BASIC SCIENCE AND PATHOGENESIS

PODIUM PRESENTATION

MOLECULAR AND CELL BIOLOGY

Alzheimer's & Dementia

Interplay of the human exposome, metabolome and gut microbiome in dementia and major depression

Cornelia M van Duijn¹ | Najaf Amin² | Jun Liu² | Bruno Bonnechere³ | Siamak MahmoudianDehkordi⁴ | Matthias Arnold⁵ | Richa Batra⁶ | Yu-Jie Chiou⁷ | Marco Fernandes² | M. Arfan Ikram⁸ | Robert Kraaij⁹ | Jan Krumsiek⁶ | Danielle Newby² | Kwangsik Nho¹⁰ | Djawad Radjabzadeh⁹ | Andrew J. Saykin¹¹ | Liu Shi¹² | William Sproviero² | Laura M Winchester² | Yang Yang¹³ | Alejo J Nevado-Holgado¹² | Gabi Kastenmüller¹⁴ | Rima Kaddurah-Daouk¹⁵

¹Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom

²University of Oxford, Oxford, United Kingdom

³Faculty Revalidation Center, Hasselt, Belgium

⁴Bioinformatics Research Center, Department of Statistics, North Carolina State University, Raleigh, NC, USA

⁵Duke University, Durham, NC, USA

⁶Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA

⁷Nuffield Department of Population Health, Oxford University, Oxford, United Kingdom

⁸Department of Epidemiology, Erasmus MC, Rotterdam, Netherlands

⁹Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands

¹⁰Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA

¹¹Department of Radiology and Imaging Services, Indiana University School of Medicine, Indianapolis, IN, USA

¹²Department of Psychiatry, University of Oxford, Oxford, United Kingdom

Abstract

Background: The pathogenesis of dementia and depression is complex involving the interplay of genetic and environmental risk factors including diet, life-style and the gut microbiome. Dementia and depression co-occur and metabolomics studies may shed light on the interplay of the various risk factors.

Methods: We have studied the metabolome of 118,466 individuals including 8462 cases with a history of major depression (MDD) and 1,364 patients who developed dementia during follow-up from the UK Biobank (UKB). The human metabolome was profiled using the Nightingale platform.

Result: For both disorders, we find direct evidence that metabolites involved in the tricarboxylic acid (TCA) cycle are altered in patients, albeit that different metabolites emerge as the most significant drivers in the two disorders. Both dementia and MDD dementia patients show a marked change in the HDL/VLDL axis in blood, with similar changes in particular small and extra large HDL subfractions seen in patients with MDD and those who develop depression in the future. The two patients groups further show similar changes in fat metabolics mas measured by omega 3, omega 6 and PUFA levels. When comparing metabolic profiles over environmental risk factors for MDD and dementia, we find that MDD clusters with dementia risk factors physical activity, history of previous smoking and social isolation. Integrating the metabolic profiles of major depression and the gut microbiome we find that the gut microbiome may be a key mediator in the relationship between various metabolites involved in the HDL subfractions associated to both MDD and dementia.

2 of 2 Alzheimer's & Dementia

¹³Department of Computer Science and Engineering, Shanghai, China

¹⁴Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany

 $^{15}\mbox{Duke}$ University Medical Center, Durham, NC, USA

Correspondence

Cornelia M van Duijn, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom. Email: cornelia.vanduijn@ndph.ox.ac.uk **Conclusion:** Our study shows that energy and fat metabolism is disturbed in patients with MDD as well as patients who develop dementia in the future and that the interplay between the genome, exposome, gut microbiome, human metabolome may play role in the co-occurrence of major depression and dementia.