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inactivation are combined specifically in T cells. We demonstrate

that MALT1 protease activity drives T cell activation upon loss of

TRAF6. Vice versa, TRAF6 is essential for autoimmunity upon

MALT1 protease inactivation in T cells, emphasizing the critical

interdependency of MALT1 and TRAF6 to balance T cell activation

and homeostasis.
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8333-56) and stained with anti-FoxP3-PE (12-5773-82, RRID:

AB_465936) in permeabilization buffer. Cells were washed with

permeabilization buffer, resuspended in FCM buffer, and measured

using an Attune Acoustic Focusing Cytometer (Thermo Fisher). All

antibodies are from eBiosciences except where indicated. Gating

strategies for detecting the different cell subsets are shown in

Figure S1.
immune suppression to autoimmune activation (1, 2). Following TCR

antigen ligation, protein kinase signaling leads to assembly of the

CBM complex, composed of caspase recruitment domain family

member 11 (CARD11), B-cell lymphoma/leukemia 10 (BCL10), and

mucosa-associated lymphoid tissue 1 (MALT1). Within the CBM

complex, MALT1 plays an intriguing dual role as both a scaffold,

acting as a binding platform for the E3 ligase tumor necrosis factor

(TNF) receptor-associated factor 6 (TRAF6), and as a paracaspase,

cleaving substrates with roles in T cell signaling, transcription and

RNA stability (3).

Mouse models have revealed that MALT1 and TRAF6 play

central roles in balancing immune activation and homeostasis.

Malt1 KO mice have simultaneous severe defects in conventional T

(Tconv) and regulatory T (Treg) cells, which results as a net outcome

of immunodeficiency (4, 5). Malt1 paracaspase dead (PD) mice,

carrying a C472A exchange in the catalytic center, display only

partially impaired Tconv effector cell responses, but strong defects

in Treg cell numbers and functions, triggering an immune imbalance

that leads to autoimmune inflammation (5–10). The essential role of

TRAF6 and its interaction with MALT1 in TCR-dependent NF-kB
signaling has been demonstrated in vitro (11–14). Traf6 deficiency

causes embryonal or perinatal lethality in mice (15), but conditional

Traf6 KO in T cells (Traf6-DT mice) are viable (16). Traf6-DT mice

suffer from autoimmunity associated with enhanced activation of

Tconv effector cells that are unresponsive to the suppression of Treg

cells. Importantly, Malt1 TBM-T (TRAF6-binding mutant in T cells)

mice with conditional destructive missense mutations in T cells

rendering TRAF6 incapable of interacting with MALT1 show a

highly similar autoimmune phenotype to Traf6-DT mice,

demonstrating that the interaction of MALT1 and TRAF6 in T cells

is critical for maintaining immune homeostasis (17). While loss of

TRAF6 or MALT1-TRAF6 interaction abrogates TCR-induced NF-

kB activation, the MALT1 protease is constitutively activated leading

to continuous substrate cleavage even in resting T cells (17).

While the fatal autoinflammation caused by the destruction of

MALT1-TRAF6 binding in all cells is rescued by genetic inactivation

of MALT1 paracaspase function, it remained unclear, if the T cell

activation and autoimmunity caused by complete absence of TRAF6

in T cells is also driven by MALT1 protease activation. Treatment of

Traf6-DT mice with a potent MALT1 inhibitor ameliorated some

disease symptoms (17), but it remained elusive whether only T cells or

also other cells are targeted in such a pharmacological setting. Thus,

in order to provide evidence that loss of TRAF6 induces

autoimmunity through cell-intrinsic MALT1 protease activation, we

Materials and methods

Mice

All mouse experiments were performed in accordance with the

guidelines of the Federation of European Laboratory Animal Science

Association and were approved by the Regierung von Oberbayern

(ref. no. 55.2-2532-VET_02-17-122).

Malt1 and Traf6 floxed (fl) mice were derived from the European

Conditional Mouse Mutagenesis (EUCOMM) program with

generation described in (17). Malt1fl/fl and Traf6fl/fl mice were

crossed to generate double-floxed Malt1fl/fl;Traf6fl/fl mice. Malt1 PD

mice were provided by Rudi Beyaert (VIB, Ghent, Belgium) and

generated as described (18, 19). Double floxed mice were crossed with

Malt1PD/+;Traf6wt/fl;CD4-Cre+ to generate Traf6-DT;Malt1 PD-T

(Traf6fl/fl;Malt1PM/fl;CD4-Cre+) and Wthet (Traf6fl/+;Malt1fl/+;CD4-

Cre+), Traf6-DT (Traf6fl/fl;Malt1fl/+;CD4-Cre+) and Malt1 PD-T

(Traf6fl/+;Malt1PD/fl;CD4-Cre+) control groups.

Flow cytometry

Lymphocyte population were analyzed from peripheral (spleen

and lymph nodes) and central (thymus) lymphoid organs. Tissue was

meshed through a 100 µm strainer and treated with red blood cell lysis

buffer (Miltenyi, 130-094-183). One million cells per staining were

transferred to a 96-well plate, washed twice with cold phosphate-

buffered saline (PBS) (350g, 5 min, 4°C) and stained with eFluor780

Live/Dead dye (eBioscience, 65-0865-18; 1:1000 in PBS, 30 min, 4°C).

Cells were washed once with FCM buffer (3% fetal bovine serum in

PBS) and treated with anti-CD16/CD32 Fc-block (eBioscience, 14-

0161-85; 1:200 in FCM buffer, 20 min, RT). Supernatant was

removed, and cells were stained with surface antibodies in FCM

buffer. Staining was performed with anti-CD3-PECy7 (1:300, 25-

0031-82, RRID: AB_469572), anti-CD45R-PerCP (1:200, Biolegend,

103234, AB_893353), anti-CD8a-FITC (1:100, 11-0081-85, RRID:

AB_464916), anti-CD4-PE (1:300, 12-0042-85, RRID: AB_465512),

anti-CD4-PerCP-Cy5.5 (1:300, 45-0042-82, RRID: AB_1107001),

anti-CD44-PECy7 (1:400, 25-0441-82, RRID: AB_469623), anti-

CD62L-APC (1:300, BD Pharmingen, 553152, RRID : AB_398533),

anti-CD69-APC (1:200, 17-0691-82, RRID: AB_1210795), and anti-

ICOS-FITC (1:200, 11-9949-82, RRID: AB_465458). For intracellular

staining of FoxP3, cells were fixed and permeabilized using the

FoxP3/transcription factor staining buffer set (eBioscience, 00-5523-

00; 1 h, RT), washed with permeabilization buffer (eBiosciences, 00-
228
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observed, Malt1 PD-T mice showed hunched posture and developed
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Cytokine and autoantibody analysis

The cytokine TNFa and anti-double-stranded (ds)DNA

autoantibodies were measured in mouse serum according to the

manufacturer’s protocol via flow cytometry using a cytometric bead

array kit (562246 and 562336, BD) and anti-dsDNA Ig’s kit (Catalog

#5110 , Alpha Diagnost ic In ternat iona l ) accord ing to

manufacturer’s recommendations.

Stimulation and biochemical analyses of
purified CD4 T cells

Primary murine splenocytes were isolated from spleen and treated

with Red Blood Cell Lysis Solution (Miltenyi) and CD4+ T cells were

purified using CD4+ T cell isolation kit II (Miltenyi) according to the

manufacturer’s protocol. CD4+ T cells were cultured in primary T cell

medium (RPMI 1640, 100 U/ml penicillin, 100 µg/ml streptomycin,

10% heat inactivated fetal calf serum, 10 mMHEPES pH 7.5, 2 mM L-

Glutamine, 1 mM Sodium-Pyruvate, MEM-NEAA (1x), 50 nM ß-

Mercaptoethanol [ll Gibco]). For stimulation, cells were treated with

Phorbol 12-Myristate 13-Acetate (PMA (P), 200 ng/ml; Merck)/

Ionomycin (Iono (I), 300 ng/ml; Calbiochem) for 30 min. For

Western blotting, cells were lysed in co-immunoprecipitation (co-

IP) buffer (25 mM HEPES pH 7.5, 150 mM NaCl, 0.2% NP-40, 10%

glycerol, 1 mM DTT, 10 mM NaF, 8 mM ß-glycerophosphate, 300
µM sodium vanadate and protease inhibitor cocktail mix (Roche)) for

20 min at 4°C. Cellular lysis for electrophoretic mobility shift assay

Frontiers in Immunology 03
Malt1 PD-T (Traf6fl/fl;Malt1PD/fl;CD4-Cre+) mice expressed the

MALT1 paracaspase dead (PD) mutant in the absence of TRAF6.

The immune phenotype of Traf6-DT;Malt1 PD-T mice was compared

to double heterozygous ‘wildtype’ (Wthet : Traf6fl/+;Malt1fl/+;CD4-

Cre+), Traf6-DT (Traf6fl/fl;Malt1fl/+;CD4-Cre+) and Malt1 PD-T

(Traf6fl/+;Malt1PD/fl;CD4-Cre+) littermates (Figure 1A). All

genotypes were born at approximate Mendelian ratios and showed

no observable phenotypic changes upon birth. However,Malt1 PM-T

mice stopped thriving at approximately 10 weeks of age. As previously
ataxia (18). For animal welfare and best comparison, phenotypic

analyses of all mice were performed at 9-11 weeks of age. The four

genotypic groups did not differ substantially in body weight, spleen

weight or total splenocytes (Figure S2A-C). Relative numbers of B and

T lymphocytes were unchanged except for minor reductions in CD3+

and CD8+ T cells in Traf6-DT mice and CD4+ T cells in Malt1 PD-T

mice, which were all reverted to normal in the Traf6-DT;Malt1 PD-T

(T6-DT;M1 PD-T) mice (Figure S2D-E).

We purified CD4+ T cells from two independent mice of all four

cohorts to compare the effects of the single and combined mutations

in biochemical assays. As previously observed, Traf6-DT mice display

constitutive cleavage of the MALT1 substrates and NF-kB signaling

regulators CYLD and HOIL-1, as well as the RNA-binding protein

Regnase-1 in the absence of any ex vivo T cell stimulation (Figure 1B)

(17). Constitutive substrate cleavage was prevented upon additional

inactivation of MALT activity in T6-DT;M1 PD-T mice, proving that
it was directly caused by MALT1. Next, we examined MALT1

protease and NF-kB activation upon stimulation with PMA/

Ionomycin (P/I), which mimics TCR/CD28 engagement. Cleavage
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(EMSA) samples was performed in high salt buffer (20 mM HEPES

pH 7.9, 350 mM NaCl, 20% glycerol, 1 mM MgCl2, 0.5 mM EDTA,

0.1 mM EGTA, 1% NP-40, 1 mM DTT, 10 mM sodium fluoride, 8

mM b-glycerophosphate, 300 µM sodium vanadate and Roche

protease inhibitor cocktail mix). Western blotting and EMSA were

performed as previously described (20). Western blot antibodies: anti-

ß-Actin (C4, 1:20.000; #sc-47778; RRID: AB_2714189), anti-CYLD

(E-10; #sc-74435; RRID: AB_1122022), anti-HOIL-1 (H-1; #sc-

393754; RRID: N/A), (all Santa Cruz); anti-Regnase-1 (#MAB7875;

RRID: N/A) (R&D); HRP-conjugated anti-rabbit (#711-035-152;

RRID: AB_10015282), HRP-conjugated anti-mouse (#715-035-150;

RRID: AB_2340770), (all Jackson ImmunoResearch, 1:7000); all

antibodies were used at 1:1000 dilution.

Results

The genetic disruption of MALT1 protease activity inMalt1 PD-T

mice causes autoimmunity in a T cell intrinsic manner (18). Further,

T cell-specific deletion of TRAF6 in Traf6-DTmice or loss of MALT1-

TRAF6 binding in Malt1 TBM mice induces autoimmune

inflammation (16, 17). To better understand how the interplay

between MALT1 protease activity and TRAF6 balances T cell

activation and homeostasis, we combined TRAF6 deletion and

expression of MALT1 PD specifically in T cells. For this, we

crossed mice to yield homozygous Traf6fl/fl and heterozygous

Malt1C472A/fl together with CD4-Cre, which inactivates the two

Traf6 and one Malt1 Wt floxed alleles at the CD4/CD8 double

positive stage of T cell differentiation. Thus, the resulting Traf6-DT;

of CYLD, HOIL-1 and Regnase-1 was further enhanced after P/I

treatment of CD4+ T cells from Traf6-DT mice, while no constitutive

or inducible cleavage was seen in T cells from Malt1 PD-T or T6-DT;
M1 PD-T double mutant mice (Figure 1C). In sharp contrast, NF-kB
activation monitored by gel shift assays and p-p65 levels by Western

blotting was unaffected in T cells from Malt1 PD-T mice, but TRAF6

deletion alone (Traf6-DT) or in combination with the protease dead

MALT1 was unable to promote NF-kB activation (Figure 1C). Basal

NF-kB activation was mildly increased in Traf6-DT or Malt1 PD-T

cells compared toWthet, which may be explained by the inflammatory

environment from which these cells are derived (see below). Basal

NF-kB levels appeared to be even further reduced in T cell T6-DT;M1

PD-T double mutant mice.

To determine functional effects of chronic MALT1 substrate

cleavage, we monitored inducible T cell costimulator (ICOS)

expression on T cells from the modified mice, because ICOS

expression is repressed by the post-transcriptional regulators

Regnase-1 and Roquin-1/2, both of which are inactivated by

MALT1-catalyzed cleavage (21, 22). Indeed, numbers of CD4+ and

CD8+ T cells with elevated ICOS levels were increased in Traf6-DT
mice, whereas ICOS expression was reverted to normal levels in T

cells from T6-DT;M1 PD-T mice (Figure 1D). These results

demonstrate that TRAF6 deficiency provokes chronic MALT1

paracaspase activity in a T cell-intrinsic manner, which leads to

upregulation of targets that are under control of mRNA stability

factors regulated by MALT1 protease.

Next, we determined the consequences of the various genetic

alterations on the relative numbers of naïve T (Tnaïve), central
frontiersin.org
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456
memory T (TCM) and effector memory T (TEM) cells by measuring

expression of CD44/CD62L on peripheral T cells (Figures 2A–D;

Figure S2F-G). Both deletion of TRAF6 and inactivation of MALT1

paracaspase individually provoked an increase in numbers of splenic

CD4+ TEM cells, which coincided with a reduction in the Tnaïve and

TCM cell populations (Figures 2A, B). This increase in the TEM cell

population was abolished and even decreased compared to Wthet in

T6-DT;M1 PD-T double mutant mice. Similar results were seen for

frequencies of CD8+ TEM cells (Figures 2C, D). However, while the

increase in CD8+ TEM cells in Traf6-DTmice primarily coincided with

a decrease in TCM cells, higher frequencies of CD8+ TEM and TCM

populations in Malt1 PD-T mice correlated with decreased Tnaive cell

numbers. Higher TEM cell numbers were also detected in lymph

nodes, especially in Traf6-DT mice, and the increase was abrogated in

T6-DT;M1 PD-T double mutant mice (Figure 2E). In line with

increased TEM populations, expression of the T cell activation

marker CD69 was enhanced on CD3+ T cells in spleen and lymph

nodes of Traf6-DT, and to a lesser extent onMalt1 PD-T, and reduced

on T cells from T6-DT;M1 PD-T, even when compared toWthet mice

(Figure 2F). Therefore, combined TRAF6 deletion and MALT1

FIGURE 1

Effects of single or combined TRAF6 KO and MALT1 paracaspase mutation on signaling in CD4+ T cells. (A) Schematic overview of the four conditional
mouse strains used in the analyses. (B) Western blots showing MALT1 substrate cleavage in unstimulated purified CD4+ T cells from Wthet; T6-DT;M1 PD-
T, Traf6-DT and Malt1 PD-T mice (two independent mice each). Asterisks indicate unspecific signals. (C) Analyses of NF-kB activation (EMSA), p65
phosphorylation and MALT1 substrate cleavage (Western blot, WB) in PMA/Ionomycin (P/I) stimulated purified CD4+ T cells of mice as depicted in (A, D)
Expression of ICOS on CD4+ and CD8+ T cells by flow cytometric analysis of spleen of mice as depicted in (A) Bars show the means ± SEM, and P values
were calculated by one-way ANOVA with Tukey’s multiple comparison test. All analyses were performed with mice 9-11 weeks of age. Each dot
represents one mouse.
A

B C
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Further, we have shown that anti-dsDNA autoantibodies were
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paracaspase inactivation in T cells reverts the cell-intrinsic T cell

activation observed by single TRAF6 deficiency or MALT1 protease

dead mutation.

Developmental and functional defects in thymic and peripheral

Treg cells are the underlying cause for the autoimmunity in MALT1

paracaspase defective mice (9, 23). In line with this, CD4+ FoxP3+

Treg cells in Malt1 PD-T mice were severely reduced in spleen and

lymph nodes and almost completely missing in the thymus

(Figures 3A, B). In contrast, Traf6-DT mice displayed mildly

reduced Treg frequencies in the thymus, while spleen and lymph

nodes showed nearly normal numbers of Treg cells. However,

combination of TRAF6 deletion and MALT1 protease inactivation

in T6-DT;M1 PD-T mice provoked a complete absence of Treg cells in

the thymus and peripheral immune organs. Despite the severe

reduction in thymic Treg cells, no genotype induced significant

alterations in the frequency of double negative, double positive or

single positive CD4 or CD8 T cells in the thymus, indicating that

development of Tconv cells is not affected by TRAF6 deficiency and/

or MALT1 protease inactivation (Figure S3A-C).

Finally, to determine the consequences of the single and

combined mutations, we measured concentrations of the pro-

inflammatory cytokine TNFa and anti-double-stranded DNA

(dsDNA) antibodies in the sera of the mice as biomarkers for the

onset of autoimmune inflammation. While TNFa and anti-dsDNA

antibodies were upregulated in the serum of Malt1 PD-T mice, there

was only a tendency for an increase in Traf6-DT mice at 9-11 weeks

A

E F

C

FIGURE 2

Effects of single or combined TRAF6 KO and MALT1 paracaspase mutation o
expression on CD4+ (A–B) and CD8+ (C–D) T cells with relative numbers of
cells in spleen of Wthet; T6-DT;M1 PD-T, Traf6-DT and Malt1 PD-T mice. (E)
lymph nodes of mice as depicted in A. (F) Relative numbers of CD3+ CD69+

show the means ± SEM, and P values were calculated by one-way ANOVA w
9-11 weeks of age. Each dot represents one mouse.
Frontiers in Immunology 05
(Figures 3C, D). However, the increase in TNFa was more

pronounced at 11-13 weeks of age in Traf6-DT mice (Figure 3D).
elevated in older mice (17), showing a slight delay in the onset of

autoimmune inflammation in Traf6-DT compared to Malt1 PD-T

animals (Figure 3D). Upregulation of TNFa and anti-dsDNA

autoantibody in the serum was abrogated in T6-DT;M1 PD-T mice,

revealing the interdependency of TRAF6 deletion and MALT1

paracaspase inactivation in triggering autoimmune inflammation.
Discussion

By combining TRAF6 ablation and MALT1 paracaspase

inactivation selectively in T cells, we provide genetic evidence that

T effector responses and autoimmunity in the absence of TRAF6

relies on MALT1 protease activation (Figure 4). Vice versa,
inactivation is driven by TRAF6 and thus by activation of NF-kB
signaling downstream of MALT1. In fact, TRAF6 and MALT1

paracaspase double mutation yields a reciprocal rescue of both

autoimmune phenotypes, resulting in an immunodeficiency as

described for global or T-cell specific MALT1-deficient mice (4, 5,

18). Thus, the fine-tuned equilibrium of MALT1 protease and

scaffolding function determines the level of T cell activation and is

critical for maintaining immune homeostasis.
B

D

T cell activation. (A–D) Flow cytometric analysis of CD44 and CD62L

M (CD44hi CD62Llo), TCM (CD44hi CD62Lhi) and Tnaïve (CD44lo CD62Lhi)
w cytometric analyses of CD4+ and CD8+ CD44hi CD62Llo TEM cells from
lymphocytes in spleen and lymph nodes of mice as depicted in A. Bars
h Tukey’s multiple comparison test. All analyses were performed with mice
570
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FIGURE 4

Schematic model for mutual control of homeostasis by MALT1 and TRAF6 in T
mutation on NF-kB signaling and MALT1 substrate cleavage (upper part). Effect
T effector (TEMconv) cells, which determines the phenotype of the mutant mic
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Importantly, either destruction of MALT1 substrate cleavage or

prevention of MALT1 downstream signaling by TRAF6 deletion in T

cells provokes imbalanced immune signaling, which in both cases

results in severe autoimmune inflammation (Figure 4). However, both

immune pathologies are caused by deregulations in distinct T cell

subsets. T or Treg cell-specific MALT1 inactivation leads to a ‘scurfy-

like’ autoimmune syndrome, which is caused by impaired Treg cell

development and function (9, 18). While induction of peripheral Treg

cells especially in aged mice is not relying on MALT1, thymic Treg

cells are lacking either in the absence of MALT1 or defective protease

B

FIGURE 3

Effects of single or combined TRAF6 KO and MALT1 paracaspase mutation o
cytometric analysis of CD4+ FoxP3+ regulatory T (Treg) cells (A) with relative
of Wthet; T6-DT;M1 PD-T, Traf6-DT and Malt1 PD-T mice. (C) Concentration
TNFa concentrations in 11-13 week old Traf6-DT mice. (D) Concentrations o
the means ± SEM, and P values were calculated by one-way ANOVA with T
weeks of age except where otherwise stated. Each dot represents one mou
activation (6, 7, 18, 24). Of note, MALT1 was shown to regulate

susceptibility of induced Treg cells to innate immune stimulation and

thus MALT1 has an indispensable function in balancing thymic

versus peripheral tolerance (24). Importantly, MALT1 protease

activity is required to maintain high expression of CTLA-4 on Treg

cells and it was shown that even a moderate decrease in CTLA-4

expression can lead to autoimmunity (9, 18, 25). Thus, MALT1

protease is critical for maintaining peripheral immune tolerance,

because Malt1 PD Treg cells can no longer counteract the

activation of Tconv effector cells (Figure 4). The loss of Treg cell

D

Treg cell frequencies, TNFa and anti-dsDNA autoantibodies. (A, B) Flow
umbers of Treg cells from thymus, spleen and peripheral lymph nodes (B)
the cytokine TNFa in sera of mice as depicted in (A) Right graph depicts
nti-dsDNA immunoglobulins in sera of mice as depicted in (A) Bars show
y’s multiple comparison test. All analyses were performed with mice 9-11
cells. Effects of single or combined TRAF6 KO and MALT1 paracaspase
s of single or combined mutations on regulatory T (Treg) and conventional
e. Note that circles represent a combination of cell number and activation
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control leads to autoimmune reactions in multiple tissues, even

though also conventional MALT1 paracaspase defective T cells are

functionally compromised in effector responses (6–8, 10, 18). In

contrast, despite some decrease in thymic Treg cells, peripheral

Treg cells are present in mice with conditional deletion of TRAF6

in T cells. TRAF6-deficient Treg cells are functional, but they are no

longer able to counteract Tconv effector responses (16). Thus, loss of

TRAF6 causes autoimmune inflammation primarily by enhancing

conventional T effector cell responses, even in the presence of

functional Treg cells (Figure 4). Thus, both genetic perturbations

are causing T cell activation by distinct mechanisms, which may also

explain other differences, such as the decrease or increase in CD8 TCM

cell numbers in Traf6-DT or Malt1 PD-T mice, respectively. We

previously showed that selective destruction of MALT1-TRAF6

interaction in T cells phenocopies the autoimmune inflammation

induced be complete absence of TRAF6 in T cells (17). Further,

symptoms of immune activation in Traf6-DT mice are ameliorated by

systemic MALT1 protease inhibitor treatment. Here we demonstrate

that ablation of TRAF6 in T cells induces autoimmunity via T cell-

intrinsic activation of MALT1 substrate cleavage. Of note, TRAF6 is

involved in many other innate immune and inflammatory signaling

pathways (26), but the key roles of TRAF6 in triggering TCR-induced

NF-kB signaling and protecting from uncontrolled T cell activation

both rely upon its interaction with MALT1.

Treg cell development and function is not affected by destruction

of MALT1-TRAF6 interaction and is only partially compromised by

loss of TRAF6, despite strongly impaired TCR-induced NF-kB
activation (16, 17). This was somewhat unexpected, because

canonical NF-kB subunits p65 and c-Rel are critical in controlling

Treg development and function (27, 28). Importantly, neither TRAF6

ablation nor lack of MALT1-TRAF6 interaction affects NF-kB
activation in response to inflammatory TNFa (17), suggesting that

other NF-kB inducers are able to compensate for the loss of TCR-

induced NF-kB signaling. Thus, TCR stimulation seems to primarily

drive Treg development and suppressor functions by providing the

signal that induces MALT1 protease activation. It is worth

mentioning that in older mice TRAF6 has a function in

maintaining FOXP3 expression and thus Treg identity, which is

independent of its interaction with MALT1 (17, 29, 30).

Reminiscent to Treg cells, conventional TEM cells develop in the

absence of TRAF6 or MALT1-TRAF6 interaction and are thus also

deprived of TCR-induced NF-kB. In this setting, chronic MALT1

protease activity seem to initiate T cell effector responses that drive an

inflammatory milieu through the production of inflammatory

cytokines such as TNFa, which in turn may act on T cells and

compensate for the loss of TCR-triggered NF-kB activation (16, 17).

Of note, this cell-intrinsic activation of conventional T cells causes

autoimmune inflammation even in the presence of functional Treg

cells (16, 17). Nevertheless, even though T cells lacking TRAF6 cause

autoimmune inflammation, it is unclear in how far they would be able

to mount a productive adaptive immune response upon infection.

Clearly, only the combined mutation of MALT1 scaffolding and

protease functions renders conventional T cells inactive, which

results in immunodeficiency as observed in T cell-specific Malt1

KO mice (Figure 4) (18). Thus, a tight balance of MALT1 signaling

and proteolytic function in conventional and regulatory T cells is

necessary for maintaining immune homeostasis and for allowing

productive immune activation.
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