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Abstract

Motivation: Somatic mutations are usually called by analysing the DNA sequence of a tumor sample in

conjunction with a matched normal. However, a matched normal is not always available, for instance, in

retrospective analysis or diagnostic settings. For such cases, tumor-only somatic variant calling tools need

to be designed. Previously proposed approaches demonstrate inferior performance on whole genome

sequencing (WGS) samples.

Results: We present the convolutional neural network-based approach called DeepSom for detecting

somatic single nucleotide polymorphism (SNP) and short insertion and deletion (INDEL) variants in tumor

WGS samples without a matched normal. We validate DeepSom by reporting its performance on 5

different cancer datasets. We also demonstrate that on WGS samples DeepSom outperforms previously

proposed methods for tumor-only somatic variant calling.

Availability: DeepSom is available as a GitHub repository athttps://github.com/heiniglab/DeepSom.

Contact: matthias.heinig@helmholtz-muenchen.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Somatic variants (synonymously called here mutations) are genetic

alterations accumulating in non-germline cells during the lifetime of

the organism. Somatic mutations that promote cancer development by

providing a selective growth advantage to the tumour are often referred

to as driver mutations (Pon and Marra, 2015). All the other somatic

mutations are termed passenger mutations. Driver mutations can corrupt

genes regulating cell growth, programmed cell death, DNA repair

pathway, or neovascularization (Li et al., 1992; Hanahan and Weinberg,

2000; Young et al., 2013; Gao et al., 2014; Reilly et al., 2019). On the

other hand, accumulation of passenger mutations can slow down tumor

growth and reduce metastatic progression (McFarland et al., 2013, 2014).

Therefore, identifying driver as well as passenger mutations is important

to understand cancer genesis, choose treatment strategies and make

prognosis.

Driver and passenger mutations can be represented by single nucleotide

polymorphism (SNP) variants, short insertion and deletion (INDEL)

variants, large copy number alterations, and structural rearrangements

(Ciriello et al., 2013). In this paper, we consider calling somatic SNP and

short INDEL variants from short read whole genome sequencing (WGS)

data, without distinguishing between drivers and passengers.

Technically, somatic variant calling should accomplish two tasks. First,

true variants should be separated from sequencing and alignment artefacts.

Second, somatic variants should be distinguished from germline mutations.

In popular somatic variant calling pipelines, such as GATK

(McKenna et al., 2010) and Strelka (Saunders et al., 2012), these tasks are

accomplished by constructing a joint alignment of reads from the tumour

sample and its matched normal and then removing non-somatic variants

using statistical models and specific filtering rules. In recent years, it has

been shown that better results can be achieved using machine learning

techniques.
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For example, the method called Cerebro (Wood et al., 2018) is based on

extremely randomized trees that are trained on two sets of features derived

from two tumor-normal alignments with two different alignment programs.

Cerebro has been reported to detect somatic variants with a better accuracy

compared to conventional callers. Deep learning-based methods, such as

NeuSomatic (Sahraeian et al., 2019) and DeepSSV (Meng et al., 2021),

have also demonstrated encouraging results.

However, a matched normal is not always available. This is a common

scenario in retrospective analysis of samples from clinical trials, pathology

archives, and legacy biobanks. Absence of a patient’s consent or financial

restrictions can also hinder collection of a normal sample.

Removing artefacts in somatic variant calling without a matched

normal is similar to removing artefacts when calling germline variants.

Such filtering can be done based on various features. For example,

some variants can first be removed based on their quality scores, then

the remaining variants can be classified based on their variant allele

fraction (VAF): germline variants are expected to have VAF around 50%

(heterozygous) or 100% (homozygous), whereas artefacts usually have

lower VAF. Although statistical models based on variant annotations

have long been used for artefact filtering in germline variant calling

(McKenna et al., 2010; Saunders et al., 2012), some recent studies have

argued that machine learning techniques can provide a superior filtering

quality.

For example, in the pioneering Deep Variant approach (Poplin et al.,

2018), candidate variants in the form of piledup read images were

presented to a convolutional neural network (CNN). The CNN output

was then used to judge whether the input alteration was a true germline

variant or an artefact. Deep Variant was reported to outperform filtering

tools proposed in conventional germline variant calling pipelines GATK

(McKenna et al., 2010) and Strelka (Saunders et al., 2012). Later on, an

even better performance was achieved for an alternative CNN architecture

and a slightly different variant encoding scheme (Friedman et al., 2020).

In contrast to germline mutations, somatic variants often have a lower

VAF due to tumor-normal contamination or tumor heterogeneity (Xu,

2018). This makes it more difficult to separate somatic mutations from

artefacts. In this regard, highly accurate statistical modeling and advanced

error correction techniques are of great importance.

Separating somatic and germline variants when a matched normal is

not available is also challenging. Since candidate variants can not be tested

against a control sample, one can judge about a given variant only by

comparing its characteristics with a priori information about somatic and

germline mutations.

Current approaches to somatic variant calling without a matched

control are represented by unsupervised and supervised methods (Table

S1).

Unsupervised methods usually classify mutations through modelling

the germline VAF distribution for a given coverage in a given copy number

segment. Such methods do not require a training set of labelled variants,

use predefined filtering thresholds and do not consider disease-specific

information.

SomVarIUS (Smith et al., 2016) is one of the first unsupervised

methods for tumor-only somatic variant calling. To separate somatic and

germline variants, it builds for each candidate variant a beta-binomial

model of the germline VAF distribution in the neighbourhood. The

model is fitted on variants that also appear in the dbSNP database

and, therefore, likely to be germline. Artefacts are filtered out using a

second statistical model which relies on base quality scores. The minimal

recommended coverage for SomVarIUS is around 100x, which is above

typical values used in routine WGS experiments (Björn et al., 2018).

Another unsupervised approach, named SGZ (Sun et al., 2018), also

estimates the germline VAF profile for each copy number segment, but

does not use public variant databases to identify likely germline variants.

LumosVar (Halperin et al., 2017) additionally uses unmatched normal

samples to label positions where the germline VAF distribution does

not appear diploid in order to filter out potential mapping artefacts. The

UNMASC pipeline (Little et al., 2021) applies mixture models to identify

hard-to-map regions, filter out strand bias and sample preparation artefacts,

and eventually single out somatic mutations. VAF-based detection of copy

number segments and classification methods built around precise VAF

modelling require a very high read depth (Halperin et al., 2017), so the

effectiveness of SGZ, LumosVar, and UNMASC was demonstrated on

samples with average coverage of around 400x-800x, which is far above

typical WGS values of around 30X (Björn et al., 2018).

Compared to unsupervised techniques, supervised methods rely on

specific features of a given tumor type, such as the characteristic somatic

VAF and the somatic mutational signature (Alexandrov et al., 2013). They

may extensively use annotations derived from variant databases, such as

COSMIC (Tate et al., 2019), and variant effect prediction tools, such as

snpEff (Cingolani et al., 2012). The relevant disease-related statistics and

specific variant filtering parameters are learnt in the training phase, which

requires a set of labelled data (actual variant calls and/or alignment files)

corresponding to a given tumor type.

For example, the supervised method called TOBI (Madubata et al.,

2017) uses gradient boosting to classify exonic somatic and germline

variants based on VAF, variant annotation from COSMIC, variant effect

prediction from snpEff, etc. Another supervised method, called ISOWN

(Kalatskaya et al., 2017), additionally uses somatic mutational signatures

and information about flanking germline variants. Mutational signatures

are imprints of particular DNA damage and repair mechanisms, specific

for a given type of cancer and different from the spectrum of germline

mutations (Alexandrov et al., 2013). Flanking variants help to correct for

shifts in VAF distributions due to local copy number variations. Similarly

to TOBI, ISOWN can only classify somatic and germline SNP variants and

does not propose any concrete strategy to filter out artefacts. In addition,

none of these two methods was validated on WGS variants that are poorly

represented in public cancer variant databases and whose effects are harder

to predict.

In this study, we present DeepSom - a new pipeline for identifying

somatic SNP and short INDEL variants in tumor WGS samples without

a matched normal. DeepSom can effectively filter out both artefacts and

germline variants under conditions of a typical WGS experiment. In the

core of the method is a convolutional neural network (CNN) trained on 3D

tensors of piledup variant reads.

Using 5 different cancers datasets, we demonstrate that DeepSom can

effectively filter out germline variants as well as artefacts. We show that

such features as mutational signatures and flanking variants are important

for correct variant classification. In addition, we find that DeepSom might

be robust with respect to potential mapping artefacts. Finally, we show

that DeepSom outperforms two previously proposed methods for tumor-

only somatic variant calling, namely SomVarIUS (Smith et al., 2016) and

ISOWN (Kalatskaya et al., 2017).

2 Materials and Methods

2.1 Input data

DeepSom has been trained and evaluated separately on each of

5 datasets representing 5 different cancers: TCGA-LAML (acute

myeloid leukemia), BLCA-US (bladder urothelial cancer), ESAD-

UK (esophageal adenocarcinoma), LINC-JP (liver cancer), GACA-CN

(gastric cancer). These datasets were downloaded from the ICGC portal

(https://dcc.icgc.org), and the TCGA portal (https://portal.gdc.cancer.gov).
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Train/evaluation data for each dataset was generated based on tumor

WGS samples (one BAM file per patient). Out of 43 WGS samples

available for TCGA-LAML, one was excluded since its coverage was

about 300x, far beyond typical read depth in WGS experiments. The total

number of tumor WGS samples used, the number of somatic SNP and

INDEL variants per sample, and the median tumor coverage are shown

in Table 1 for each dataset. Variant allele fraction (VAF) distributions

are demonstrated in Fig. S1. Mutational signatures of somatic SNPs are

shown in Fig. S2. Fig. S3 illustrates mutational signatures of artefacts and

germline SNPs.

Dataset Tumor

WGS

samples

Somatic

SNPs per

sample

Somatic

INDELs

per sample

Median

coverage

GACA-CN 25 11451 505 33x

BLCA-US 23 22055 705 34x

ESAD-UK 41 28500 1739 59x

LINC-JP 28 9875 863 50x

TCGA-LAML 42 397 21 28x

Table 1. Datasets considered in this study: total number of tumor WGS samples

considered, average number of somatic SNP variants per sample, average

number of somatic INDEL variants per sample, median coverage.

To obtain training and evaluation data for each dataset, we first ran the

Mutect2 caller (Benjamin et al., 2019) (bundled with GATK v4) for each

WGS tumor sample without a matched normal using default settings. In

this regime, Mutect2 outputs all candidate variants, including true somatic

and germline variants as well as sequencing and mapping artefacts.

To identify somatic mutations in the Mutect2 output, we downloaded

lists of pre-called somatic variants from the corresponding resource. For

ICGC samples, we considered consensus VCF files from the ICGC

portal. From each consensus VCF file we selected only variants on

which all callers agreed. For the TCGA-LAML dataset, we considered

somatic variants reported in (Cancer Genome Atlas Research Network,

2013). Although identifying germline variants in the Mutect2 output

was not necessary to train and evaluate DeepSom, we marked them for

further interpretation of CNN performance. To mark germline variants

in ICGC samples, we downloaded the corresponding germline VCF

files from the ICGC portal. Since germline variants for TCGA-LAML

samples were not published, we called them ourselves with the GATK

v.4 pipeline for germline short variant discovery (McKenna et al., 2010)

using variant quality score recalibration according to GATK Best Practices

recommendations (Van der Auwera et al., 2013; DePristo et al., 2011).

2.2 gnomAD filtering

A single Mutect2 run on a WGS sample generates about 3.9-7.1 million

candidate mutations, including about 3.0-5.4 million germline variants.

The number of somatic variants is usually far lower (Table 1). While read

qualities and read flags can be employed to filter out artefacts, they can

hardly help to distinguish somatic and germline variants. Instead, VAF

profiles (Fig. S1) and mutational signatures (Fig. S2 and S3) can be used.

However, since mutational signatures and VAF distributions for somatic

and germline variants overlap, these features can not ensure a perfect class

separation. Hence, classification might be improved by supplying prior

information. For example, it has been proposed (Kalatskaya et al., 2017)

to label candidate variants that are also encountered in public databases

before running a machine-learning classifier.

In the present study, we consider pre-filtering of candidate variants

using the gnomAD v.3.1.2 database (Karczewski et al., 2020), a collection

of more than 500 million germline variants. Choosing the maximal

gnomAD population allele frequency (AF) permits tuning the number of

variants to exclude. Fig. 1 shows the number of germline and artefact SNPs

and the fraction of somatic SNPs retained at different gnomAD AF cutoffs.

The corresponding plot for INDELs is demonstrated in Fig. S4.

To achieve the greatest reduction in the germline-to-somatic counts

ratio, DeepSom excludes by default all gnomAD variants.
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Fig. 1. (a) The number of germline and artefact SNPs retained at different gnomAD allele

frequency (AF) cutoffs. The errorbars show the standard deviation over all samples in all

datasets. (b) The fraction of somatic SNPs retained at different gnomAD AF cutoffs in each

dataset.

2.3 Tensor encoding

Before presented to the CNN, candidate variants were encoded following

the approach in (Friedman et al., 2020).

First, all reads covering the variant site were selected from the BAM

file. Unmapped reads, reads that fail platform/vendor quality checks, PCR

or optical duplicates were removed. Each read was then converted to a

matrix of size C×L, where C=14 is the number of channels encoding the

reference sequence and read features, L is the read length. The C=14

channels were composed of: 4 channels for one-hot encoding of the

reference sequence, 4 channels for p-hot encoding of read base qualities

(Friedman et al., 2020), 6 channels for binary encoding of read flags (same

for all positions in a given read). The following read flags were considered:

read mapped in proper pair (0x2), mate unmapped (0x8), read reverse

strand (0x10), mate reverse strand (0x20), not primary alignment (0x100),

supplementary alignment (0x800).

Afterwards, the reads were piled up around the variant site and stacked

as a tensor with dimensions C ×W ×DP , where DP is the read depth,

W is the length of the sequence region of interest (ROI) around the variant,

the variant column being placed in the middle of ROI (for INDELs, the

variant column corresponded to the position of the first inserted or deleted

base). We choseW=150 as a further increase did not lead to any significant

performance improvement (Fig. S5). For each kbp-long insertion variant,

we inserted a k-long sequence of deletions into the reference sequence (all

zeros in one-hot encoding).

While the read depth (DP) may not be the same for all variants, the

CNN input should have predefined dimensions. So, we imposed the tensor

height of H=70 (around the 80th percentile of read depth distribution for

most datasets). Tensors with DP<H were padded to the full height H

using extra reads with all channels filled with zeros. From tensors with

DP>H , we removed DP–H excessive reads s.t. the resulting variant

allele fraction (VAF) was as close as possible to its initial value, providing

the resolution of 1/H . The initial VAF and DP were saved for further use.

Finally, all reads in the tensor were sorted by the base in the variant column

(Friedman et al., 2020).

2.4 Flanking regions

While the average VAF of germline heterozygous variants in the whole

sample is around 50%, local deviations from this value may exist due to
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Fig. 2. CNN architecture. Each variant is represented by a variant tensor and variant meta

information, the latter being added explicitly to the output of the convolutional block. The

output of a sigmoid activation function in the final layer provides a pseudoprobability score

that can be used to classify variants.

copy number alterations. This could lead to an inferior performance of a

classifier which considers only the global difference between somatic and

germline VAF distributions.

Local variations of germline VAF can be taken into account by using

information about so-called flanking variants (Kalatskaya et al., 2017).

More precisely, for heterozygous variants, if the VAF of a germline variant

to the left and the VAF of another germline variant to the right of the

candidate variant is close to the VAF of the candidate variant, this candidate

variant is more likely to be germline.

Similarly to ISOWN, we looked for flanking germline variants within

a 4Mbp window around the candidate variant. At most 2 flanking variants

on each side were considered. A given variant was considered germline if

its gnomAD allele frequency was above 10%.

Annotation for flanking variants was performed before gnomAD

filtering.

2.5 CNN model

The CNN model architecture is shown in Fig. 2. The neural network

prediction is based on the variant tensor and variant meta information.

The variant tensor is piped into a convolutional block which includes 4

convolutional layers. The output of the convolutional block is flattened

out and concatenated with the meta information. The concatenation is

followed by 4 fully connected (dense) layers. The output of a sigmoid

activation function after the final layer provides a pseudoprobability score

that can be used to classify variants.

Variant meta information includes 10 values: the VAF and DP for the

candidate variant itself and for its 2 left and 2 right flanking variants.

Whenever the variant tensor is cropped, we use VAF and DP computed

before cropping.

The CNN model is implemented with the PyTorch framework

(Paszke et al., 2019). Optimization of model parameters in training is

assured by the AdamW algorithm (Loshchilov and Hutter, 2018). At each

training iteration, mini-batches of 32 variant tensors are presented to the

CNN and the gradient of the binary cross-entropy loss function with respect

to the model parameters is computed. The model parameters are then

updated based on the computed gradient, according to the AdamW rules.

After the first 15 epochs, the learning rate is reduced by a factor of 10 and

the learning continues for 5 more epochs.

2.6 Performance metric

To evaluate the CNN performance, we compute the area under receiver

operating characteristic curve (ROC AUC). The ROC AUC score does not

depend on the ground truth class ratio in the dataset (Fawcett, 2006) and

corresponds to the probability that a randomly chosen positive sample is

ranked higher than a randomly chosen negative sample. Based on ROC

AUC, model performance on datasets with different class ratios or on

datasets of different variant types (e.g. SNPs and INDELs) can be easily

compared.

The ROC curve plots the true positive rate (TPR), or recall, as a function

of the false positive rate (FPR) for a series of CNN output thresholds

(cutoffs), s.t. all variants with a CNN score above a given cutoff are

classified as somatic. The TPR is defined as the percentage of total ground

truth somatic variants after gnomAD filtering classified by the CNN as

somatic, the FPR being the percentage of total ground truth non-somatic

variants after gnomAD filtering classified as somatic.

While useful for CNN model selection and performance analysis, ROC

AUC is not always the most appropriate metric for application purposes.

To evaluate the performance of the entire DeepSom pipeline (gnomAD

filtering+CNN), we compute the f1-score. By maximizing the f1-score,

one tries to detect as many somatic variants as possible while keeping the

number of false positives low. Calculating the f1-score involves choosing

a particular CNN output cutoff. We choose the cutoff providing the highest

f1-score. In particular, within each dataset we first take the median over

the optimal thresholds determined for each sample individually, then we

recompute each sample’s f1-score using this median as a new threshold

value.

The f1-score is defined as the harmonic mean of precision and recall at

a given CNN output cutoff: f1 = 2×precision×recall/(precision+

recall), where the recall is the percentage of total ground truth somatic

variants before gnomAD filtering classified by the CNN as somatic, while

the precision is the fraction of true somatic variants among those classified

as somatic. Separate cutoffs are used when DeepSom performance on

somatic vs non-somatic, somatic vs germline and somatic vs artefact

classification is reported.

For both ROC AUC and f1-score, we provide the average per-patient

value, the reported errors show the standard deviation over different WGS

samples (patients). Samples with less than 10 positive or less than 10

negative labels are excluded from performance assessment.

2.7 Training and evaluation

We evaluated DeepSom performance via 5-fold cross-validation (CV).

The split was performed on the WGS sample (patient) level. In each

CV round, each individual patient from the test fold was treated as an

independent test dataset with positive (somatic variants) and negative (non-

somatic variants) instances. The average and the standard deviation of the

performance metric over all patients in all test folds were then reported.

In each CV round, the CNN was trained on tensors generated from

120K SNP (60K somatic and 60K non-somatic) and 20K INDEL (10K

somatic and 10K non-somatic) variants randomly selected after gnomAD

filtering from WGS samples chosen for training. Whenever the actual

count of somatic variants in the training set was below the required number,

upsampling was performed. In machine learning, using a balanced training

set is a common way to avoid the model ignoring the minority class in

the case of a substantial class imbalance. In particular, we observed that
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when trained without upsampling, the model would predict all instances as

non-somatic in TCGA-LAML, where the number of ground truth somatic

variants is the lowest (Table 1). Note that original unbalanced data was

used as the test set on which performance is reported in order to get an

objective and realistic performance assessment.

Further increase in the number of training variants did not lead to any

significant performance improvement (Fig. S6).

The average CNN training time was about 2.5 hours on NVIDIA Tesla

V100S, with the peak RAM allocation of around 1.5Gb. The average

inference time was around 30 min per WGS sample.

CNN hyper-parameter tuning was performed by maximizing ROC

AUC via a random search (Bergstra and Bengio, 2012) within the first

CV fold. The search range of hyper-parameters and their final values are

summarized in Table S2.

2.8 Running third-party variant calling tools

For DeepSom benchmarking, we chose SomVarIUS (Smith et al. (2016),

https://github.com/kylessmith/SomVarIUS) and ISOWN

(Kalatskaya et al. (2017), https://github.com/ikalatskaya/ISOWN),

representing unsupervised and supervised approaches to tumor-only

somatic variant calling correspondingly. SomVarIUS and ISOWN were

run according to the guidelines in their official GitHub repositories.

SomVarIUS was run directly on each tumor BAM file for each dataset.

All variants with SomVarIUS output p-value below the threshold were

labeled somatic. This threshold was optimized with respect to the f1-score,

in agreement with Section 2.6.

ISOWN performance on each dataset was evaluated via 5-fold cross-

validation (CV) using the same train/test splits as for DeepSom. In each

CV fold, all variants labeled as artefacts (Section 2.1) were removed

from the Mutect2 output and the remaining germline and somatic SNPs

were presented for training and evaluation. ISOWN uses a Naive Bayes

classifier and applies thresholding internally, s.t. it yields a list of putative

somatic variants without reporting any probability-like score for each,

which hinders optimization for a desired metric. Hence, we computed

the f1-score directly on ISOWN output, as done in the original work

(Kalatskaya et al., 2017).

To be consistent with the published SomVarIUS and ISWON

workflows, no gnomAD filtering was applied when running these two

methods. Additionally, using gnomAD-filtered data would make it difficult

for SomVarIUS and ISOWN to take into account local variations of the

germline VAF distribution as potential flanking germline variants might

be filtered out.

2.9 Annotation of hard-to-map regions

It was previously reported (Halperin et al., 2017; Little et al., 2021) that

variant calls might be unreliable in regions of high mapping uncertainty,

so-called hard-to-map (H2M) regions.

We consider a variant being in a H2M region if it belongs

to at least one of the four categories: 1) resides inside a

repeat, 2) resides in a highly polymorphic region represented by a

genetic variant (GV) hotspot (Long and Xue (2021), Supplementary

Dataset S1), 3) has a UMAP (Karimzadeh et al., 2018) mappability

score below 1.0, 4) resides inside a H2M gene (Little et al.,

2021). Repeats were annotated using the RepeatMasker UCSC track

(https://genome.ucsc.edu/cgi-bin/hgTrackUi?g=rmsk). The variant was

considered belonging to a repeat if it was placed inside the repeat

more than the read length apart (75bp for TCGA-LAML and 100bp

for the other datasets) from the repeat edge. The UMAP hg19 multi-

read mappability track was derived form the official project page

(https://bismap.hoffmanlab.org/). As H2M genes, we considered all genes

that were fully or partially detected as H2M by UNMASC (Little et al.,

2021). To each variant, the corresponding gene label was assigned using

the snpEff variant annotation toolbox v.5.0e (Cingolani et al., 2012).

The percentage of somatic and non-somatic variants in each H2M

region is shown in Table S3.

2.10 Mutational signatures

Mutational signatures of SNP variants were constructed by computing

the probability of each possible mutation, the mutation being defined

as the 3bp-window of the reference sequence around the variant site

plus the alternative allele (Alexandrov et al., 2013). For each dataset,

this probability was computed as the percentage of a given mutation

in a pool of all mutations of the corresponding variant type (somatic,

germline or artefact). Mutation signatures were further normalized using

the reoccurence of each mutation in the reference genome.

3 Results

CNN performance on SNP and INDEL variants is illustrated in Fig. 3. The

ROC AUC score remains high across all datasets, with the average values

being 0.966±0.009 and 0.976±0.003 on SNP and INDEL classification

correspondingly. The errorbars indicate that the model generalizes well

across different samples of the same cancer type. The corresponding ROC

curves for individual samples are shown in Fig. S7.
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Fig. 3. CNN performance on SNP and INDEL variants. The average ROC AUC score is

0.966±0.009 and 0.976±0.003 on SNP and INDEL classification correspondingly.

To assess how well the CNN removes artefacts and how well it filters

out germline variants, we computed ROC AUC scores separately on

somatic vs artefact classification and on somatic vs germline classification.

These scores were then compared to the performance of a simple VAF-

driven variant filtering method that rejects all variants whose VAF is above

(below) a value chosen on VAF distributions (Fig. S1). The results are

shown in Fig. 4.

As follows from Fig. 4, the CNN greatly outperforms the simple VAF-

based filtering method and effectively removes artefacts as well as germline

variants, with a better performance in somatic vs artefact classification.

The performance difference between somatic vs artefact and somatic vs

germline classification is likely due to these two classifications relying on

overlapping but different sets of features: read quality scores might play a

greater role in artefact filtering whereas VAF might be more important

when eliminating true germline variants. Note that the CNN score in

Fig. 4a,b is correlated with the performance of the simple VAF-driven
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Fig. 4. CNN ROC AUC score on somatic vs germline SNP (a) and INDEL (b) classification

and on somatic vs artefact SNP (c) and INDEL (d) classification as a function of the

ROC AUC score of a simple VAF-driven classifier. The dashed gray line in (a) and (b)

corresponds to equivalent performance of the CNN and the VAF-driven classifier. The CNN

outperforms the VAF-driven classifier and scores better in somatic vs artefact classification

than in somatic vs germline classification. In somatic vs germline classification, the CNN

performance and the performance of the VAF-driven classifier are correlated.

filtering method, which is in turn determined by the difference between

VAF distributions of somatic and germline variants. This indicates an

important role of VAF in somatic vs germline classification. On the other

hand, artefact filtering seems independent of VAF distributions (Fig. 4c,d).

To assess the effect of mutational signatures on classification, we

trained the CNN while replacing mutational signatures of somatic SNP

variants with randomly chosen mutational signatures of non-somatic SNP

variants. The ROC AUC scores on SNP classification for models trained

with and without signature replacement are compared in Table S4.

Table S4 demonstrates that the CNN performs better when mutational

signatures of somatic and non-somatic variants differ. The largest ROC

AUC increase is observed for BLCA-US, LINC-JP and ESAD-UK,

followed by GACA-CN and TCGA-LAML. Note that the difference

between somatic and germline mutational signatures is the highest for

ESAD-UK and the lowest for TCGA-LAML (Fig. S8). We also note

that not only true variants but also artefacts have their own mutational

signatures that were observed to be stable within the same sequencing

protocol (Fig. S3). Hence, using mutational signatures might improve

not only somatic vs germline classification but also somatic vs artefact

classification.

To study further the role of mutational signatures in classification,

we computed CNN saliency maps (Simonyan et al., 2013). An example

saliency map for a SNP variant is shown in Fig. S9a-c. It can be seen that

apart from the variant site itself, 5-10 neighbouring bases are also involved

in classification. In case of an INDEL variant, the number of relevant bases

is close to the INDEL size (Fig. S9d-f). The further performance increase

with the ROI length (Fig. S5) can be related to a better filtering of mapping

artefacts and classification of rare larger INDEL variants.

To assess the effect of flanking variants on classification, we trained

the CNN when replacing VAF and read depth of flanking variants with

zeros. For all the datasets, the loss of information about flanking variants

degraded the performance (Table S5).

To assess the CNN generalization, we performed cross-cancer

evaluation by applying the model trained on each single dataset to all

the other datasets. The results are shown in Table 2.

As can be seen from Table 2, the CNN mostly demonstrates good cross-

cancer generalization despite differences between the VAF distributions

(Fig. S1) and the mutational signatures (Fig. S2). One of the reasons

is that read qualities are independent of the cancer type, so somatic vs

artefact classification is partially cancer-independent. Additionally, the

somatic VAF distribution is always shifted to the left with respect to the

germline VAF distribution (Fig. S1), so somatic vs germline classification

is also partially generalizable. Somatic mutational signatures are, however,

cancer-dependent, which degrades the generalization performance.

It is interesting to note that the model trained on TCGA-LAML

shows the worst generalization performance whereas the models trained

on the other datasets generalize on TCGA-LAML significantly better. A

possible reason could be that TCGA-LAML somatic variants are of higher

quality because they were validated in additional targeted sequencing

experiments (Cancer Genome Atlas Research Network, 2013). Since high

quality variants are easier to classify (Poplin et al., 2018; Friedman et al.,

2020), models trained on other datasets perform remarkably well

on TCGA-LAML. On the other hand, the TCGA-LAML model can

distinguish only ’easy’ variants, which explains its worse generalization

performance.

To investigate how well DeepSom handles variants from H2M and

non-H2M regions, we first tested the trained CNN models on regions of

different different mappability (Section 2.9). The ROC AUC score on the

corresponding subgroups of test variants are shown in Table S6. The score

slightly improves on variants from non-H2M regions (+0.003 on SNPs

and +0.004 on INDELs on average), while somewhat decreasing on H2M

regions (-0.001 on SNPs and -0.007 on INDELs).

To study how the presence of variants from H2M regions in the training

set influences the CNN performance, we retrained the classifier excluding

all variants belonging to at least one H2M region. As follows from Table

S7, training without mutations from H2M regions moderately improves the

score on variants from non-H2M regions (+0.001 on SNPs and +0.003 on

INDELs) while further decreasing the score on variants from H2M regions

(-0.008 on SNPs and -0.004 on INDELs). This behaviour is consistent with

the concept of a machine learning classifier that should perform better on

data statistically similar to the training set. It is worth mentioning that

among different H2M categories, the worst performance is observed on

variants with low UMAP scores (-0.038 on SNPs and -0.029 on INDELs

compared to non-H2M), whereas variants in H2M genes were classified

nearly as well as variants from non-H2M regions. The latter could be due

to the chosen variants being outside H2M loci of the selected genes. The

small magnitude of the improvement on variants from non-H2M regions

indicates that DeepSom training might be robust with respect to mapping

artefacts.

To assess the biological significance of somatic variant calls provided

by DeepSom, we computed the fraction of somatic and non-somatic

variants in cancer gene census (CGC) genes (Sondka et al., 2018) before

and after classification. For this analysis, we chose only variants labelled

as high-impact mutations by the snpEff toolbox v.5.0e (Cingolani et al.,

2012). The results are shown in Table S8. In the agreement with the ground

truth data, DeepSom classification leads to a higher proportion of somatic

variants in CGC genes (7.8% for SNPs and 8.6% for INDELs) compared

to that of non-somatic ones (5.2% for SNPs and 6.3% for INDELs). The

difference between the predicted somatic and non-somatic proportions is,

however, somewhat smoothed out compared to the ground truth due to

gnomAD filtering and imperfect class separation.

We also assessed DeepSom performance at different gnomAD allele

frequency (AF) filtering thresholds. Both the CNN ROC AUC score

and DeepSom f1-score diminish at high gnomAD AF thresholds (Fig.

S10). The CNN performance drops due to the reduced difference between

germline and somatic mutational signatures as measured by the Jensen-

Shannon divergence (Fig. S8), accompanied by the increased ratio between

germline variants and artefacts (Fig. 1a and Fig. S4a). The f1-score also

decreases because the recall improvement due to less restrictive gnomAD
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Train Dataset

Test Dataset

GACA-CN BLCA-US ESAD-UK LINC-JP TCGA-LAML

SNP INDEL SNP INDEL SNP INDEL SNP INDEL SNP INDEL

GACA-CN 0.975 0.977 0.923 0.955 0.927 0.961 0.906 0.947 0.957 0.964

BLCA-US 0.937 0.966 0.960 0.979 0.934 0.966 0.929 0.964 0.966 0.976

ESAD-UK 0.933 0.958 0.938 0.965 0.970 0.981 0.934 0.962 0.953 0.966

LINC-JP 0.930 0.958 0.938 0.973 0.947 0.972 0.951 0.973 0.970 0.976

TCGA-LAML 0.873 0.899 0.868 0.898 0.817 0.874 0.840 0.875 0.973 0.972

Table 2. CNN ROC AUC score in cross-cancer evaluation. When the train and test datasets match, 5-fold cross-validation is used, otherwise the model is trained

on all WGS samples from the train dataset and tested on all WGS samples from the test dataset. All models demonstrate good generalization performance.

Dataset

DeepSom SomVarIUS ISOWN

SNP INDEL SNP SNP

som vs

germ&art

som vs

germ

som vs

art

som vs

germ&art

som vs

germ

som vs

art

som vs

germ&art

som vs

germ

som vs

art

som vs

germ

GACA-CN 0.41 0.59 0.44 0.18 0.34 0.21 0.10 0.22 0.13 2.4e-3

BLCA-US 0.46 0.57 0.54 0.20 0.30 0.29 0.032 0.042 0.042 2.9e-3

ESAD-UK 0.56 0.68 0.60 0.28 0.45 0.33 0.14 0.24 0.16 1.8e-3

LINC-JP 0.32 0.42 0.42 0.19 0.30 0.25 0.025 0.049 0.029 2.5e-3

TCGA-LAML 0.032 0.048 0.089 0.038 0.044 0.39 1.0e-3 4.0e-3 1.7e-3 7.8e-3

Table 3. F1-score for DeepSom, SomVarIUS (Smith et al., 2016) and ISOWN (Kalatskaya et al., 2017) on somatic vs germline&artefact, somatic vs germline, and

somatic vs artefact classification. DeepSom generally outperforms SomVarIUS by an order of magnitude and ISOWN by two orders of magnitude.

filtering (Fig. 1b and Fig. S4b) is not sufficient to compensate for the

degraded CNN performance.

Finally, we also applied two methods previously proposed for somatic

variant calling without a matched normal, specifically SomVarIUS and

ISOWN, to all the datasets. Table 3 compares f1-score for DeepSom,

SomVarIUS and ISOWN. The respecting DeepSom CNN cutoffs,

precision, and recall are shown in Tables S9-S11.

As can be seen from Table 3, DeepSom usually outperforms

SomVarIUS by an order of magnitude and ISOWN by two orders of

magnitude. It is also worth mentioning that DeepSom precision and

recall are generally of the same order of magnitude, SomVarIUS recall

exceeds its precision, while ISOWN recall is far below its precision. The

inferior performance of SomVarIUS can be due to using hard classification

thresholds and its limited ability to learn directly from data. In addition,

SomVarIUS completely ignores mutational signatures. On the other hand,

ISOWN demonstrates an inferior performance presumably because it relies

heavily on various cancer databases in which many WGS somatic variants

are not represented: 97% of variants classified by ISOWN as somatic were

found in exonic regions, about 50% of them also being in COSMIC. Due to

its strong dependence on cancer variant databases, ISOWN demonstrates

a relatively high precision (about 0.4 on average, Table S10) accompanied

by a very low recall (about 1.3e-3 on average, Table S11).

We also note that DeepSom f1-scores exhibit higher sample-to-sample

fluctuations (Fig. S11) compared to ROC AUC (Fig. 3). These fluctuations

stem from the highly variable number of ground truth somatic variants in

tumor samples which leads to large variations in precision at a fixed CNN

output threshold. High sample-to-sample oscillations of precision and f1-

score were also reported previously for LumosVar (Halperin et al., 2017)

and UNMASC (Little et al., 2021).

4 Discussion

DeepSom is a novel pipeline for somatic variant calling without a matched

normal. DeepSom demonstrated a competitive performance on 5 different

cancer datasets. These datasets have diverse VAF distributions (Fig. S1)

and mutational signatures (Fig. S2 and S3) and thus represent different

levels of ’difficulty’ for the caller. Note also that DeepSom performed well

despite trained on the small number of WGS samples available for each

dataset in the repository.

DeepSom uses WGS BAM files and the germline variant database

gnomAD as the input. The DeepSom pipeline consists of three major

steps: calling candidate variants, gnomAD pre-filtering, and CNN-based

classification.

Firstly, all possible variants (somatic, germline and artefacts) are

called. The variant caller used at this step should be able to provide

candidate variants without using a matched normal. Similarly to ISOWN,

DeepSom makes use of the Mutect2 caller (Benjamin et al., 2019). All the

variants which are not identified at this step (for example, due to internal

Mutect2 filtering), will be permanently lost. If high sensitivity is required,

Mutect2 can be bypassed by calling all positions with at least one read

with an alternative allele.

Afterwards, the VCF files are annotated for flanking variants using

the gnomAD database. It was previously reported (Little et al., 2021) that

germline variant databases might contain artefacts, which could potentially

hinder proper identification of flanking variants. In this regard, we note

that DeepSom extracts flanking information based on gnomAD variants

with a minimum population AF of 10%, which should lower the chance

of hitting a gnomAD artefact. Additionally, one may consider masking

likely artefacts when looking for flanking variants without necessarily

removing them from the DeepSom inference pool. In particular, strand

bias and sample preparation artefacts, such as FFPE and oxoG artefacts,

can be labeled using GATK FilterByOrientationBias and FischerStrand

tools (McKenna et al., 2010), SOBDetector (Diossy et al., 2021) or via

UNMASC filtering (Little et al., 2021).

The purpose of the next step is to remove a significant part of germline

variants based on their presence in gnomAD. The reduction in germline

variant count is achieved at the expense of a certain fraction of somatic

variants (Fig. 1 and Fig. S4). However, somatic variants present in

gnomAD could well be harmless passenger mutations and, therefore,

might often be safely neglected.

Finally, the CNN-based classifier generates a pseudoprobability score

based on the variant data. The variant classification is then performed
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by placing a threshold on this pseudoprobability score. This threshold

should be selected depending on a particular application. For example,

a threshold maximizing the f1-score can be used for mutational load

estimation whereas a threshold that guarantees a fixed true positive rate

could be more appropriate when looking for novel mutations. Note that

the reported f1-score thresholds (Table S9) should be carefully considered

in view of large sample-to-sample f1-score fluctuations (Fig. S11).

In line with previous research (Little et al., 2021), we demonstrated

that disregarding H2M regions improves the classifier performance on

variants from non-H2M regions. In view of the moderate magnitude of this

performance gain and the more significant performance drop on variants

from H2M regions, we do not recommend excluding H2M regions from

the training set. Should H2M filtering be applied at the inference stage,

it can be omitted for variants from predefined white lists, e.g. those from

the COSMIC database (Little et al., 2021). We admit, however, that our

identification of H2M regions relies on genome-specific annotations and

may ignore certain protocol-specific features. When a higher precision in

H2M regions detection is required, VAF-based segmentation (Little et al.,

2021) can be used.

DeepSom surpasses previously proposed methods for tumor-only

somatic variant calling, namely SomVarIUS and ISOWN, both

qualitatively (Table S1) and quantitatively. By using a more advanced

CNN-based classifier and including read qualities and read flags

information, DeepSom does not only outperform ISOWN in somatic vs

germline classification but also provides a means for efficient artefact

filtering. In contrast to both SomVarIUS and ISOWN, DeepSom can call

not only SNP but also INDEL variants.

We believe that DeepSom might be particularly suitable for research

purposes, e.g. discovering novel variants in retrospective studies using

arrays of unmatched tumor samples. In clinical diagnostics, tumor only

sequencing is usually performed on a predefined gene panel with known

recurrent mutations that are part of guidelines (Khoury et al., 2022). In

this case, DeepSom might be used as a complementary filtering tool to

obtain higher quality calls with fewer artefacts. Alternatively, one may

apply DeepSom as a part of a more elaborate variant calling pipeline, e.g.

UNMASC (Little et al., 2021).

We note that DeepSom performance is largely bound by the sequencing

technology. To improve somatic vs artefact classification, a sequencer must

produce more reliable base quality scores. On the other hand, using longer

reads and more advanced aligners should reduce the number of mapping

artefacts. To improve both somatic vs artefact and somatic vs germline

classification, sequencing depth (coverage) should be increased, s.t. the

error in VAF estimation is reduced. However, one should keep in mind

that higher coverage comes at higher cost and may be associated with an

increased number of artefacts (Chen et al., 2020).

DeepSom could potentially be extended to a three-class problem,

simultaneously classifying somatic vs germline vs artefact variants,

by modifying the CNN architecture and changing the loss function

accordingly. This extension would involve several additional challenges

to overcome: one would need to provide reliable training/evaluation

labels for all the three classes and to cope with the corresponding class

imbalance. Note, however, that germline variants and artefacts filtered out

by gnomAD do not take part in DeepSom inference. Therefore, this three-

class model would remain more suitable for somatic variant detection. The

current design of DeepSom already considers mutational context, VAF,

and read orientation-specific information encoded in the variant tensor,

so DeepSom could potentially further classify detected artefacts into

subclasses, including oxoG, FFPE or other strand bias artefacts provided

that the corresponding ground truth labels are available at training.

5 Conclusion

In this work, we presented the CNN-based approach called DeepSom for

identifying somatic variants in WGS samples without a matched normal.

DeepSom largely outperforms the tested methods for tumor-only somatic

variant calling and provides a way to call not only SNP but also INDEL

variants. DeepSom does not require any manual tuning and can be applied

under typical WGS experimental conditions. The proposed pipeline could

potentially be used to discover novel somatic mutations in research setting,

or in clinical practice when supported with other filtering tools.

DeepSom is freely available as a GitHub repository.

Data availability

All datasets except TCGA-LAML were derived from the ICGC portal:

https://dcc.icgc.org. The TCGA-LAML dataset was derived from the

TCGA portal: https://portal.gdc.cancer.gov. Somatic variants for the

TCGA-LAML dataset were obtained from Supplementary Material to

(Cancer Genome Atlas Research Network, 2013).
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