardiovascular Medicine 06 frontiersin.org

https://doi.org/10.3389/fcvm.2022.949454
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-949454 January 3, 2023 Time: 17:26 # 7

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

Kampaktsis et al. 10.3389/fcvm.2022.949454

to their low availability as they require remote and computationally
demanding analyses significantly increasing the cost and delaying the
diagnostic process (64–66).

Thus, ML algorithms have been used as an alternative to calculate
FFR with less computational requirements. ML models have been
trained using geometrical and flow data from 3D coronary models
derived from coronary angiograms or CT images. Importantly,
ML-based software can be used on-site by standard configuration
personal computers (67, 68). Preliminary results show that ML-based
CT-FFR performs equally well compared to CFD-based CT-FFR at
decreased cost (69, 70). To illustrate, a non-commercial software that
uses DL to evaluate CT-FFR has been developed and tested by Rother
et al. Compared to invasive FFR, CT-FFR showed high accuracy in
detecting ischemia and a significant reduction in calculation time
when compared to existing CFD models that calculate FFR from CT
images. More recently, the accuracy of the software was also tested
using previous generation CT scanners to assess whether the imaging
quality could potentially affect the results (71). However, the results
showed good diagnostic performance for detection of flow-limiting
obstructive coronary lesions. ML-based software that estimate FFR
can enable a wider implementation of this promising coronary
physiology index that has proven to be an important indicator of
coronary ischemia and predictor of adverse coronary events.

3.3. Invasive imaging

3.3.1. Automated lesion detection and
characterization

Similar to non-invasive coronary imaging, ML algorithms can
enhance the efficacy of invasive coronary angiography by enabling
the automated detection of stenoses and their types, as well as
the conduction of quantitative coronary angiography (QCA). For
example, Du et al. trained a deep neural network using over
6,000 coronary angiograms to automatically identify stenoses and
characterize them as dissections, thrombotic or calcified lesions
(72). Apart from assistance in detection of disease, ML algorithms
could also assist with quantitative angiography, which removes the
subjective interpretation of lesions, however, is not widely used today.
A significant number of researchers have focused on applying ML
algorithms to intravascular imaging such as intravascular ultrasound
and optical coherence tomography (OCT), which are used today
complementary to angiography for plaque characterization and
importantly, optimization of percutaneous coronary intervention
(PCI). Specifically for OCT, ML algorithms can achieve high
accuracy in identifying lesion composition (73–75). Recently, the
FDA approved Abbotts’ UltreonTM 1.0 Software for automated and
assisted OCT use (Abbott, Abbott Park, IL) (76). ML algorithms
are also being investigated to further improve functional indices
of coronary lesions, such as FFR, or calculate them via alternative
means. For example, a ML algorithm was developed to measure
FFR from OCT-derived data showing high correlation (r = 0.85,
P < 0.001) with invasive FFR (77).

3.3.2. Assistance with clinical decision-making
regarding revascularization

The incorporation of angiographic data and functional indices
could be used to offer an overall assessment of a coronary lesion
with regards to the decision for revascularization or not, essentially

mimicking human expertise. CEREBRIA-1 study was a representative
study multinational study (ML vs. Expert Human Opinion to
Determine Physiologically Optimized Coronary Revascularization
Strategies), where DL was used to approach the clinical decision
making of world experts in this matter (78). The study aimed to
evaluate the predictive accuracy of a ML model developed based
on computational interpretation of pressure wire pull back data.
The ML algorithm was compared to expert human interpretation
in determining the need for PCI as well as for the decision of PCI
strategy in patients with stable CAD. The results showed that the ML
program was non-inferior to expert opinion. The notable benefit of
this approach is that the ML algorithm essentially could provide an
expert recommendation to the interventional cardiologist of every
catheterization laboratory.

3.3.3. Image quality improvement via ML
In addition to automated lesion characterization and clinical

decision-making regarding revascularization, AI may further assist
the interventional cardiologist by detecting artifacts or poor image
quality and correct it appropriately and automatically (79). Such
an option might have essential clinical impact, by improving the
accuracy of calculated functional indices, which frequently drive
decision making, especially taking into account that almost 30%
of the functional indices derived intraoperatively in catheterization
laboratories cannot be reliably used for clinical decision-making (80).

3.4. Assisted diagnosis of myocardial
infarction

Physicians are extremely capable in diagnosing and treating
myocardial infarction (MI) in symptomatic patients seeking medical
care. A systematic review has reported low rates of missed MIs
in the hospital setting, ranging between 1 and 2% (81). Hospitals
in rural areas and those with a low proportion of classical chest
pain patients were at greater risk for missing an MI. ML models
to enhance automated detection of MIs from 12-lead EKGs have
been developed with accuracy comparable to that of cardiologist
(77, 82). EKG machines equipped with this ML software could
therefore decrease the rates of in-hospital missed MIs even further
or could help emergency medical services enhance their response
times in patients with MIs. The most significant contribution of
ML technology, however, would be the detection of MIs and their
complications in the community.

In patients suffering from ST elevation MI (STEMI), delay to
reperfusion translates into more extensive myocardial injury and
increased mortality: every minute counts and hospital systems have
adopted internationally accepted response times referred to as door to
balloon time (83). However, a critically important time is frequently
lost before patients seek medical care. Smartwatch technology is
already being used for the screening and detection of atrial fibrillation
in the community setting (84), and an expansion of its use for
the detection of MIs is very appealing. However, the problem is
more complex, as atrial fibrillation screening can be performed with
analysis of pulse or a single EKG lead, whereas EKG detection of
MI requires multiple EKG leads. Spaccarotella et al. showed in a
pilot study that a 9-lead EKG obtained asynchronously from a single
smart watch device could be used to detect STEMI and non-STEMI
with good accuracy compared to a standard 12-lead EKG (85). This
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technology could be coupled with ML algorithms to enable the early
detection of MIs in the outpatient setting, and in fact, studies toward
that goal are already being conducted (86). Importantly, as in the case
of atrial fibrillation, prospective studies will be required to prove the
clinical validity and benefit of such new technologies.

3.5. Phenotyping and precision medicine

Machine learning methodologies have been applied in CAD
datasets with the purpose of discovering new clinical phenotypes that
can improve our understanding of the disease and/or our ability to
better predict outcomes. In general, as the number of phenotypes
increases, prediction comes closer to the individual level and ML
facilitates precision medicine. However, there is no strict definition
as to what constitutes precision medicine.

A classic example of imaging phenotyping in CAD is a ML
algorithm developed by Yoon et al. where unsupervised training
led to the creation of four different groups of plaques based on
their imaging characteristics from the PARADIGM registry (22).
Patients from cluster 1 had plaques that consisted of a necrotic core
surrounded by mainly fibrotic and lipid tissue. In cluster 2, plaques
were mainly fibrotic and fatty, in cluster 3, the plaques had mainly
fibrotic and calcified tissue, and in cluster 4 plaques were mostly
calcified. Patients with plaques classified to clusters 2 and 3 had the
highest risk for major adverse cardiovascular events, whereas cluster
1 had the lowest risk. These results can assist our understanding
of what constitutes a high-risk plaque and how it can be used
to predict outcomes. Furthermore, ML models have the ability to
process hundreds of imaging features and discover new important
characteristics (87).

A characteristic example of clinical phenotyping and precision
medicine in CAD was recently published by Puchner et al. (59),
where a phenomapping-derived tool was developed and validated
with the aim to personalize the selection of anatomical (cardiac
CT) vs. functional testing (stress testing) in individuals with
suspected CAD (88). The investigators included participants from
PROMISE trial (ClinicalTrials.gov identifier: NCT01174550)
where individuals presenting with stable chest pain were
randomized to either anatomical (CTCA) or functional testing
(exercise electrocardiography, nuclear stress testing, or stress
echocardiography) (89). Utilizing baseline characteristics including,
among others, demographics, anthropometrics, cardiovascular risk
factors, and laboratory measurements, the investigators first broke
down the trial cohort to numerous, distinct phenotypes based on
a data similarity index. For each phenotype, they then estimated
the hazard ratio of major adverse cardiac events with stress test vs.
cardiac CTA. Training of an extreme gradient boosting algorithm
was then performed to identify patient features that were strongly
associated with improved outcomes. Feature performance was
evaluated using SHAP (Shapley Additive Explanations) values which
identify a predictor contribution, either positively or negatively,
to the prediction. Finally, internal validation of the algorithm was
performed in a subset of patients from PROMISE trial, while external
validation of the chosen method was also performed using the
Scottish Computed Tomography of the Heart (SCOT-HEART)
trial (ClinicalTrials.gov identifier: NCT01149590) and showed a
reduction in the composite clinical endpoint (88, 90).

In another study by the same group, researchers developed a
ML algorithm based on > 1,000 cardiac CTA perivascular adipose

tissue features to predict the probability of major adverse cardiac
events within 5 years in patients with stable CAD, defining it as the
“fat radiomic profile” (91). They further examined the correlation
of CTA features with genes expressing inflammation, fibrosis, and
vascularity. A “fat radiomic profile” above 0.63 was linked with
a 10-fold increase in the risk of MACE, even after adjustment
for all pertinent covariates. In the same study, the authors point
out that lack of standardization in coronary CTs and image post-
processing remains a problem that can hinder the robustness of these
methods—namely, the ability to obtain comparable CTA features
results from a wide variety of hardware, scan settings and software
configurations (91).

3.6. Risk assessment and outcome
prediction

Risk assessment is important for different subgroups of CAD
patients and guides patient management. In people without known
CAD, several tools have been developed and are currently used for
the risk assessment and prediction of future cardiovascular events,
including the Framingham score, SCORE and SCORE2, as well as
the American College of Cardiology/American Heart Association
(ACC/AHA) risk tool (92, 93). These tools were derived using
traditional statistical methods and show only moderate to good
discrimination in predicting ASCVD outcomes (94–96).

ML models have been developed with the goal of improving
the predictive accuracy of these tools. In a recent study, Ambale-
Venkatesh et al. combined deep phenotyping with ML to train an
algorithm for cardiovascular disease prediction (21). Using over
700 clinical, imaging, laboratory, and biomarker variables from
the Multi-Ethnic Study of Atherosclerosis (MESA) study (2), a
prospective study of over 6,000 asymptomatic individuals with
serial ASCVD evaluation and long term follow up, the authors
developed a ML algorithm to predict cardiovascular outcomes,
including all-cause mortality, coronary heart disease, and stroke, over
12 years of follow-up. Specifically, a random survival forests ML
technique was used to identify the 20 most important predictors
of cardiovascular outcomes and the final ML model achieved
better predictive accuracy compared to established risk scores (21).
Results from a similar ML algorithm using data from MESA also
showed improved predictive accuracy (97). As an example of the
clinical importance of improved predictive accuracy achieved by
ML algorithms, application of an ML model developed based on
data from the MESA and the Flemish Study of Environment, Genes
and Health Outcomes (FLEMENGHO) would have reduced statin
prescriptions by 68% while simultaneously increasing the statin use
of true high-risk patients (patients that went on to experience a CVD
event) by 52% (7). Besides improving prognostication, ML analyses
can improve our understanding of ASCVD by showing the important
role of biomarkers; tissue necrosis factor-alpha, C-reactive protein,
fibrinogen, interleukin-2, and interleukin-6 were top predictors of
outcomes in the abovementioned ML models. In contrast, established
risk assessment tools do not incorporate such biomarkers.

In patients with known or suspected CAD, estimation of CAD
progression can also be clinically helpful. Along these lines, an
ML model developed using clinical and imagine data of patients
that underwent serial cardiac CTA from the PARADIGM study,
demonstrated reasonably good predictive value for progression of
coronary plaque (area under the curve 0.83) (98).
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In patients with CAD undergoing PCI, assessment of bleeding
risk remains challenging. The American College of Cardiology has
developed a bleeding risk score using data from over 1 million PCIs
from the CathPCI registry (99). Although ML techniques have not
proven to outperform the CathPCI risk score in a head-to-head
comparison, results of a ML study have been promising (100).

Lastly, ML-based models may in the future have a role in
clinical decision-making beyond risk assessment, as in assisting with
revascularization strategy (101).

4. Peripheral arterial disease (PAD)

4.1. Detection of disease

Peripheral arterial disease refers to the narrowing of the arteries
that supply the upper and lower limbs, most commonly due to
atherosclerosis (15). Although it is estimated that more than 200
million patients worldwide suffer from PAD (102), more than 50%
of these patients are asymptomatic and often remain undiagnosed
and untreated (103). Advanced tools, such as AI, have been used
for facilitating not only the detection, but also the management and
outcome prediction in PAD (15).

For example, an ML algorithm, which employs clinical variables
(e.g., history of hypertension) and serum biomarkers, was used to
create a unique score and predict the presence of PAD in a sub-
population of CASABLANCA registry’s including patients referred
for diagnostic peripheral and/or coronary angiography (104). The
novel score achieved a sensitivity of only 65% but a specificity of
88% with a positive predictive value of 76% with the cut-off having
been optimally set (104). In another study targeting elderly patients,
a random forest (RF) approach provided better results in diagnosing
PAD compared to simple logistic regression and the traditional ankle-
brachial index (ABI) (105). In fact, the seven most important features
of the developed RF model were the: (i) ABI, (ii) creatinine level in
blood, (iii) fasting blood glucose, (iv) age, (v) presence of CAD, (vi)
presence of diabetes, and (vii) presence of hypertension.

In another approach the clinical narrative notes of 1,569 patients
were processed using an AI natural language processing (NLP)
algorithm (106). Results were compared to algorithms employing
the International Classification of Diseases (ICD) codes, as well as
the ABI measurements of the patients. The NLP outperformed its
competitors (P < 0.001) yielding 91.8% accuracy, 92.5% sensitivity,
and 92.9% positive predictive value (106). In a follow-up study, the
same team assessed the efficacy of the NLP approach to diagnose
critical ischemia of lower extremities (107). As previously, they
compared the knowledge-driven NLP algorithm to an ICD-based
one. Despite having no statistically significant difference in specificity,
the NLP method had better positive predictive value, specificity and
F1-scores (P < 0.001) compared to the ICD model (107), indicating
the superiority of AI-based NLP in diagnosing PAD, compared to
other traditional approaches. Moreover, Weissler et al. performed a
comparison between the NLP of medical notes and the least absolute
shrinkage and selection operator (LASSO) ML methodology, which
is based on administrative data (108). The NLP algorithm led to an
AUC of 0.888, whereas the LASSO’s AUC was 0.801 (P < 0.0001
according to DeLong test) (108). Abovementioned studies highlight
the capability of NLP in PAD detection with great implications for
initial PAD screening in everyday clinical practice.

Furthermore, Ghanzouri et al. used electronic health records
(EHRs) to detect undiagnosed PAD in a cohort of 3,168 patients. The
authors compared the developed DL-based approach to traditional
models showing a clear superiority of the DL model (average AUC
of 0.96) over RF (average AUC of 0.91), and logistic regression
approaches (average AUC of 0.8). Another significant point of
that study is the demonstration, via a corresponding analysis, that
clinicians are generally receptive to automated EHR-based models for
PAD detection (109).

Moreover, apart from clinical and EHR data, AI may well be
applied on other data types to achieve PAD detection. McBane
et al. applied DL for the detection of PAD via arterial (posterior
tibial artery) Doppler waveform data. In specific, the proposed DL
algorithm predicted normal (>0.9) or pathological (≤0.9) post-
exercise ABI based on posterior tibial artery Doppler waveforms
recorded at the resting state. The model included 1,941 patients with
PAD and 1,491 control subjects and detected PAD with an AUC of
0.94 (CI = 0.92–0.96) (110).

The heterogeneity of the datasets included in the above-described
studies demonstrates the importance of employing diverse datasets
in detecting PAD.

4.2. Severity stratification and outcome
prediction

The option to accurately assess disease severity facilitates not
only the patient management process, but also the objectification of
applied therapies. Qutrio Baloch et al. investigated the relationship
between disease severity and patient functional impairment (111).
In total, administrative data from 703 patients were analyzed
with supervised ML. Quality of life, 6-min walk test scores,
calf circumference, toe-branchial index, and basic demographics
constituted the feature set (111). Despite the not striking results
of the applied ML method, compared to conventional statistical
methods, the study highlighted the non-linear relationship between
disease severity and mobility restriction (111), showing that AI
interventions provide results if not better at least as accurate as
conventional statistics do.

In another study, Sonnenschein et al. developed a ML approach
with the use of a multi-dimensional set of clinical features
(demographics, biometrics, blood tests) to calculate an AI-based PAD
score (AI-PAD). The calculated score (range 0–100) categorized the
patients with PAD (n = 46) into two groups (stable PAD, sPAD,
Fontaine stages I–II and unstable PAD, unPAD, Fontaine stages III–
IV) based on a cut-off value of 50 AI-PAD units (AI-PAD < 50 for
sPAD and AI-PAD > 50 for unPAD) and showed good correlation
with the measured ABI values and severity of disease (112).

Outcome prediction in PAD is a pivotal step to be taken after
diagnosis, as it sets the strategy for the patient management to be
followed. A study conducted by Davis et al. aimed to reveal predictive
indices of infection of the surgical wounds in patients undergoing
open surgical revascularization (via bypass) of the lower limbs (113).
The authors utilized an ML technique (Super Learner algorithm)
to develop a prediction model for surgical wound infection. The
study population included 3,033 patients in total. Major predictors
of postoperative infection were dialysis-requiring renal failure (OR
4.35, P < 0.001) and hypertension (OR 4.29 P < 0.001) (113).

In another study, 81.930 patients were analyzed using the LASSO
ML methodology to select variables and define a score (OAC3-PAD
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Risk Score) which can effectively predict the major bleeding events
after the hospitalization for PAD (114). Independent predictors were
oral anticoagulation therapy, age > 80, presence of chronic limb
threatening ischemia, congestive heart failure and severe chronic
kidney disease, previous bleeding event, anemia, and dementia. The
novel score displayed good calibration and discrimination among
four risk groups (c = 0.69, 95% confidence interval 0.67–0.71) ranging
from low (1.3%) to high bleeding risk (6.4%) in the first year after the
hospitalization for PAD.

Finally, Ross et al. developed several tailored ML models which
included clinical, demographic, imaging and genomic data to predict
future mortality in patients with PAD (115). The newly designed
ML models outperformed (AUC 0.76 vs. 0.65, respectively, P = 0.1)
traditional approaches (logistic regression models) for the task-at-
hand: the prediction of future mortality. The studies described above
demonstrate the wide range of applicability for AI in the management
of patients suffering from PAD.

5. Abdominal aortic aneurysm

Abdominal aortic aneurism (AAA) is one of the most severe
complications of ASCVD conveying significant mortality risk due to
rupture (116). Its size and growth rate determine the risk of rupture
and, thus, the necessity for operative therapy (116). AI has been
already employed in the management of AAA, mainly in setting
the diagnosis, predicting its growth and risk of rupture or in the
preoperative planning and postoperative outcome prediction (117).

Computed tomography angiography is the gold-standard
technique for the diagnosis, as well, as the preoperative planning
and postoperative outcome assessment in AAA. For this reason,
the majority of AI techniques in AAA management are CTA-based.
Adam et al. employed a DL approach (Augmented Radiology for
Vascular Aneurysm—ARVA) to detect an AAA and measure its
maximal diameter in 489 CTA scans (118). ARVA outcomes were
compared to a reference expert, demonstrating a median absolute
difference of 1.2 mm, while the median absolute differences of
another six experts compared to the same reference expert were
1–2 mm. Lareyre at al. combined a supervised DL algorithm with a
feature-based expert system to improve the accuracy of the automatic
segmentation of the abdominal aorta and its major branches (119).
Such AI-powered approaches could facilitate preoperative planning
of endovascular AAA interventions, especially in complex anatomies.

In another application, the prediction of AAA growth, Hirata
et al. used as an input to an ML algorithm 9 CTA-extracted anatomic
features of small AAAs (38.5 ± 6.2 mm) (120). ML achieved an
AUC of 0.86 in predicting expansions of more than 4 mm per year
outperforming traditional features, such as the AAA major axis (AUC
of 0.78) (120). Along the same lines, Kontopodis et al. developed an
AI-based approach that could stratify AAAs into high and low growth
rate groups. Using a diverse set of 29 different variables (clinical,
biological, morphometric, and biomechanical), a gradient boosting
(XGboost) and a support vector machines (SVM) model were trained
in order to predict which AAA would reach a growth rate higher
than the cohort median. XGboost achieved the highest AUC 81.2% in
predicting high growth rate AAAs compared to low growth rate ones.
The study included a small cohort of 40 patients with small AAAs
(maximum diameter 32–53 mm) (121).

Nevertheless, in order to precisely predict the growth of AAAs,
usually larger longitudinal datasets are required. Jiang et al. tried to

tackle the usual problem of lack of such datasets by employing a
two-step computational approach to generate an expanded in silico
dataset of AAA growth and structural features (122). Then, they
employed a DL algorithm to combine both in silico and real CTA
patient data to predict the evolution of the AAA in 20 patients.
The DL method outperformed a conventional mixed-effect model by
65% in predicting the size increase of AAAs, showcasing an average
relative error of 3.1%.

The issue of the need for large datasets in order to apply AI in
the management of AAA is also discussed in a study by Fujiwara
et al. where the authors evaluate the accuracy of AI to detect and
measure AAA using limited-size CT datasets. The authors employ
label-free CTs, avoiding possible complications associated with the
intravenous use of contrast, such as renal failure or allergic reactions.
In a dataset of 145 label-free CT scans (n = 111 with AAA), the
proposed approach achieved a sensitivity of 94.6% for AAA detection
and a good estimation of the AAA size (42.5 ± 8.8 mm) compared to
those of diagnostic reports (44.6 ± 8.4 mm) (123).

Even if endovascular aortic repair (EVAR) is generally
characterized by good outcomes (124), it can be still be followed by
complications, such as the endoleak (EL). Korzadeh et al. applied AI
to predict not only the presence, but also the severity of EL (I–III).
The model was fed with 26 non-imaging clinical attributes (e.g.,
biometrics, demographics, blood values) recorded preoperatively and
achieved an overall accuracy of more than 86% (125). The authors
notice that the model may well be further enhanced with imaging
data, highlighting the adaptability of AI in different and diverse
datasets and its high potential to provide even more powerful tools
for the clinical management of AAA in the future.

Finally, in an attempt to provide insights into the risk for
rupture—the most serious complication of AAA, Chung et al. used
AI to predict wall stress in AAAs: a feature that is associated with
the risk for rupture. The novel AI-based framework was compared
to traditional analysis in terms of AAA automatic segmentation,
3D geometry reconstruction and aortic wall stress calculation. The
trained U-NET was found to perform in a statistically similar way
compared to traditional analysis but in a significantly smaller amount
of time (20 s vs. 4 h) (126).

Although the role of AI in the management of AAA seems
promising, the aforementioned results are still preliminary and
remain to be evaluated in large-scale clinical trials.

6. Carotid artery disease

Imaging plays a pivotal role in the management of carotid
artery disease. For example, CTA is frequently performed to set the
diagnosis and plan the surgical treatment of a patient (e.g., open
vs. endovascular). The decision to operate is typically based on the
degree of carotid stenosis and the presence of symptoms. However,
patients often have transient ischemic attacks or stroke with only
mild to moderate carotid luminal stenosis (127). Moreover, studies
show that a more detailed plaque characterization expanding beyond
luminal stenosis could provide additional value in predicting future
events (128).

In a recent study, radiomic features were extracted from carotid
CT scans of patients with cerebrovascular events to investigate
their robustness and reliability, and whether they could provide
incremental prognostic value in identifying high-risk culprit carotid
arteries from non-culprit carotid arteries (129). Using feature
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FIGURE 2

Current body of evidence related to ML/AI in the field of ASCVD. (A) Demonstrates how the number of papers in PubMed related to ML/AI has increased
dramatically over the past two decades. (B) Shows how the ML/AI papers related to ASCVD specifically are distributed across the different diseases under
the umbrella of ASCVD. In PubMed, the vast majority of ASCVD ML/AI papers are related to CAD. ML, machine learning; AI, atherosclerosis artificial
intelligence; ASCVD, atherosclerotic cardiovascular disease; CAD, coronary artery disease; PAD, peripheral artery disease; AAA, abdominal aortic
aneurysm.

extraction hyperparameters, the researchers ended up with 93
radiomic-derived variables, more than half of whom displayed
high robustness to simulated inter-observer variability in region
of interest (ROI) demarcation. Using only the top 10 informative
and robust radiomics variables, the authors trained an ElasticNet
logistic regression model that outperformed the calcium score alone
in pinpointing culprit lesions. When both modalities were combined,
an AUC of 0.73 was achieved (129).

Radiomic features have also been extracted from carotid MRI
scans to construct a high-risk plaque model for differentiating
symptomatic from asymptomatic carotid plaques (130). In a recent
study by Zhang et al. 162 patients with carotid stenosis were
randomly divided into training and test cohorts. Multi-contrast
and contrast enhanced MRI images were obtained and radiological
features of carotid plaques were recorded to build a traditional model.
Additionally, radiomic features on these images were derived to
construct a high-risk MRI based model with least absolute shrinkage
and selection operation algorithm in the training cohort. The
performance of the model was evaluated in the test cohort. Finally,
a combined model was developed using both the traditional and
the radiomics model and a comparison between the traditional, the
radiomics and the combined models was performed. The radiomics
model could accurately distinguish symptomatic from asymptomatic
carotid stenosis and was found to be superior to the traditional model
in the differentiation of high-risk plaques while the combined model
did not provide any additional benefit compared to the radiomics
model (130).

Carotid plaque morphology as recorded by high-resolution
ultrasound images can also have prognostic implications and assist
in identifying asymptomatic individuals with carotid stenosis at risk
for stroke (131). Stable plaques are assumed to present as echogenic,
smooth, and homogeneous, while vulnerable plaques typically are
echolucent, irregular, and heterogeneous (132, 133). Kordzadeh et al.
applied AI in the detection of carotid artery disease via static
grayscale duplex ultrasound images. A dataset of 156 ultrasound
images (with and without carotid artery stenosis) was used to train a
geometry group network based on CNN architecture. The algorithm
detected carotid artery stenosis of any grade with a sensitivity,

specificity, and accuracy of 87, 82, and 90%, respectively (134).
Jain et al. used an Attention-UNet DL model to identify/segment
carotid plaques in complex ultrasound images with bright and fuzzy
plaques of the internal (ICA) and common carotid artery (CCA).
The study included 970 ICA and 679 CCA images from three
different centers. The performance of Attention-UNet model was
benchmarked against UNet, UNet++, and UNet3P models yielding
an AUC value of 0.97, compared to 0.964, 0.966, and 0.965 AUC
values for the three other models, respectively (135). Along similar
lines, Latha et al. classified 361 carotid ultrasound images into normal
or pathologic by means of several different ML methods, such as the
CART decision tree, RF, logistic regression, CNN, Mobilenet, and
Capsulenet. The latter was characterized by a superior classification
performance, as reported by a 12.91, 8.33, 5.47, 43.12, and 1.75%
improvement in accuracy compared to the CART decision tree,
logistic regression, RF, CNN, and Mobilenet, respectively (136).
Finally, in another study, a computer-aided system could provide a
more standardized and accurate classification of carotid plaques. As
an early example of such an approach, a computer-aided classification
system was developed using multi-feature texture analysis, neural
network classifiers, and statistical pattern recognition techniques.
The system managed to automatically characterize carotid plaques
imaged with high-resolution ultrasound, achieving an AUC of 0.75
at predicting which patients would develop stroke (137).

Studies described above demonstrate how AI can facilitate
the management of carotid artery disease by providing
effective and automated image-based tissue characterization
and patient classification.

7. Challenges and limitations in the
application of AI in ASCVD

Although the applications of AI in ASCVD are promising, several
challenges and limitations remain. First, overtraining may lead to
overfitting of the applied ML model and, thus, poor generalization
with limited performance using real-world data. This challenge
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can be overcome by using large, trustworthy datasets that are
representative of the target population as well as appropriate ML
algorithms. Second, in contrast to classic statistical approaches, many
ML implementations are characterized as “black-box” or else “non-
explainable,” because the patterns that are created cannot be easily
interpreted. As a result, ML models cannot be easily trusted by
expert users, which is particularly true for ASCVD physicians. The
development of explainable AI (xAI) approaches is an answer to
this limitation. For example, SHAP (Sharpley Additive Explanations)
explainability analysis approximates any complex, generalized ML
prediction model with local, linear models that explain individual
predictions using a game theory approach (138). Third, AI requires
the collection and pre-processing of large and diverse datasets,
which can be time-consuming. The development of international
database collaborations for the availability of data to researchers
globally could overcome some of these challenges (139). Fourth,
the development and application of AI in ASCVD requires not
only high computational power but also specialized AI skills and
steady collaboration between data scientists and physicians. To this
end, tailored AI frameworks and ASCVD-AI laboratories are under
development. Finally, although ML algorithms are clearly superior
in automated detection of disease and phenotyping, one has to
recognize that results in risk assessment and prognostication have
often been inferior to traditional statistics.

8. Conclusion and future directions

As presented herein, AI methodologies, in combination with the
growing availability of “big data” have already started enhancing
disease detection, risk assessment, phenotyping, and providing
clinical decision support in ASCVD. Over the past two decades, there
is a growing interest in ML and AI especially in the field of ASCVD
(Figure 2). Applications empowered by AI algorithms are becoming
daily practice, particularly in the field of cardiovascular imaging. For
this reason, there is a significant interest for the development of
community-based ML applications that can be embedded in smart
portable or wearable devices for different purposes (e.g., detection
of acute coronary syndromes). Researchers are now applying ML
algorithms to uncover previously unknown or neglected associations,
such as the role of image- or signal-based biomarkers in predicting
cardiovascular events. In parallel, the application of ML in large
datasets bears the promise of leading to a more precision medicine
approach in the risk assessment and therapy of patients with ASCVD.

However, current ML models in the ASCVD field are still in
their infancy, focusing mainly on the classification and regression
models for a single task-at-hand. Nevertheless, available AI models
can go beyond those basic tasks, for example toward generating
more realistic medical images using generative models such as

Variational Auto-Encoders (VAEs) and Generative Adversarial
Networks (GANs). One of the major challenges in the medical
domain is the limited number and size of patient datasets for
training ML or AI models. A promising AI field called meta-
learning aims at solving this problem by building models that
can learn from limited-sized datasets with only few data points.
Several algorithms are listed in this domain, so far, such as: Siamese
Networks, Prototypical Networks, and Relation Networks. Finally,
another trending AL approach is deep multimodal learning that
focuses on linking patient information such as EHRs, genomics,
and imaging with multiple techniques to improve the final
regression/classification performances.

As different needs and applications arise in the ASCVD field,
an even more disseminated use of AI approaches in managing and
studying ASCVD is expected to be established in the near future.
On the one hand, the ASCVD physician should seek a stronger and
stable collaboration with AI experts in order to increase familiarity
and understanding with this exciting technology. On the other hand,
the AI expert should focus on tailoring developed approaches to
real-world ASCVD physician needs. In any case, the future ASCVD
patient is going to benefit from a more effective, precise, and
personalized management of disease in daily practice.
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