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Abstract

In this paper, we focus on the approximation of smooth functions f : [—x, 7] — C,
up to an unresolvable global phase ambiguity, from a finite set of Short Time Fourier
Transform (STFT) magnitude (i.e., spectrogram) measurements. Two algorithms are
developed for approximately inverting such measurements, each with theoretical error
guarantees establishing their correctness. A detailed numerical study also demonstrates
that both algorithms work well in practice and have good numerical convergence
behavior.
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1 Introduction

We consider the approximate recovery of a smooth function f : R — C, supported
inside of a compact interval I C R, from a finite set of noisy spectrogram measure-
ments of the form

00 2 )
Yy o= ‘f fx)m <x - —nﬂ) e MPdx
- L

Here m : R — C is a known mask, or window, and the 7, ¢ are arbitrary additive
measurement errors. Without loss of generality, we will assume that I C (—, ) and
seek to characterize how well the function f, with its domain restricted to [—m, ],
can be approximated using d L measurements of this form for d frequencies w at
each of L shifts ¢. Toward that end, we present two algorithms which can provably
approximate any such function f (belonging to a general regularity class defined below
in Definition 1.4) up to a global phase multiple using spectrogram measurements
of this type resulting from two different types of masks m. As we shall see, both
algorithms ultimately work by approximating finitely many Fourier series coefficients
of fli-rx1!

Inverse problems of this type appear in many applications including optics [31],
astronomy [13], and speech signal processing [6, 17] to name just a few. In this paper we
are primarily motivated by phaseless imaging applications such as ptychography [27],
in which Fourier magnitude data is collected from overlapping shifts of a mask/probe
(e.g., a pinhole) across a specimen and then used to recover the specimen’s image.
Indeed, these types of phaseless imaging applications directly motivate the types of
masks m : R — C considered below. In particular, we consider two types of masks m
including both (i) relatively low-degree trigonometric polynomial masks representing
masking the sample f with shifts of a periodic structure/grating, and (ii) compactly
supported masks representing the translation of, e.g., an aperture/pinhole across the
sample during imaging. Note that first type of periodic masks are reminicent of some
of the Coded Diffraction Pattern type measurements for phase retrieval analyzed by
Candes et al. in the discrete (i.e., finite-dimensional f and m) setting [9, 10]. (See
Section 1 of [26] for a related discussion.) The second type of compactly supported
masks, on the other hand, correspond more closely to standard ptychographic setups
in which Fourier magnitude data is collected from small overlapping portions of a
large sample f in order to eventually recover its global image.

2
+ No.¢- ey

1 Given f iR — C,let f|[_z x) be f with its domain restricted to [—7, 7]. Note that the Fourier

transform of a function f € L%(R) with support in (—m, ) yields, when evaluated on the integers,
the Fourier series coefficients of f|[_z 7] up to a 27 factor. Using this relationship, we aim herein to
approximate such functions on [—, 7] using trigonometric polynomials. In a minor abuse of notation
motivated by this strategy, we will use f to refer to two related objects in this section: f will refer to both
the suitably renormalized Fourier transform of f as a function on IR, and, when restricted to Z, to the
Fourier series coefficients of f|[_5 ] defined as per (9).
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Although a number of algorithms exhibiting great empirical success were designed
decades ago for phaseless imaging, e.g., [12, 16, 17], the mathematical community
has only recently begun to undertake the challenge of designing measurement setups
and corresponding recovery algorithms with provable accuracy and reconstruction
guarantees. The vast majority of those theoretical works, which propose and analyze
numerical algorithms, have only addressed discrete (i.e., finite-dimensional) phase
retrieval problems, (see e.g., [5, 6, 9, 10, 15, 19]) where the signal of interest and
measurement masks are both discrete vectors and where the relevant measurement
vectors are generally random and globally supported. (We do however note that there
has been a large body of work (such as [1, 2, 28]) on the non-algorithmic aspects of
phase retrieval in the continuous setting. For an overview of this work, please see [23]
and the references within.)

In this paper, we develop a provably accurate numerical method? for approximating
smooth functions f : R — C from a finite set of Short-Time Fourier Transform
(STFT) magnitude measurements. Though there has been general work concerning the
uniqueness and stability of reconstruction from STFT magnitude measurements in this
setting (see, e.g., recent work by Alaifari, Cheng, Daubechies, and their collaborators
[3, 11]), to the best of our knowledge, no prior work exists concerning the development
or analysis of provably accurate numerical methods for actually carrying out such
reconstructions from a finite set of such measurements. Perhaps the closest prior work
is that of Thakur [29], who gives an algorithm for the reconstruction of real-valued
bandlimited functions up to a global sign from the absolute values of their point
samples, and that of Grochenig [18], who considers/surveys similar results in shift-
invariant spaces. Other related work includes that of Alaifari et al. [4], which proves
(among other things) that one can not hope to stably recover a periodic function up
to a single global phase using a trigonometric polynomial mask of degree p/2, as
done below, unless its Fourier series coefficients do not vanish on any p consecutive
integer frequencies in between two other frequencies with nonzero Fourier series
coefficients. This helps to motivate the function classes we consider recovering here.
(In particular, if a function f satisfies Definition 1.4 below, then any strings of zero
Fourier series coefficients in { f (n)},e7 longer than a certain finite length must be part
of an infinite string of zero Fourier coefficients associated with all frequencies beyond
a finite cutoff.) We also refer the reader to [21] and [11] for similar considerations in
the discrete setting.

1.1 Problem Setup and Main Results

Letm, f : R — C be Ck_functions for some k > 2, d be an odd number, and let
K and L both divide d. Furthermore, let D = {—%, 50,00, %}, and choose
Q, L' € Dwith |Q2] = K and |£'| = L. Finally, let Yg 1 be the K x L measurement

2 Numerical implementations of the methods proposed here are available at https://bitbucket.org/charms/
blockpr.
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matrix defined by

2

2 .
(Yk.L)ow.e:= ‘/R S xm (x - 77[({) e x| + nw.e, ()

for all (w, £) € Q x L', where g 1, = (1w,¢) (w,0)c0x £’ is an arbitrary additive noise
matrix on the acquired samples. The goal of this paper is to begin to address the
following question.

Question 1.1 Under what conditions on f, m, 2, and L' can we produce an efficient
and noise robust algorithm which provably recovers f from the K x L matrix Yk |,
of acquired measurements?

In order to partially answer this question, we will assume that f satisfies aregularity
assumption defined below in Definition 1.4 and also that one of the following two
(mutually exclusive) assumptions holds:

Assumption 1.2 f is compactly supported with supp(f) C (—m, ) and m is a
trigonometric polynomial given by

p/2 )
mx) =Y mp)er
p==p/2
for some even number p < d/2 and some in(—p/2),...,m(0),...,m(p/2) € C.

Assumption 1.3 Both f and m are compactly supported with supp(f) C (—a, a) and
supp(m) C (—b, b) for some a and b such thata + b < 7.

We will introduce a four-step method which relies on recovering the Fourier coef-
ficients of f. Our first step is to carefully discretize the problem. Rather than simply
constructing a vector from pointwise samples, our discretization step is based up
approximating the mask m restricted to [—m, 7] by a function with finitely many
nonzero Fourier series coefficients. Therefore, we effectively regard the mask as being
compactly supported in the frequency domain. As mentioned above, several previous
works, including [4, 11, 21], have noted that this implies that the recovery of f is
impossible if f has many consecutive Fourier coefficients which are equal to zero
followed by nonzero Fourier coefficients at higher frequencies. Moreover, if there are
many consecutive small Fourier coefficients followed by larger coefficients at higher
frequencies, the problem is inherently unstable. Therefore, we will remove such patho-
logical functions from consideration by assuming that our function f is a member of
the following function class for a suitable choice of 8. This choice of g will depend
on whether f and m satisfy Assumptions 1.2 or 1.3, respectively.

Definition 1.4 Let f € L%(R) with supp(f) C (—m, ). Let B be a positive integer
andlet Dy, := MaX;e7 s m—n|<p/2 |f(m)| foralln € Z. Wesay that f has 8 Fourier
decayif D,, > D,y whenever |n| < |n’|. Additionally, fork > 1, we shall let C* denote
the set of all compactly supported functions f : R — C with supp(f) C (—m, )
that are C¥-smooth and have 8 Fourier Decay.
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In particular, we note that if |f(n)| is decreasing in |n|, then the conditions of
Definition 1.4 are automatically satisfied for any 8. We also note a useful property of
this function class, which follows immediately from the definition, in the following
remark.

Remark 1.5 Suppose f has g Fourier decay for some integer 8, and let a, n € Z with
la] < |n|. Then, if B is odd, the string of 8 consecutive integers centered around
a contains an integer m such that |f(m)|z |f(n)|. Similarly, if B is even, then the
string of B — 1 consecutive integers centered around a contains an integer m such that

|Fm)|= 1 F ).

We will show that functions satisfying Definition 1.4 can be reconstructed from
a matrix Y, whose entries Y,, ¢ are defined as in (1), using the following four-step
approach:

1. Approximate the matrix of continuous measurements Y, defined in terms of func-
tions f and m, by a matrix of discrete measurements T defined in terms of vectors
corresponding to the first s Fourier coefficients of f and the first r coefficients of
m.

2. Apply a discrete Wigner distribution deconvolution method [26] to recover a por-
tion of the Fourier autocorrelation matrix XX*, where X is a vector whose entries
approximate the Fourier coefficients of f.

3. Recover X via a greedy angular synchronization scheme along the lines of the one
used in [20].

4. Estimate f by a trigonometric polynomial with coefficients given by X.

The details of step 2 are quite different depending on whether f and m satisfy Assump-
tions 1.2 or 1.3. However, we emphasize that the other three steps of the process are
identical in either case. The result of this approach is two algorithms which allow for
the reconstruction of f under either Assumptions 1.2 or 1.3, as well as accompany-
ing theoretical results providing convergence guarantees. The following theorems are
simplified variants of our main results Corollaries 4.2 and 4.3 presented in Sect. 4.
Details on how to deduce these results from Corollaries 4.2 and 4.3 are provided in
Sect. 4.

Theorem 1.6 (Trigonometric Polynomial Masks) Let k and p be integers with k > 5
and p even. Let K = d > 2p + 6, and let L divide d with2 + p < L < 2p. Let
Y. 1 be the d x L measurement matrix defined in (2) with Q and L' chosen to be as
in (6). Then there exist degree p /2 trigonometric polynomial masks m and an efficient
numerical algorithm (described in detail by Algorithm 1) such that for all f € C’; 2
this algorithm outputs a trigonometric polynomial f,(x) guaranteed to satisfy

2 N2 g
< Cs _ ’
L2(-m.x]) — f,m< <d> + _L1/2 ”nd,L”F)

where g 1, is the d x L additive noise matrix defined in (2), and C ¢ ,,, is a constant
only depending on f,m, and k.

e f - 1|

min
6€[0,2m]
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Theorem 1.6 guarantees the existence of periodic masks which allow the exact
recovery of all sufficiently smooth f as above as d — oo in the noiseless case
(i.e., when 54y, = 0). In particular, it is shown that a single mask m will work
with all sufficiently large choices of d as long as d has a divisor in [p + 2, 2p].
Furthermore, Theorem 1.6 demonstrates that Algorithm 1 is robust to small amounts
of arbitrary additive noise on its measurements for any fixed d. We note here that the
d? term in front of the noise term Inq.1 1l F is almost certainly highly pessimistic, and
the numerical results in Sect. 5 indicate that the method performs well with noisy
measurements in practice. We expect that this @> dependence in our theory can be
reduced, especially for more restricted classes of functions f that are compatible with
less naive angular synchronization approaches than the one utilized here. (See, for
example, recent work on angular synchronization approaches for phase retrieval by
Filbir et al. [14].) Finally we note that Theorem 1.6 may also be applied to masks m
obtained by multiplying a trigonometric polynomial by 1[_3 3], the characteristic
function of the set [—37, 37]. Indeed, given that f is itself compactly supported, any
support restrictions on the mask 72 which leave the support of f entirely contained
within the support of all the utilized shifts of 7 will not change our measurements (2).
This suggests that periodic masks whose physical extent includes the sample being
imaged may be useful for phaseless imaging in practice.

Focusing on the total number of STFT magnitude measurements (2) used by Algo-
rithm 1, we can see that Theorem 1.6 guarantees that KL < 2dp will suffice for
accurate reconstruction when the mask m is a trigonometric polynomial. In particular,
this is linear in d for a fixed p. As we shall see below, the situation appears more
complicated when m is compactly supported. In particular, Theorem 1.8 stated below
requires K L = d*/3 STFT magnitude measurements in that setting (and more gener-
ally, the argument we give here always requires K L > Chd?, where C is an absolute
constant, and b is the support size of the mask as per Assumption 1.3). Before stating
Theorem 1.8, we will introduce the following function class.

Definition 1.7 For a € (0,7 — 3/4) and k > 4, let éﬁyﬁ be the set of all compactly

supported functions f : R — C with supp(f) € (—a, a) that are C¥-smooth and
have B Fourier decay.

Theorem 1.8 (Compactly Supported Masks) Leta € (0, t—3/4),b =3/4, K =d/3,
and fix d = L to be a multiple of three large enough that all of the following hold:
B < [db/2r1—1/2,s =r =[db/2n]| <d/8—1,and5d /21 < § = |db/w] < d /4.
Let Yk .4 be the K x d measurement matrix defined in (2) with Q2 and L' chosen to
be as in (6). Then, there exists an efficient numerical algorithm (described in detail in
Algorithm 2), such that for any compactly supported mask m with supp(m) C (—b, b)
and po > 0 [see (36) and (13) for the definition of ;] the trigonometric polynomial
fe(x) output this algorithm is guaranteed to satisfy

‘Bﬁef_fe

min
6el0,27]

2 1 Ik.all 1\
SCf,m( k+ Kalr (1
L2([~7,7]) 120min(W)d*  120min (W) d

forall f € Cl’fﬁ where C , is a constant only depending on f,m, and k. Here
omin (W) denotes the smallest singular value of the (2(d /3—|3d /4w ])—1) x [db /27 ]
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partial Fourier matrix W defined in Sect. 3.2 and g q is the K X d additive noise
matrix defined in (2).

Theorem 1.8 demonstrates that sufficiently smooth functions f can be approximated
well for measurement setups and masks having 1, and oy (W) not too small. Further-
more, Proposition 3.4 demonstrates that masks exist for which p, scales polynomially
in d (independently of f and k). It remains an open problem, however, to find a single
compactly supported mask m which will provably allow recovery for all choices of
d, as well as optimal constructions of such masks more generally. Nonetheless, our
numerical results in Sect. 5 demonstrate that Algorithm 2 does indeed work well in
practice for a fixed compactly supported mask and that the mask we evaluate has
reasonable values of p; for the range of choices of d evaluated there.

1.2 Notation

In this section, we introduce the most essential notation used throughout the paper.
We will also provide a table detailing the notation introduced in each chapter at the
end of this chapter.

We will denote matrices and vectors by bold letters. We will let M; denote the j-th
column of a matrix M and, if x and y are vectors, we will let

X
xoy and -
y

denote their componentwise (Hadamard) product and their componentwise quotient.
For any odd number 7, we will let

be the set of n consecutive integers centered at the origin. In a slight abuse of notation,
if n is even, we will define [n].:=[n + 1], so that in either case [n]. is the smallest
set of at least n consecutive integers centered about the origin. We will let d be an odd
number, let K and L divide d, and let

D:=[d]., K:=[K]., and L:=[L]..

For ¢ € Z,welet Sy : C¢ — C4 be the circular shift operator defined for x = (x p) peD
by

(SeX)p = Xpts 3)
where the addition p + ¢ is interpreted to mean the unique element of D which is
equivalent to p + £ modulo d.

If K and L are integers which divide d, and M = (M ¢)k ¢ep is ad x d matrix, we
will let Mk 1, be the K x L matrix defined by effectively subsampling M at equally

Birkhauser
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spaced entries. That is, for k € K and £ € L, we let
(MK, L)k,¢ = My a ga. 4)

For the sake of notational convenience and ease of analysis, we will often consider
our K x L measurement matrix Yk z in (2) utilized herein to be defined in terms of
a subsampling operation applied to a larger d x d matrix Y of potential samples in
exactly this way. That is, let Y have entires given by

2

5 27 .
(Y),e:= ‘/ fom (x - —€> e x| + Nur, (5)
& d

for all w, ¢ € D. Then, we will consider Yk ; to be defined via (4) as a subsam-
pled version of a larger matrix of potential samples Y. Note that is equivalent to the
measurements defined in (2) with Q and £’ chosen to be

Q= (wd /K)o and £ := {€d/L) e - ©

Remark 1.9 Note that defining Yk ;, via (2) with Q2 and £’ as per (6) is only equivalent
to subsampling a larger potential sample matrix Y above via (4) if one ignores the
noise 1, ¢ on the unsampled entires of Y. Indeed, with slight abuse of notation, and
for consistency, we will use this subsampling notation (4) even when referring to a
K x L noise matrix. However, there is no subsampling process for noise assumed/used
herein, and the notation refers exclusively to the dimensions of the noise matrix when
used [with the entries of the noise matrix our algorithms actually utilize defined as per
(2) with Q and £’ chosen as in (6)].

We let Fq be the d x d Fourier matrix with entries given by

(Fy) 1 —2rijk

P = — d
d)j.k d e
for j, k € D, and similarly let Ff, and Fg be the L x L and K x K Fourier matrices
with indices in £ and K, respectively. Finally, we will often use generic constants
whose values change from line to line, but whose dependencies on other quantities are
explicitly tracked and noted. These constants will be denoted by capital C and have
subscripts that indicate the mathematical objects on which they depend.

Birkhauser
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Notation

Notes

Basic notation
M;

[n]e

D =ld]c

K =I[K]c

L= [L]c

Mk L

Se

Fq

xX:=Fgx

Y

Y.L

K.

Cp
5k

é

f

Introduced in Chapter 2
m(x)
V4
n
Py
R:=lrle, S:=[s]c
T

x:=(xp)pep

y:z(yp)peDs
Z::(Zp)peD

T

Introduced in Chapter 3
E

E

T

1231

n2
Omin ()
T
R(M)

j-th column of a matrix M

Set of n consecutive integers centered at the origin

For odd d

For odd K dividing d

For odd L dividing d

K x L sub-matrix of M = (My, ¢) ¢eD; see (4)

Circular shift operator; see (3)

d x d Fourier matrix

Discrete Fourier transform of a vector x

Finite set of noisy spectrogram measurements; see (5)

K x L measurement matrix; see (2)

K x L additive noise matrix; see below (2)

Set of all compactly supported C k_smooth functions f:R—>C
With supp(f) C (—m, ) and B Fourier Decay

Set of all compactly supported Ck-smooth functions fiR—>C
With supp(f) € (—a, a) and B Fourier decay

Either suitably renormalized Fourier transform of a function f
Or Fourier series coefficients of f|[_z 7] (see (9))

Mask m or 2m-periodic extension of m

Matrix with noisless measurements; see (7)

Additive noise matrix with Y = Z + ¢

Fourier projection operator for a set A C Z; see (11)

For odd numbers r, s, and d withr +5 < d

Matrix of measurements truncated by Fourier projection; see (12)

2
xpi=Ps f (32)

2.
yp:=Prm (77‘11p>

2mp
p=m(~g

Approximation of T depending on z instead of y; see (15)

Total error matrix, i.e. E=Y - T = (Z -T) + 3
E::FLEK,LTFIE

Analog to E based on Ti{, L see (16)

Mask-dependent constant under Assumption 1.2; see (22)
Mask-dependent constant under Assumption 1.3; see (36)
Smallest singular value of a matrix

Restriction operator, Tic (M);; = M; ; for |i — j| <« — 1 and O else
d X (2¢ — 1) matrix with entries defined by R(M); j = M; ;4
Hermitianizing operator; see (30)

Reshaping operator with (A(M)); j = M; j—;

2k — 1) x (2s — 1) matrix for s < 2k — 1 with

Cot =Tt 0 @n?dFa@o S_2)w)”"

Matrices with B = C + D defined in (39)

(2 — 1) x s partial Fourier matrix with entries W; = (Fq) j &

) Birkhduser
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Notation Notes

Introduced in Chapter 4

Ty(XX*) =A+N (see (44)) depending on Assumptions
Under Assumption 1.2:
y =k and A:=H (X) and N:=H (N)
With X and N defined in (27) and (28)
Under Assumption 1.3:
y=2s—1land A:==H(A(WTC)) and N:=H(AW'D))
Where W is the pseudoinverse of W

fe Trigonometric polynomial approximating f’; see (48)

2 Discretization

Letm, f : R — C be C*_functions for some k > 2 such that supp(f) € [—m, ],
and assume that either Assumptions 1.2 or 1.3 holds. We will define m to be a periodic
function which coincides with m on [—m, 7r]. Specifically, we let

m(x) if Assumption 1.2 holds,

m(x) =
0 Y nez(x +2mwn) if Assumption 1.3 holds.

As in Sect. 1, let D be the set of d consecutive integers centered at the origin, and
define Z = (Z, ¢)w.¢eD to be the d x d matrix with entries given by

2 .
Zooi= ’/ fm (x — —nﬂ> e Mdx
R d

Our goal is to recover f from the matrix Y = (Y, ¢), ¢ep of noisy measurements
given by

2

Yo o:=Zy + Mo,

where § = (w,¢)w ¢ep 1s an arbitrary additive noise matrix. Since the support of f
is contained in [—s, 7t ], we note that

2

4 . 2 -
Zot = ‘ f(x)m (x — 75) e M Pdx @)

Furthermore, under either Assumptions 1.2 or 1.3, we note that we may replace m
with m in (7), i.e.,

T 2

2w _:
f(x)m <x — 7£> e MPdx (8)

Za),l = ’

Birkhauser



Journal of Fourier Analysis and Applications (2023) 29:8 Page 11 of 45 8

Under Assumption 1.2, this is immediate since m(x) = m(x) by definition. Under
Assumption 1.3, we note that

supp(m —m) C (—oo, b — 2w ] U [2w — b, 00)

and that |%| < g for all £ € D. Therefore, we have that
2 2
m (x— %E) —m(x— 7716) =0 forall |x|] <m —b.

As a result, the assumptions that the support of f is contained in (—a, @) and that
a < — b imply that

T - 27'[ 27'[ —ixw _
/_nf(x)<m(x—7ﬂ)—m<x—7€))® dx =0

and so (8) follows.
For any C2-smooth function g : R — C, we will define

- 1 [7 s
g(n):=—2 / g(x)e " dx )
T J—n

for all n € Z, and note that, if g is 2 -periodic, we may use Fourier series to write

g(x) = gme. (10)

nez

We also note that, if g is not 2w -periodic, but its support is contained in (—m, ),
then (10) still holds for all x € (—m, 7r) since we may view {g(n)},ez as the Fourier
coefficients of the periodized version of g. For any set A C Z, we define P 4 to be the
Fourier projection operator given by

Pag(x):="Y_ gne"". (11
neA

Now, let r, s, and d be odd numbers with r + s < d. Let R:=[r]., S:=[s]., and
D = [d]. be the sets of r, s, and d consecutive integers centered at the origin. Let
T:=(T,,¢)w ¢ep denote the matrix of measurements obtained by replacing f with
Ps f and m with Prm in (8), i.e., the matrix whose entries are given by

2

T 27 i
Twio:i= Ps f(x)Prm | x — 7( e dx (12)
-7

If Assumption 1.2 holds, we will assume that » > p + 1 which implies Prm(x) =
m(x).
The following lemma provides a bound on the £°°-norm of the error matrix Z — T.

Birkhauser
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Lemma 2.1 Letr, s, and d be odd numbers withr +s < d, and letm : R — C and
f : R — C be C*-smooth functions for some k > 2. Then, under Assumption 1.2, we

have
1 k—1
1Z —Tloo <Ctm (;) ,

and, under Assumption 1.3, we have

I1Z — Tl < cf,m( G)H " (%)H )

In either case, C ¢ ,, € R is a generic constant that depends only on f, m, and k
(and, in particular, is independent of s, r and d).

To prove Lemma 2.1, we need the following auxiliary lemma whose proof is clas-
sical. In particular, in the first inequality of Lemma 2.2, it is straightforward to check
that one may choose Cy to be [|g|la(r):= Zwez |g ()|, which is finite since Dirich-
let’s theorem implies that the Fourier series of a C! function is absolutely summable.
The second inequality follows by verifying that |g(w)| < lg® |1 and summing
over w > (n+ 1)/2. We also note that Lemma 2.2 can be applied both to 27 -periodic
functions and to functions whose support is contained in (—, 7).

Lemma2.2 Letk > 2, andletg : R — Cbea Ck-smooth function such that (10)
holds for all x € (—m, ). Let n > 3 be an odd number, let N':=[n]., and let A be
any subset of 7. Then, there exists a constant depending only on g and k such that

k—1
”PAg”LOO([f?T,JT]) =< Cg and ”g — PNg||LOO([7ﬂJT]) < Cg (;l) ,

where P4 and Pns are the Fourier projection operators defined as in (11).

The Proof of Lemma 2.1 We note that the measurements given in (8) and (12) may be
written as

2 2
Za),E = |Mw,l| and Tw,E = |Uw,€| s

where

g 2n —ixw
M, = fx)m x—7€ e dx and

—TT

-7

g 27 —ixw
Uyr:= Psf(x)Prm | x — 7( @ dx.
Lemma 2.2 implies
| PrmllLo(—n,zp) < Cm and ||Psfllreoq—nxzp < Cy.
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Therefore,
|Uw,2| =< 27[”PRm”LOO([—JT,H])”PSf”LOC([—IT,JT]) =< Cf,m~

Next, letting =270 /d, we note that

My —Uype = f (f(x) - PSf(x))m(x _ Z)(E—flwxdx

—TT

+ /n Psf(x) (m(x —0) — Prm(x — g)) e—i0x gy

—7T

Therefore, by Lemma 2.2 and the triangle inequality, we get

k—1
1
|Mw,(f - Ua),£| = Cf,m( <;) + ”m - PRm||L°C([7r,n]))~
Thus, we may use the difference of squares formula to see

|Za),€ - Tw‘él = (|Mw,l| + |Uw,€|)||Mw,l| - |Uw,5||
=< (2|Uw,l| + |Ma),l - Uw,(|)|Ma),K - Uw,l|

1 k—1
= Cf,m<1 + <;> + |lm — PRm||L°°([n,7r]))

: ((;) + llm — PRm”LOO([—;T,n]))-

Under Assumption 1.2, we have ||[m — Prm||1o(-7,7]) = 0, and thus,

1 k—1 1 k—1 1 k—1
|Zw,€ - Ta),€| =< Cf,m<1 + (;) ) <;> =< Cf,m (;) .

Likewise, under Assumption 1.3, Lemma 2.2 implies ||m — Prm|po(-rz) =<
1\k—1
Cn (%) . andso

7

Algorithms 1 and 2 rely on discretizing the integrals used in the definitions of our
measurements. Towards this end, we define three vectors X:=(xp) peD, ¥:=(Vp) peDs

Birkhauser



8 Page 14 of 45 Journal of Fourier Analysis and Applications (2023) 29:8

and z:=(zp) pep by

. 27 p . 2w p _ 2w p
Xp.—PSf 7 , yp.—PRm 7 s and Ip=m T . (13)

We note that under Assumption 1.2, we have Prm(x) = m(x) and therefore y =
z. Under Assumption 1.3, we have that supp(m) N [—m, w] € (—b, b). Therefore,
supp(z) < [§ + 1], where 8:=|_%dj. The following lemma shows that the integral
used in the definition of T can be rewritten as a discrete sum. Please see Appendix A
for a proof.

Lemma23 Let x = (xp)pep and 'y = (yp) peD be defined as in (13). Then, for all
weD, Lel, and I = 27;—5, we have that

g B ) 2 .
/ Psf(x)Prm(x — f)e " dx = Fn > xpypge Ter/d,
o peD

and as a consequence,

. —ZT1wp
To=—7 Y Xpypte

peD

(14)

The matrix T depends on the vector y which is obtained by sampling the trigonomet-
ric polynomial Prm. By construction, y is not compactly supported, i.e., its nonzero
entries are not contained in interval which is short relative to the length of the vec-
tor (even under Assumption 1.3). In Sect. 3, we will apply a Wigner Deconvolution
method based on [26] to invert our discretized measurements. In order to do this,
we will need to use the vector z which is obtained by subsampling m rather than
Prm. (By construction, z will be compactly supported under Assumption 1.3, and
under Assumption 1.2, we have y = z and so this makes no difference.) This moti-
vates the following lemma which shows that T is well-approximated by the matrix
T = (Ta/)’e)w’ee’p obtained by replacing y with z in (14), i.e.,

/ 4r’ 2riwp/d ?
Tow =z | D Xpap—ee MeP/d) (1)

peD

Lemma 2.4 Let T and T’ be the matrices defined in (12) and (15). Then, under Assump-
tion 1.2, we have

IT— T oo =0,

and under Assumption 1.3,

N
IT—Tlloo < Crom (;) .
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Proof Under Assumption 1.2, we have y = z. Thus by (14) and (15) we have T =
T’ and therefore the first claim is immediate. To prove the second claim, we will
assume Assumption 1.3 holds and use arguments similar to those used in the proof of
Lemma 2.1. Let

21 . 2 .
—2. d —2. d
Ut = - Z XpYp_e€ miwp/d  anq UL/M = E XpZp—t® miwp/d
peD peD

Then by Lemma 2.3 we have
2 2
Ty = |Ua),Z| and Tal),g = |U(:;,z| .
By Lemma 2.2 and the fact that m is a continuous periodic function, we see

IXlloo < I1P5fllLo(=771) < Cy,
I¥lloo < IPRM|ILoo(~7,7]) < Cim, and

I1Zlloo < llm|lLoo(—n,z7) < C.
Therefore,
|Uw,Z| + |U¢/U,/g| < Cf,m-

To bound |U,,,¢ — UC’M |, we may again apply Lemma 2.2, to see

1\ k!
Ut = U, | < 27|Xlloolly = Zlloo < Crlim — Prmll Lo (—z.21) < Cfom (;) .
Therefore, by the same reasoning as in the proof of Lemma 2.1, we have
1\ k-1
1T = Ty ol < (Unel +1U;, D (Uwe = Uy, D) < Crom (;) . o

3 Wigner Deconvolution

In this section, we will use a Wigner Deconvolution method based on [26] to recover
x from the matrix T’ defined in (15). For the sake of exposition, we briefly outline
this method as used in the discrete setting in [26] in the simple case where there is no
noise and no subsampling, i.e., 7,¢ = 0 and K = L = d. Under these settings, the
measurements considered in [26] took the form

Yie = |(Semg, x) |2,

for k, £ € D where the my are a sequence of measurement masks each of which are
obtained as modulations of a single base mask, i.e., (mg); = @2miik/dy ;- Given this
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setup, one may compute (see Lemma 7 of [26])3
Yo = d’(Fa(Xo S4X))¢(Fa(fi o Sem))e,

where X:=Fgx and m:=Fgm are the discrete Fourier transforms of x and m. Therefore,
under proper assumptions on m we have

= Y,
(Fa(® o S4R)) = ———————.
d3(Fa (M o Sm)),

Taking the inverse Fourier transform, we may compute x ° S_iX for all k. Therefore,
we have recovered the Four1er autocorrelation matrix xx since each X o S_kx is a
diagonal band of the XX %% .N oting that

we observe that the magnitudes of X, |X; |, are the square roots of the diagonal entries
of XX . Moreover, we may compute the phase differences of X, Arg(x;) — Arg(x;)
from the off-diagonal entries since Arg(?c\ifj) = Arg(x;) — Arg(x;). Since we only
aim to recover X up to a global phase, we may assumeArg(xy) = 0, and therefore we
have all the information we need in order to reconstruct X. Finally, we may then solve
for x via Fourier inversion.

Our method is based on taking the ideas discussed above and adapting them to our
more complicated setting, carefully accounted for measurement noise, discretization
error, and computational difficulties introduced from subsampling. In order to do this,
we let E be the total error matrix defined by

E=Y-T.
We note that E can be decomposed by
E=Z-T)+n,
where (Z — T) is the error due to discretization and » is measurement noise. Let K
and L divide d. Let Eg 1, and Tk’L be the K x L matrices obtained by subsampling
the columns of E and T” as in (4), and let let yg 1, be the K x L matrix of noise entries
on the sampled measurements. Similarly to [26], we introduce the quantities E and T

defined by

E:=F ExL'Fg and T:=Fp (T ) Fg. (16)

3 [26] used a different normalization of the Fourier transform than we use here, so their Lemma 7 will
have a different power of d.
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Since «/ZFL and VK Fk are unitary, we have

IElF = IFLEk L  FgllF < J;{_LHEK,LHF <NIZ =T + %MK,LHF
Therefore, Lemmas 2.1 and 2.4 imply that under Assumption 1.2 we have
3 1\ k! 1
IEllF < Crm (;) + ﬁ“”K,L”Fv a7

and that under Assumption 1.3 we have

. 1 k—1 1 k—1 1
E <Cr¢r - - _— . 18
IE|F < /,m<<s> +(r> )+mnnK,LnF (18)

It follows from Theorem 4 of [26] (restated in Appendix E as Theorem E.1) that

Teo=47%d ) Z(Fd (5‘\0 SqL—/Zs‘_\))WPK (Fd (’io SZ—qL/;)) + Eq

o) rfe]
(19)
472 _ _ ~
=Y Y (Falxo Sompk®), gy (Fa (20 So i)y + Ern
o2]. 1]
(20)

where, as noted in Sect. 1.2, o denotes the componentwise multiplication product and
S denotes the circular shift operator defined as in (3). In Sects. 3.1 and 3.2, we will
be able to use (19) and (20) to recover a portion of the Fourier autocorrelation matrix
XX*. (Note that [26] uses a different normalization of the discrete Fourier transform
and consequently (19) and (20) have different powers of d than the corresponding
equations there.)

3.1 Wigner Deconvolution Under Assumption 1.2
In this subsection, we will assume our mask 7 (x) satisfies Assumption 1.2, i.e., that it
is a trigonometric polynomial with at most p nonzero coefficients for some p < r —1.

We also assume that K = d, that L divides d, and that L = p+« forsome2 < x < p.
Since K = d, Eq. (19) simplifies to

fg,w =472d Z (Fd (3(\0 SqL_g§>> (Fd (/Z\o Sg_qL/Z_\>> + Eg,w.
w w

ool 2],
To further simplify this expression, we use the following lemma.
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Lemma 3.1 Assume the mask m(x) satisfies Assumption 1.2, that K = d, that L
divides d, and that L = p + k for some 2 <k < p. Then, if | —k <€ <k — 1 and
q € [%]L q # 0, we have

/Z\O SZ—qL/Z\ = O

Proof Since m(x) satisfies Assumption 1.2, and z is defined as in (13), we have
supp(z) C [p + 1].. Therefore, it suffices to show that for g € [%]C, q # 0, we
have p+1 <[ —qgL| <d—p—1.Wheng > 0,we have |{ —gL| = gL — £ since

{ < k < L. Thus we see
€—gqll=gqL—£>L—-k—-1)=p+1,
and

d
L1 p—kK

2

d d
[t —qgLl=qL—{< L—(I—K)=§— —lﬁz—lfd—p—l,

where in the last line we used the fact that p < d/2 by Assumption 1.2. The case
where g < 0 is similar. O

Lemma 3.1 implies thatif 1| —x < € <« — 1, we have

/Z\o Sg_qLZ =0

except for when g = 0. Thus,
E@=4ﬁd@a@o&&» @h@o&a)+fm)bmm05K—uﬂ)
w w

In orderuse (21) to solve for (Fd (’)Z oS_ (?))
w

This motivates us to introduce a mask-dependent constant defined by

,we must divide by (Fd (’io S[%)) )

w

.=  min F @‘S%» . 2
M“1 pISKl,qu‘< d ©9Op g (22)

Proposition 3.2 shows that it is relatively simple to construct a trigonometric polyno-
mial m(x) such that u is strictly positive. For a proof, please see Appendix B.

Proposition 3.2 Assume that m satisfies Assumption 1.2. Further assume

A8 (40
and
D S T R
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Then the mask-dependent constant ju defined as in (22) satisfies

1
oz g (R0

For the rest of this section, we will assume that 1 is non-zero. Therefore, we may
make a change of variables £ — —£ in (21) to see that

o | ((Toeo—E_,
(Fd (X ° SIZX))(U = 472d <(Fdf’ziuo S_e;);)w>

_ 1 < T,g’w ) 1 < E_to )
Am2d \ (Fg(Zo S_2))0/ 47d\(Fa(Zo S_iZ)).

forall 1 —x < ¢ <k — 1. Writing the above equation in column form, we have

o~ = 1 TZ[ 1 EZZ
Fd (X o ng) = 2 — - ) —
4n°d \Fq(Z o S_iZ) 4n°d \Fq(Z o S_iZ)

o o3 | !, | L
XoSX=—F, — )| - —F; —), (25
4red Fa(Zo S_iZ)) 4r=d FaZo S_iZ

where, as mentioned in Sect. 1, the division of vectors is defined componentwise and
M denotes the j-th column of a matrix M.
Let T : C?*4 — C?*4 be the restriction operator defined for M € C4*¢ by

M; ; if|i —jl <Kk —1,
0 otherwise.

Tc(M);; = {

Then, we may rewrite (25) in matrix form as
T (XX*) =X +N, (26)

where the matrices X = (X; ;); jep and N= (N,-,j),-’jep have entries defined by

| _1 17 O,
1 (F S el B ifli —jl<«x—1,
Xi,j — 4r2d ( d (Fd(’z\osi_j,i)>>[ | Jl - (27)
0 otherwise,
and
_q _1 EL . e
. (e ifli —jl<k—1,
Ni,j — 4m2d ( d (Fd(’z\oS,'_j’Z\)>>i | jl - (28)
0 otherwise.
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Forad x d matrix, M = (M; ;); jep,let RM) = (R(M); j)ieD, je[2c—1]. be the
d x (2k — 1) matrix with entries defined by

R(M); j =M.
Note that the columns of R(M) are the diagonal bands of M which are near the main
diagonal, and that in particular, the middle column, column zero, is the main diagonal.

Since N is a banded matrix whose nonzero terms are within « of the main diagonal,
we see

INlIlF = IRN)| .

Therefore, since \/LEF(;I is unitary, we may bound the £2-norm of the columns of R(N)
by

IR, | H ! F‘l( EL, )
= _
! dn2d * \Fy(ZoS_2)
A
< 1 E_j _
T And' 2| Fy(Zo S_7)

2

2

<— E" .|,

where w1 is the mask-dependent constant defined in (22). Therefore, by (17) with
K = d, we have

8 8 1 -
INllF = IRMN)IIF < CWIIEIIF

=C l 1 k_1+ 1 ma,Lll (29)
— f’mdl/zlbl,] s m nd,L F |-

Let H : C4*? — C?*4 be the Hermitianizing operator

M + M*
HM) = +T (30)

Since T, (xx*) is Hermitian, applying H to both sides of (26) yields

T (XX") = A +N, (31)
where
A:=H(X) and N:=H(N). (32)
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We note that by (29) and the triangle inequality, we have

- 1 Nt
NllFr <INl <Ctrm—7>—| | - — . 33
INllF < IINllF = v <<S> + m||’7d,L||F> (33)

3.2 Wigner Deconvolution Under Assumption 1.3

In this subsection, we assume f(x) and m(x) satisfy Assumption 1.3, i.e., that
supp(f) € (—a, a) and supp(m) < (—b, b) with a + b < m. Note that, by con-
struction, this implies that the vector z defined in (13) satisfies supp(z) < [§ + 1],
where § = L%J. We also assume that L = d, that K divides d and that K = § + «
for some 2 < k < §. Furthermore, we let s < 2« — 1.

Since L = d, Eq. (20) simplifies to

. 472 >
oo =22 S (Fa(x0 S0mpk), (Fa (20 Sumps?))_, + Ero

=nl

Furthermore, if |w| < k — 1, then by the same reasoning as in Lemma 11 and Remark
1 of [26], all terms in the above sum are zero except for the term corresponding to
p = 0. Therefore,

- 472 -
Tow= % (Fa (x 0 8,X)); (Fa (zo SyZ))_y + E¢ forall || <k —1. (34)

The following lemma is a restatement of Lemma 3 of [26], although we note that
our result appears slightly different due to the fact that we use a different normalization
of the discrete Fourier transform.

Lemma 3.3 For all £ and w, we have

(Fq (X 0 S,%)); = de?riot/d (Fd (’yzo S,&))

w

Applying Lemma 3.3 to (34), we see that
Ty = 4nd (Fd (io S_&)) (Fd (io S[z_‘» + Ep (35)
w w

for all |w| < k — 1. In order to solve for (Fd (520 S_gi_\>) , we need to divide by

O]

(Fd (’io S[z_\)) . This motivates us to introduce a second mask-dependent constant
w
given by

U= min
we2k—1]¢,0e[2s—1],

(ko (7057)) |

(36)
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Proposition 3.4 shows that, for any given d, it is relatively simple to construct a mask
m(x) such that u, is strictly positive. For a proof please see Appendix B.

Proposition 3.4 Assume that m(x) satisfies Assumption 1.3. Let z = (zp) pep be the
vector defined as in (13) by z, = m (27pr), and let § = I_%dj. Let§ < 8+ 1 and

assume that supp(z) = {n,n+1,...,n +45— 1} for some k < s < § + 1. Further
assume that

|2n] > 28] 2p11] (37)
and that
lZnt1] = lzng2l = - Mz, 511 > 0. (38)

Then the mask-dependent constant > defined in (36) satisfies

1
M2 > 2lelznllznﬂ—ll > 0.

Remark 3.5 Given any vector z = (z)) ,ep, One may construct, e.g., through spline

interpolation, a function m(x) such that m (27?7”) =zpforall p € D.

For the rest of this section, we will assume that p; is not equal to zero. Therefore,
we may make a change of variables £ — —£ in (35) to see that

(Fs (055)), = g (=)

_ 1 < T_g,w ) 1 ( E—K,w )
A2 d \ (Fg(Zo S_2)),/ 47°d\(Fa(Zo S_i2)w/

Now, recall that s < 2k — 1, and let B:=(B,, ¢), C:=(Cy, ¢), and D:=(D,, ¢) be
2k — 1) x (25 — 1) matrices with entries defined by

= = 1 T—Z 10}
By = (Fd (X ) SZX>> v Cot == S , and
® 4m%d \ (Fg(Z o S_2))0

-1 E—Z,w
Dy = —— — = (39)
A= \ (Fa(Z o S_i2))u
forw € [2k — 1], and £ € [2s — 1], so that
B=C+D.
Note that
D|f < Elr, 40
IDF < 47r2d,u2” lF (40)
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where 115 is the mask-dependent constant defined in (36).
Next observe that we may factor B = WV, where V:=(V i) jeS ke[2s—1]. 18 the s X

(25 —1) matrix with entries defined by V; ; = (XoS5iX); and W:=(W; 1) je[2c—1], keS
is the (2« — 1) x s partial Fourier matrix with entries W; = (Fq)  x. Since s < 2k —1,
we may let W:=(W*W)~!W* be the pseudoinverse of W and see
V=WC+WD.
Now, let A : C**@5=D s C4*4 pe the reshaping operator defined by
(AM))ij =M; .
Note that the columns of M are diagonal bands of A (M) with the middle column on
the main diagonal. By construction, we have Th,_1 (XX*) = A(V). Therefore, since
Trs_1(XX*) is Hermitian, we have

Tos—1(XX") = H(A(V)),

where H is the Hermitianizing operator introduced in (30). Therefore,

Tr—1(XX*) = A+ N, (41)
where
A:=H(A(W'C)) and N:=H(A(W'D)). (42)

Since H is contractive, (40) implies

1
INIF < [AWD)| = [WD||p < ———|

D|r < ————|E|lF,
Omin (W) 47'[2dll2‘7min W)

where opin (W) is the smallest singular value of W. Combining this with (18) yields

1 1 k—1 1 k—1 1
NiF<Crm——( (=) + —) +— ) (43)

4 Convergence Guarantees

In this section, we will provide convergence guarantees for Algorithms 1 and 2. Specif-
ically, we will prove Theorem 4.1 which guarantees that we can reconstruct f (x) from
a noisy Fourier autocorrelation matrix. Corollaries 4.2 and 4.3, which guarantee the
convergence of our algorithms, will then follow immediately from (31), (33), (41),
and (43), which are proved in Sect. 3.
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Algorithm 1 Signal Recovery with Trigonometric Polynomial Masks
Inputs

1. Trigonometric polynomial mask m satisfying Assumption 1.2.
2. Matrix Y = (Y, ¢) weD, te Of spectrogram measurements defined as in (2).

Steps
1. Define vector z = (@p)peD by 2p = m (277717) .
2. Letk =L — p,and for 1 —k <€ <k — 1, estimate

1 FLY Fg)_y
472 Ld? Fa@o S_i2) ’

Fa (’)Zo Se§) ~

Apply an inverse Fourier transform to estimate the vectors X o S[;

Organize these vectors into a banded matrix X = (X; ;); jep described as in (27).

Hermitianize X to obtain the matrix A = (4; ;); jeD as described in (32).

Estimate | f(n)| ~ ap = /[An.nl.

Forn € S = [s]¢, choose {ng}ézo according to Algorithm 3 (where ¢ < % is as in Algorithm 3).
Approximate

® N ANk w

-1
arg (f(”)) ~ap = Z arg (Ang+1,n@) .
=0

Output
An approximation of f given by
fo(x) = Z aneﬁa,leilnx.
nes

For the rest of this section, we will assume that there exists 1 < y < d such that
T,(Xx*) = A +N. (44)

Here, A = (A;,j); jep is a known approximation of the partial Fourier autocorrela-
tion matrix 7, (XX*) and N € C4*4 s an arbitrary noise matrix. We note that, under
Assumption 1.2, Eq. (31) shows that (44) holds with y = «. Similarly, under Assump-
tion 1.3, Eq. (41) shows that (44) holds with y = 25 — 1. We also remark that (33) and
(43) provide bounds on |N|| ¢ in these cases. We will also assume for the remainder
of this section that there exists 8 < y /2 such that f belongs to the class of functions
with B Fourier decay introduced in Definition 1.4.

By construction, the discrete Fourier transform of the vector x defined in (13)
satisfies

X, = f(n) foralln € S,

and so the square magnitudes of the Fourier coefficients of f lie on the main diagonal
of the matrix T}, (XX*). Therefore, we view a,:=./|A,, | as an approximation of |x},.

Birkhauser



Journal of Fourier Analysis and Applications (2023) 29:8 Page 25 of 45 8

Algorithm 2 Signal Recovery with Compactly Supported Masks
Inputs

1. Compactly supported mask m satisfying Assumption 1.3.

2. Matrix Y = (Y, ¢)wek,ceD Of spectrogram measurements defined as in (2).
Steps

1. Define vector z = (zp)peD by 2p = m (231717

2. Letk =K —4,andforl —k <w <k —1,1—5 <€ <s — 1 estimate

1 ((FdYTFKT)—z)

Fq (Xo S[§ ~ -
( ) An2Kd? \ (Fq@o S_i2))

3. Form the matrix C according to (39).
4. Compute V= W'C, where W = ((Fa)j k) je[2xc—1]c.kesS 18 the (26 — 1) x s partial Fourier matrix.
5. Apply reshaping operator A.
6. Hermitianize A(V) to obtain the matrix A = (4; j); jep as described in (42).
7. Estimate | f(n)| & an = /TAp.nl-
8. Forn € § = [s]c, choose {"5}1;5:0 according to Algorithm 3 (where ¢ < % is as in Algorithm 3).
9. Approximate

-1

arg (f(m) ~ on = Z arg (Angyy.ng) -
=0
Output

An approximation of f given by
fe) =) ane’ e,
neS

Algorithm 3 Entry Selection
Inputs

1. Vector of amplitudes a = (an),cp, an = /|An,nl.
2. Entryn € S = [s]c.

Steps

1. Choose ng = argmax,,c s an.

2. Let¢z =0.

3. While: |n — n;l > y (see (44)).
If:in > ng,letngy) < AGMAXy Ly g <n, 4y -
If:n < ng,letng 41 < arg MaXp, —yy <cm<n,—y+p m-
<« ¢+ 1.

4. ng < n.

Output
A sequence {ng}§=0, [ngr1 —ngl <2B,ng =n, ¢ < %
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More specifically, Lemma 3 of [20] shows that

—~ 2
an = 17" = 3INle. (45)

In addition to our estimate on the magnitudes of f (n), | f )| ~ ayn = JAnn,
we also need an estimate on the phase of each entry. In order to do this, we let ng =
arg max,, s a, and for n € D we construct a sequence of indices {ng, n1, ..., n; = n}
suchthat¢ < < andeachofthea, , are as large as possible subject to the constraints that
(1) |ng4+1 —nel < 2B and (ii) |ng41 —n| < |ng —n|. Full details on this construction are
provided in Algorithm 3. We note that while superficially it appears that Algorithm 3
needs to be run repeatedly for every n, upon inspection, it is clear that it will select the
same ny every time, except possibly for the last entry. Therefore, for computational
savings, one may first compute sequences going from ng to (d — 1)/2 and ng to
—(d — 1)/2. Then, one may use subsequences of these two longest sequences to
contruct sequences from ng to any intermediate n’s.

After constructing the sequence {no, ..., n; = n}, we then define
-1
an:=2arg (Angiring) - (46)
=0

To understand this definition, we let

-1
fo:=arg(f(no)) and 7= arg (KX )u,,.n) - (47)

=0

By construction, 7, = arg (f(n)) — 6o. Therefore
e 0 fn) = | Flm)le’™

for all n € S. (Note that ng does not depend on 7.) Since A is a noisy approximation
of (a portion of) XX*, we intuitively view a, as a noisy approximation of 7, (up to
a phase shift 6y). Lemma 4.5 will show that this intuition is correct when |f(n)| is
sufficiently large. Therefore, in light of (45), we define a trigonometric polynomial,
fe(x), which estimates f(x) by

fe@x)=) " aye e, (48)
neS

The following theorem shows that f,(x) is a good approximation of f(x).

Theorem 4.1 Assume that f(x) has B Fourier decay for some B < y /2. Forn € S,
let o), be defined as in (46), let a, = /Apn, and let f.(x) be the trigonometric
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polynomial defined as in (48). Then,

2 2k—2
- i 2 d 1
min ”(B f - f€||L2([77T,7T]) =< Cs ; ”N”OO + Cf ; .

0e[0,27]

Before proving Theorem 4.1, we recall that y = « under Assumption 1.2 and y =
2s — 1 under Assumption 1.3. Therefore, (33), (43), and the fact that |N||cc < |IN|F,
immediately lead to the following corollaries.

Corollary 4.2 (Convergence Guarantees for Algorithm 1) Lets +r < d, let K = d,
and let L divide d. Assume that f (x) and m(x) satisfy Assumption 1.2, that p < r —1,
and that L = p + « for some 2 < k < p. Then the trigonometric polynomial f,(x)
output by Algorithm 1 satisfies

160
QEI[I(I)HZI ”(B f fe”LZ([ 7,7])

sd3/? k—1 1 1\ 262
<Cr _ - —_— - ,
cern(Zn((8) e ggzman)+ ()

where 1 is the mask-dependent constant defined in (22). Moreover, if s > d /2, then

min ||
gl ]|| S - fe|| —r.))

1 1\ k=772 a2 1\ 262
< C — R — .

Corollary 4.3 (Convergence Guarantees for Algorithm 2) Let s +r < d, let L = d,
and let K divide d. Assume f (x) and m(x) satisfy Assumption 1.3 and let § = Ll;t—dj.
Further, assume that K = § + k for some 2 < k < § and that s < 2k — 1. Then the
trigonometric polynomial f,(x) output by Algorithm 2, satisfies

16
96%1121 ||<B f- fe”LZ([ —m,7])

d 1 k—1 1 k—1 1 1 2k—2
<Cim|l———=((-) +(-) +—= o :
o () C) s gimar) < () )

where |17 is the mask-dependent constant defined in (36). Moreover, if s, r > %, then

160
Ber[I(l)IIZl ”(B f fEHLZ([ —m,7])

1 412 2k—2
< C .
= ”"(mamin(W)bk-ldk T R oW Tl E (bd) )

In order to prove Theorem 4.1, we need the following lemma which provides us
with an estimate of [|e % Ps f — f. || L2(—m.x) as well as the uniform convergence
of Fourier series.
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Lemma 4.4 Assume that f(x) has B Fourier decay for some B < y /2. Forn € S, let
oy be defined as in (46), leta, = \/ Ay, and let f,(x) be the trigonometric polynomial
defined as in (48) by fo(x) =Y, c5 an®® . Then,

2 d\?2
) <Cs (—) N1l oc-
L([-m,7]) )4

In order to prove Lemma 4.4, we need the following lemma, which is a modification
o£ [20, Lemma 4]. It shows that «,, is a good approximation of t, for all n such that
| f (n)| is sufficiently large. For a proof, please see Appendix C.

HCE_MOPSf — fe

Lemma 4.5 Suppose that f has B Fourier decay for some B < y /2, and let L y be the
set of indices corresponding to large Fourier coefficients defined by

Ly={n€S8:|f(m)* = 48|N|o). (49)
Letn € Ly, and let T, and a,, be as in (46) and (47). Then

47d |Nlloo
v 1IfmP

|®ﬁf,1 _ ®ﬁan| S

The Proof of Lemma 4.4 Recall that X,, = f(n) for all n € S, and let X|s be a vector
of length s obtained by restricting X to indices in S. Define vectors u = (u,,),cs and

vV = (Up)nes by
Uy = aye’® and v, = |f(n)|eﬁ“".

By Parseval’s identity, we see

He—ﬁeo Ps f(x) — Zaneﬁ"‘"eﬁ""
neS

_ He—ﬁao Z Fnyeir — Z 1yl
neS neS
< VB [e s -],
2
<Vor H®7ﬁeoils — VHZ + 27 [u— v,
2

=11+ L.

L2([—m,7])

L2([—m,7])

To estimate I, we recall (45) and note

122 =2r Z'M” - v,1|2
nesS

. ~ . 2
—2y ’ane’w‘” — | f )@l
neS
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|xn|

nesS
< 675|INloo- (50)

Using Lemma 4.5 and the fact that |nBﬁT" — @ﬁ"‘"| < 2, we have

I} =27 ) | Fm)Plef™ — elon|?

nesS

<C Y |f<n>|2+CZ( ) INIZ, 1 F ()| 2
nGS\Lf nely

<Cs|Nlo+C Y (;) INlloo

nely

d\2
=Cs (—) INTo0s
14

where L  is the set of indices corresponding to large Fourier coefficients introduced
in (49). Combining this with (50) yields

2 d\2
X < Cs(—> IN/loo
L*([-m,7]) 14

as desired. O

H &1 ps £ (x) — Z @™ g
neS

Theorem 4.1 now follows readily via Lemmas 2.2 and 4.5

The Proof of Theorem 4.1 For all 6 € [0, 2], we have

®ﬁ9f(x) _ Z an®ﬁa,,eﬁnx

neS

L2 ([~m,7])

< e F(x) — e Ps £ (x) ‘ew Ps f(x) — apei®n i
‘ ! TN 2 m F@ g " L2([~7.7))
—1i6 iat, _inx
=17 () = PsfOiagomy + [ Psf0) = Y apeieis|
nesS LAt=m.7D
Thus, letting 6y = arg(f(no)). Then we get
min 0 £(x apeton e
6€l0,27] ‘ Fx) = Z L2([—7,7])
neS
S Ifx) = PsfO2q—rnry + H(E_wo Ps f(x) — Zanqew"en”x (D)
nesS ’
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By Lemma 4.4, we know that

H@‘“eo Psf(x) = ) ape™e™™ =Cs (;) Nl
neS

L2([—m,7])

Therefore, we conclude by applying Lemma 2.2 to see

2k—2
1
1f = PSFI2amny < 270 f = PSFlieonay < Cr (E) _

We will now finally prove Theorems 1.6 and 1.8.

Proof of Theorem 1.6 Apply Corollary 4.2 withs = [(d+ 1)/2]andr =d —s—1 >
d/2 — 2. The assumption that d > 2p + 6, implies that p < r — 1. Noting now that
k:=L — p > 2 and applying Proposition 3.2 for choices of m satisfying (23) with «
replaced by p (since p > «), we have that ul_l < C,,d for a mask-dependent constant
Ch. O

Proof of Theorem 1.8 We first note that § + (s + 1)/2 < 5d/16 < K < 10d/21 < 26.
Next, we apply Corollary 4.3 with s, r, §, and all other parameters set as above. Next,
we observe that W will be full rank given that it is a Vandermonde matrix. Therefore,
omin(W) > 0 will always hold. Finally, we note that, for any choice of d and b < 7w —a,
Proposition 3.4 guarantees the existence of a smooth and compactly supported mask
m with puy > 0. O

5 Empirical Evaluation

We now present numerical results demonstrating the efficiency and robustness of
Algorithms 1 and 2. All code is publicly available for the sake of reproducibility.*

5.1 Empirical Evaluation of Algorithm 1

We begin by investigating the empirical performance of Algorithm 1 in recovering the
following class of compactly supported C°°-smooth test functions,

J
=) a) ey ey (x = v)). (51)

j=1

Here J e N,a; € C,v; € [-m, 7], and &, ., denotes a C°°-smooth bump function
with &, ¢, (x) > 01in (c1,¢2) and &, ¢, (x) = O for x ¢ [c1, c2]. We may generate

4 Numerical implementations of the methods proposed here are available at https://bitbucket.org/charms/
blockpr.
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Test Function (Assumption 1, supp(f) C [—,7])

Trigonometric Mask (Assumption 1, p = 20)

—Re(rﬁ(a:))‘
- - Im(m(z))

10

f(z)

N

L[—Re(f(x))
- = Im(f(2))
: ‘ ok

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

(a) Test Function (with (b) Mask (Trigonometric Polynomial;
supp(f) € [, 7)) p = 20)

Fig. 1 Representative test function and mask satisfying Assumption 1.

such a bump function (see, for example [24, Chapter 2]) as follows:

x—61>7 Ex) = h(2—|x|) 52
2 —C1

sc'],cz(x) = é <_2 + 4

c h2—|x]) +h(x] = 1)
where
e x50
h(x) — 9 b
0, x <0.
For the experiments below, we set J = 4, ¢; = —n/5, ¢ = /5, and choose o

such that its real and complex components are both i.i.d. uniform random variables
U[—1, 1]. The shifts v; are selected uniformly at random (without repetition) from the
set {—Vmax + J (2Vmax/(2J — 1))}§i51 where vmax = 0.97 — max{|c1], |c2|} so that
supp(f) € [—m, w]. A representative plot of (the real and imaginary parts of) such a
test function is provided in Fig. 1a.

To generate masks satisfying Assumption 1 (see Sect. 1.1), we choose the Fourier
coefficients m from a zero mean, unit variance i.i.d. complex Gaussian distribution and
empirically verify that the mask-dependent constant (1 (as defined in (22) is strictly
positive. Figure 1b plots such a (complex) trigonometric mask for p = 20, where p+ 1
is the (two-sided) bandwidth of the mask. Table 1 lists the empirically calculated p{
values, and averaged over 100 trials) for such masks. The left two columns of the table
list w1 for a fixed discretization size (d = 211) and varying p; they show that p1 is
approximately constant for fixed d. The right two columns list 1 values for fixed p
and varying d; they show w1 decreases slowly with d (roughly proportional to 1/d).
This verifies that constructing admissible (i.e., with 1 # 0) trigonometric masks as
per Assumption 1 is indeed possible for reasonable values of d and p.

Finding closed form analytical expressions for the integral in (7) is non-trivial.
Therefore, we use numerical quadrature computations on an equispaced fine grid (of

) Birkhduser
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Table 1 Empirically evaluated 1¢1 values (mask constant) for Algorithm 1

d =211, p) 1 (Average over 100 trials) d, p =50) 1 (Average over 100 trials)
(211, 20) 1.957 x 1074 (111, 50) 4.825 x 1074
(211, 40) 1.704 x 1074 (223, 50) 1.560 x 1074
(211, 60) 1.563 x 1074 (447, 50) 6.199 x 1073
(211, 80) 1.500 x 10~4 (895, 50) 2.162 x 1072
(211, 100) 1.530 x 1074 (1791, 50) 8.247 x 1076

Fourier coefficients of mask chosen as i.i.d. complex standard normal entries. Left two columns show j1
values for fixed d, right two columns show 11 values for fixed p

10, 001 points) in [—m, 7] to generate phaseless measurements corresponding to (7)
under both Assumptions 1 and 2.

We now investigate the noise robustness of Algorithm 1. For the results shown in
Fig. 2a (where each data point is generated by averaging the results of 100 trials), we
add i.i.d. random (real) Gaussian noise to the phaseless measurements (7) at desired
signal to noise ratios (SNRs). In particular, the noise matrix g y, € R4*L in Sect. 3
is chosen to be i.i.d. A'(0, o2I). The variance o2 is chosen such that

2
I1Z]|%

SNR (dB) = 10logyg { -5
o

where Z denotes the corresponding matrix of perfect (noiseless) measurements. Errors
in the recovered signal are also reported in dB with

RN o 1f () = folxn)?
YN o1f ()2

Error (dB) = 101log;

where f and f, denote the true and recovered functions respectively, and x; denotes
(equispaced) grid points in [—m, 7], i.e. x; = —m +hi with h:=2m /N . Errors reported
in this section use N = 2003. MATLAB code used to generate these numerical results
is freely available at [30].

Figure 2a plots the error in recovering a test function using Algorithm 1 (for d =
257, p = 32,k = p—1and (2p—1)d total measurements) over a wide range of SNRs.
For reference, we also include results using an improved reconstruction method based
on Algorithm 1, as well as the popular HIO + ER alternating projection algorithm [7,
12, 25]. Refinements over Algorithm 1 included use of an improved eigenvector-based
magnitude estimation procedure in place of Step 6 (see [22, Section 6.1] for details),
and (exponential) low-pass filtering® in the output Fourier partial sum reconstruction
step of Algorithm 1. Figure 2b plots the execution time (in seconds, averaged over 100
trials) to recover a test signal using d L measurements, where d is the discretization size,

5 With filter order increasing with SNR; we used a 2nd-order filter at 10 dB SNR and a 12th-order filter at
60 dB SNR.
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Noise Robustness - Algorithm 1 (d = 257,p =32,k =p—1) Comp. Efficiency-Alg. 1 (p = min{(d — 5)/2,2|logy(d)]},x = p—1)
0
10 ——Alg. 1 | 10 HIO+ER (w/ filt)
—=—Alg. 1 (w/ refinements) —=—Alg. 1 (w/ refinements)
g of el HIO+ER (w/ filt) | - —-Alg. 1
= = g 107
£-10 &
F 2
£-20 g
E £ 102
£ 30 £
2 g
& -40 — = e T O(dlogy d)
107
-50
10 20 30 40 50 60 102 108
SNR (dB) Discretization Size (d)
(a) Noise Robustness (b) Computational Cost
Nuis(e) Robustness - Alg. 1 (d = 257, Ld := (2p — 1)d measurements)
—+-L =31
L =63
—~-10 F =p--L =127
g 10 p— S
S I S
2 20 P T T
2 ol . S
r.g > E N
3 ~s S
£ oy o T
£-30 P N .
= 40} ®
-50

10 20 30 40 50 60
SNR (dB)

(¢) Error vs. No. of Shifts

Fig. 2 Empirical evaluation of Algorithm 1. Note in a that the refined version of Algorithm 1 achieves
lower reconstruction errors than HIO+ER. In b one can also see that Algorithm 1 with no refinements is
much faster than HIO+ER thereby demonstrating its value as a provably accurate way to quickly initialize
such iterative methods

L =2p—1and p = min{(d —5)/2, 2|log,(d)]}. Both Algorithm I and its refined
variant are essentially O(d L), where dL is the number of measurements acquired,
with Algorithm 1 performing much faster than the HIO + ER procedure. Finally, we
note that reconstruction error can be reduced by increasing the number of shifts L
acquired (and consequently, the total number of measurements). Figure 2¢ plots the
error in reconstructing a test signal discretized using d = 257 points, k = p — 1 and
Ld = (2p — 1)d measurements for different values of p (and correspondingly L). As
expected, we see that noise performance improves as L increases.

For results utilizing the HIO + ER algorithm, we chose the zero vector as an initial
guess, although use of a random starting guess did not change the qualitative nature
of the results. As is common practice, (see for example [12]) we implemented the
HIO+ER algorithm in “blocks” of eight HIO iterations followed by two ER iterations in
order to accelerate convergence of the algorithm. Figure 3a—which plots the HIO+ER
reconstruction error (for the problem setting corresponding to Algorithm 1) against
the total number of HIO+ER iterations—illustrates the choice of these parameters. To
minimize computational cost while ensuring convergence, the total number of HIO +
ER iterations was limited to 30.

Birkhauser



8 Page340f45 Journal of Fourier Analysis and Applications (2023) 29:8

OEm)r vs Iteration Count — Alg. 1 (HIO+ER, 50dB noise) 5Error vs Iteration Count — Alg. 2 (HIO+ER, 50dB noise)
—o— (HIO,ER)=(10,0) —o— (HIO,ER)=(10,0)
—o (HIO,ER)=(8,2) 0 —o (HIO,ER)=(8,2)
g | g
= Z 5
g g
& 107 & .10
] g
2 8
£ £
25t 2715
Z Z
E £ 20
3 3
=20t o I
-25 x \:"'"’"-_--"-.Lu{,_mr-\
=
25 . L L . 30 . L L L .
0 20 40 60 80 100 0 50 100 150 200 250 300
No. of iterations No. of iterations

(a) Selection of HIO+ER Iteration  (b) Selection of HIO+ER Iteration
parameters for Algorithm 1 parameters for Algorithm 2

Fig. 3 Selection of HIO + ER parameters for Algorithms 1 and 2. The notation (HIO,ER)=(x,y) denotes
implementation of the HIO+ER algorithm in “blocks” of x iterations of the HIO algorithm followed by y
iterations of the ER algorithm. A total of 30 and 100 iterations were used respectively for the simulations
in Figs. 2 and 5 (in blocks of 8 HIO iterations followed by 2 ER iterations)

In summary, Algorithm 1 is significantly faster than the popular HIO+ER algorithm,
although the reconstruction error is a bit larger. This demonstrates a trade off between
speed and noise robustness. In practice, one might use a hybrid method in which
one first applies Algorithm 1 as a computationally efficient initializer before then
applying an iterative method such as HIO + ER. Alternatively, one could also use the
modified version of Algorithm 1. Our experiments show that this modified algorithm
is more accurate than HIO + ER while having nearly identical computational cost.
Additional numerical experiments studying the convergence behavior of Algorithm 1
(in the absence of measurement errors) can be found in Appendix D.

5.2 Empirical Evaluation of Algorithm 2

We next present empirical simulations evaluating the robustness and efficiency of
Algorithm 2. As detailed in Assumption 2 (see Sect. 1.1), we recover compactly
supported test functions with supp(f) € (—a, a) using compactly supported masks
which satisfy supp(m) C (—b, b), wherea+b < 7.Forexperiments in this section, we
choose b = 3/4 and a = 0.9(r — 3/4). The test functions are generated as detailed in
(51) of Sect. 5.1, as a (complex) weighted sum of shifted C°°-smooth bump functions,
but with a maximum shift of v,ax = a — b. A representative test function is plotted in
Fig. 4a. The corresponding compactly supported masks are generated as the product
of a trigonometric polynomial and a bump function using

p/2
mix) =& pp()- | D m(peth |, (53)

p=—p/2
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}‘egt Function — Algorithm 2 (supp(f) € (—(7 —3/4),7 —3/4))  Compactly Supported Mask-Assumption 2 (supp(m) C (—3/4,3/4))
5 T T T T T T 8 . . T T T T

. —Re(f(2)
L e mGe))| 6

2 AL

= T
O A [
I o[
Vil
2 PR A
‘I
I|

4 '

. —Re(m(z))
- - - Im(m(z))
—-=-Bump Function & 3,3/

e 2 -1 0 1 2 3 s 2 1 0 1 2 3
(a) Test Function (a = 7 — 3/4; (b) Mask
supp(f) C (—a,a)) (supp(m) C (—b,b) = (=3/4,3/4))

Fig.4 Representative test function and mask satisfying Assumption 2

Table 2 Empirically evaluated 1t values (mask constant) for Algorithm 2

(d =189, k) o (average over 100 trials) d,x =27) 1o (average over 100 trials)
(189, 3) 2.563 x 1073 (165, 27) 9.722 x 1075
(189, 10) 2873 x 1074 (223,27) 8.866 x 107>
(189, 31) 8.331 x 107 (495,27) 4.686 x 1075
(189, 94) 2.642 x 10719 (1045, 27) 2.448 x 1075

The left two columns show o values for fixed d, right two columns show o values for fixed «. Here,
§=k+lands =« —1

where &_j, 5 is the C°°-smooth bump function described in Sect. 5.1, and the term
in the parenthesis describes a (complex) 2b-periodic trigonometric polynomial. A
representative example of such as mask is provided in Fig. 4b with p = 16 and
the coefficients 7 chosen from a zero mean, unit variance i.i.d. complex Gaussian
distribution.

Representative values of the mask constant py [as defined in (36) and averaged
over 100 trials] are listed in Table 2. The first two columns list w, values for fixed
discretization size d, while the last two columns list 47 values for fixed « . In both cases,
we set K = 2k + 1 and ensure that K divides d. We note that « denotes the number
of modes used in the Wigner deconvolution procedure (Step 2) in Algorithm 2. Since
the masks constructed using (53) are compactly supported and smooth, we expect the
autocorrelation of their Fourier transforms (and the corresponding Fourier coefficients
of this autocorrelation) to decay rapidly. Therefore, we expect w2 to be small for large «
values; indeed, this is seen in the last row of Table 2 where the 1 value is essentially
zero when d = 189, k = 94. However, as the functions we expect to recover also
exhibit rapid decay in Fourier coefficients, we only require a small number of their
Fourier modes to ensure accurate reconstructions. Hence, small to moderate « values
suffice. As seen in Table 2, it is feasible to construct admissible masks (i.e., uy > 0)
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Noise Robustness - Algorithm 2 (d = 189,06 = 32,5 = § — 1, 5 = 29) Comp. Effcy-Alg. 2 (K =d/3,6 = (K +1)/2,5=0— 1,5 = —1)
I i i i T I HIO+ER (w/ filt)
102 |- Alg. 2
. or a.-Alg. 2 (w/ alt. implementation; post-processsed)
g ’g —s—Alg. 2 (w/ alt. implementation)
510t a
& 3
5 £ 10°
£ 0} : :
E . g
2 3ok 0% Teleliootinl 2 g
& A2 g,
—=—Alg. 2 (alt. implementation) 10
40 |-=-Alg. 2 (alt. implementation, post-processed)
HIO+ER (w/ filt)
10 20 30 40 50 60 10° 10°
SNR (dB) Discretization Size (d)
(a) Noise Robustness (b) Computational Cost

Fig.5 Empirical Evaluation of Algorithm 2. In Fig. 4a Algorithm 2 with alternate implementation and post-
processing (red dotted curve) demonstrates that using Algorithm 2 to initialize HIO + ER allows just 10
subsequent iterations of HIO + ER to converge to a more accurate approximation than 100 iterations of HIO
+ER with standard initialization (yellow dashed curve). In addition to achieving a lower reconstruction error,
Fig. 4b shows that the Algorithm 2 initialized version of HIO + ER is also faster than the standard initialized
version. The end result is that initializing HIO + ER with Algorithm 2 allows better reconstructions more
quickly than standard initialization does (Color figure online)

for such (d, «) pairs. Experiments have also been conducted with 7 chosen to be the
bump function £_; 5 and a (truncated) Gaussian, However, these experiments yield
smaller mask constants i>, which make the resulting reconstructions more susceptible
to noise. Selection of “optimal” and physically realizable compactly supported masks
is an open problem which we defer to future research.

We note that due to the equivalence of (34) and (35), the Wigner deconvolution step
(Step 2) in Algorithm 2 may be instead evaluated using (34). While theoretical analysis
of this equivalent procedure is more involved, it offers computational advantages
since it does not require solving® the Vandermonde system of Step 4 in Algorithm 2.
The corresponding ., values for this procedure also follow the qualitative behavior
in Table 2. This variant of Algorithm 2 is used in generating some of the plots in
Appendix D, while Fig. 5 provides a comparison of Algorithm 2 and this alternate
implementation.

We now study the robustness and computational efficiency of Algorithm 2. Fig-
ure Sa plots the error in recovering a test function (with each data point averaged
over 100 trials) for discretization size d = 189,66 = 32, x = § — 1, s = 29 and
d/3 total measurements over a wide range of SNRs. For reference, we also include
results using the HIO+ER alternating projection algorithm, as well as the alternate
implementation of Algorithm 2 (using (34) to implement the Wigner deconvolution
Step 2). As in Sect. 5.1, the alternate implementation of Algorithm 2 and the HIO+ER
implementations utilize (exponential) low-pass filtering. The HIO + ER algorithm is
implemented in blocks of eight HIO iterations followed by two ER iterations in order
to accelerate the convergence of the algorithm, with a total of 100 iterations used to
ensure convergence while minimizing computational cost (see Fig. 3b). Additionally,

6 We use the Iterated Tikhonov method (see [8], [26, Algorithm 3]) to invert the Vandermonde system in
Step 4 of Algorithm 2.
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we also provide results using a post-processed implementation of Algorithm 2 using
just 10 iterations of HIO + ER. Since this method only uses 10 HIO + ER iterations
(rather than 100), it has a lower overall computational cost than the pure HIO + ER
method. Therefore, in this context, we can view the proposed method as an initializer
which accelerates the convergence of alternating projection algorithms such as HIO
+ ER. Finally, Fig. 5b, which plots the execution time (in seconds, averaged over 100
trials) to recover a test signal, shows that the proposed method in Algorithm 2 and
its alternate implementation are computationally efficient, with all implementations
running in O(d K) time where dK is the number of measurements acquired. Overall,
similar to Algorithm 1, we see that Algorithm 2 is significantly faster than HIO + ER.
Moreover, the modified version which includes post-processing has slightly better
accuracy than HIO + ER while also having a slightly lower computational cost.
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Appendix A: The Proofs of Lemma 2.3
Proof Let g:=Ps f and h:=Prm, where Ps and Pp are the Fourier projection oper-

ators defined as in (11). Since g and h are trigonometric polynomials and R +S C D,
we may write

/ g(x)h(x — He gy

.o
= Z Zg‘(n)h(m)®—ninﬁf ‘Bn(m_l—n_w)xdx
meR neS -1
- Z Z?(”)il\(m)oa_ﬁm’zz?ﬂ Z e2mip(tm—w)/d
meR neS »eD
= 277-[ Z <Z§(n)e2ﬂﬁpn/d> (Z il\(m)e((hjm)(pf))> @72711'1mpa)/d
peD \neS me R
_ 27” T (2;;17) A <27r(1;— z)) ——
peD
2 .
~d Z Xpyp_ee TP/, .
peD
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Appendix B: The Proofs of Propositions 3.2 and 3.4

The Proof of Proposition 3.2 We first note that

s m(q) iflql < p/2,
77 1o if |g] > p/2.

Therefore, for all [p| < k — 1, we have

<A ;) _|m(@m(p+q) if —p/2<q, p+q=p/2,
ZoSpz) = .
q 0 otherwise.

Forany |p| <k — 1, let
Ip=lgeD:—-p/2=<q=p/2 and —p/2 <q+p < p/2}.
One may check that

[—5—-p.51INZ ifp <0
T,=1 2
2

[-5.5-pINZ ifp>0"
Therefore, making a simple change of variables in the case p < 0, we have that
p/2—Ip]

_ 1 . 1 .
Fq (’io Sp’i) == D AOm(p+ O == Y 1 WM (€ + |pl) e,
4 teT, =—p)2

where @'®7.4.¢ is a unimodular complex number depending on p, ¢ and £. Using the
Assumptions (23) and (24), we see that

| p/2—pl ' 0 —p —p
‘— Y. AOmE |phettret < = ’m (7 + 1)’ ‘n? (7 +1+ |p|>'
l=—p/2+1

IA
R -
Ny

3)
—
"’|t|>
~
3)
—
NH
+
.~
~—

With this, we may use the reverse triangle inequality to see

Fq (’io S;;) = 7 Z n?(ﬂ)n?(£+|p|)@ﬁ¢/’*q*/

l=—p/2

() e (2 40

‘ p/2—=1pl

q
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1 p/2—Ipl ]
— 2| Y mme+ phettre
t=—p/2+1

A%
Q|-
QU

3)

—
SN
~—

v
&=
3)
~
SN
~—

O

The Proof of Proposition 3.4 First, we note that by applying Lemma 3.3, and setting
p =w,q = {, we have

M2 = inf |(Fa(Z o SiZ))ol
w€[2k—1]¢,L€[25—1],
1
= inf Fa(z o Syz
d wel2k—1].,0e[25—1]. | (Fa( wZ))¢]
1

= — inf Fq(zo S,z .
dpE[ZK—l]C,q€[2s—1]c|( d(z 0 5,2))q]

For |p| <k — 1, we have

[ f < < 3 _ 1
(ZOsz) _ ZqZpJ,-q ln_q,P+q_n+5 )
q 0 otherwise.

For any |p| <k — 1, let
Ip:={qu:n§q§n+S—l and nfq—i—pfn—i—g—l}.
One may check that

I — [n—p,n+8—11NZ if p <0,
Pl nn+8—-1—-plnz ifp>o0.

Therefore, making a simple change of variables in the case p < 0, we have that in
either case

n+8—1—|p|

1
- 2eZe+|p|®

d

1pp.q.¢ ,

1 .
- —— ~2milg/d
’Fd (zo S,,z)q‘ = E‘ Y~ zzpree T/
Lel,

{=n
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where @'®,.4.¢ is a unimodular complex number depending on p, ¢ and £. Using the
Assumptions (37) and (38) we see that

n+8—1—|p|

1 oo 8 1
- Z 20Ze+|p|® P SE|Zn+l||zn+l+|l7\|fglanZnHPH-
l=n+1
With this,
| n+8—1—|p|
Fy(zoS,2) |=|- e eifrat
d\20opZ), p ZeZe+|p|®
l=n
| n+8—1—|p|
> E|Zn||zn+|p\| — ‘E Z Z[Zg_,_lpl@n(f’p,q,z
=n+1

1 1
> ﬁ|zn||zn+|p\| = g|zn||zn+/c—1|-

Thus, the proof is complete. O

Appendix C: The Proof of Lemma 4.5

Proof Our proof requires the following sublemma which shows that, if n € L ¢, then
Algorithm 3 used in the definition of «;,, will only select indices n, corresponding to
large Fourier coefficients.

LemmaC.1 Letn € Ly, and let ng, . .., n; be the sequence of indices as introduced
in the definition of «y,. Then

| f ()]
2

| f(ne)| >

forall0 <t <c¢.

Proof When ¢ = ¢, the claim is immediate from the fact that n; = n.Forall 0 < ¢ <
¢ — 1, the definition of n, implies that there exists an interval /;, centered at some
point @ with |a| < |n|, such that the length of I, is at most 8 and

ap, = MaX dy,.
mely

Letting € = /3||N||0, We see that by (45) and Remark 1.5

|f(ne)| = an, — € = maxa,, — € > max | f(m)| —2¢ > | f(n)] — 2e.
mely mely

The result now follows from noting that € < @ forallm € Ly. O
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Fig.6 Triangle in the complex
domain
/ /

0¢

te

With Lemma C.1 established, we may now prove Lemma 4.5. Let n € Ly and
let ng, ...n; be the sequence describe in the definition of o;,. For 0 < £ < ¢ — 1,
let to:=f (nes1) f(ne), ayi=f(nes1) f (ne) + Nuyoyny> and Nji=Ny,., n,. Consider
the triangle with sides aj, f,, and N, with angles 6, = |arg(a;) — arg(t;)| and ¢, =
|arg(ay) — arg(N,)|, as illustrated in Fig. 6.

By the law of sines and Lemma C.1, we get that

_ Nl _ 4Nl
T fmol fes)l T 1 F 2

for all 0 < £ < ¢. By the definition of L y and Lemma C.1, we have that for all £

: Ny .
Isin(0¢)| = 'E sin(¢e) (ChH

INgl < INlloo < < 1 F @)l freg)] = ltel.

ok
4

Therefore, 0 < 6, < %, and so by (C1), we have
INlloo
|f(m)]?

16| < % |sin(6y)| < 2

By definition 7, = Zi;é arg(ty) and o, = 21{:_01 arg(a,). Therefore, we have

¢-1 ¢—1

. . N
07— | < o, — 0] = | S arg(a)) — arg(t)| = | 3 00| < 2mbloe
=0 =0 |f(n)|?
From the definition of ny, we have
)4
ng —ne1l >y —-B=> )
forall 1 < ¢ < ¢ — 1. Therefore, the path length ¢ is bounded by
< Inznol _2d
min |ng —ng—1| =y
Thus, we have
(Bit" _ (Bﬁa,,' < 27h ”’I\QHOO < drd ”iw”oo
|f ()2 Yo fm))?
as desired. O
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Appendix D: Additional Experiments

In this section, we provide additional numerical simulations studying the empirical
convergence behavior of Algorithms 1 and 2. We start with a study of the convergence
behavior of Algorithm 1. Here, we reconstruct the same test function using different
discretization sizes d (with p chosen to be min{(d — 5)/2, 16|log,(d)]} and «
p — 1), where the total number of phaseless measurements used is Ld = (2p — 1)d.
Figure 7 plots representative reconstructions (of the real part of the test function) for
two choices of d (d = 33 and d = 1025). We note that the (smooth) test function
illustrated in the figure has several sharp and closely separated gradients, making the
reconstruction process challenging. This is evident in the partial Fourier sums (Py f)
plotted for reference alongside the reconstructions from Algorithm 1 (f,). For small d
and p, we observe oscillatory behavior similar to that seen in the Gibbs phenomenon.
Nevertheless, we see that the proposed algorithm closely tracks the performance of
the partial Fourier sum, with reconstruction quality improving significantly as d (and
p) increases.

Reconstruction using Alg. 1 (d = 33) Reconstruction using Alg. 1 (d = 33; expanded view for z € [0,1])
1F 1F
7
b
051 ,’J t 0.5
3 3
= 0t ‘-‘*'v"‘-—'- = 0
3 “_1 ﬂ 3
~ [==1
0.5 [_ t‘ J 0.5
— f (True) — f (True)
4 | = fe (Recon.) 4 | = fe (Recon.)
Py f (Partial Fourier Sum) Py f (Partial Fourier Sum)
-3 -2 -1 0 1 2 3 0 0.2 0.4 0.6 0.8 1
x x
(a) d=33 (b) d = 33 (zoom)
Reconstruction using Alg. 1 (d = 1025) Reconstruction using Alg. 1 (d = 1025; expanded view for = € [0,1])

1

i -0.5 N
— [ (True) — f (True)
[|- - fe (Recon.) G- fe (Recon.)
Py f (Partial Fourier Sum) ° Py f (Partial Fourier Sum)
-3 -2 -1 0 1 2 3 0 0.2 0.4 0.6 0.8 1
(¢) d = 1025 (d) d = 1025 (zoom)

Fig. 7 Evaluating the convergence behavior of Algorithm 1. Figure plots reconstructions of the real part
of the test function at d = 33 and d = 1025 (along with an expanded view of the reconstruction in [0, 1])
on a discrete equispaced grid in [—m, 7] of 7003 points; we set p = min{(d — 5)/2, 16[log,(d)]} and
k=p—1
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Reconstruction using Alg. 2 (d = 57)

Reconstruction using Alg. 2 (d = 57; expanded view for z € [0, 1])

—— f (True) —— f (True)
- - fe (Recon.) - - fe (Recon.)
Py f (Partial Fourier Sum) Py f (Partial Fourier Sum)
05 Jick 0.5 =
K ‘
. , . R -
B g " B * S NP \
T 0t E ‘F —} vt = 0 X
7 A U 5 e/ )
= W ] o & Y
¥ | 3
05 L_:._\.". fJ U 05 & S|
! :
At U -1
3 2 -1 0 1 2 0.2 0.4 0.6 0.8 1
x x
(a) d =57 (b) d = 57 (zoom)
Reconstruction using Alg. 2 (d = 921) Reconstruction using Alg. 2 (d = 921; expanded view for = € [0,1])
—— f (True) —— f (True)
- - fe (Recon.) - - fe (Recon.)
Py f (Partial Fourier Sum) Py f (Partial Fourier Sum)
0.5 o,
= 0
< \
= \
|\
0.5 A
) N
1 1
-3 -2 -1 0 1 2 3 0 0.2 0.4 0.6 0.8 1

(c) d - 921 (d) d= 92w1 (zoom)

Fig.8 Evaluating the convergence behavior of Algorithm 2. Figure plots reconstructions of the real part of
the test function at d = 57 and d = 921 (along with an expanded view of the reconstruction in [0, 1]) on a
discrete equispaced grid in [, 7] of 7003 points; we set K =d /3,6 = (K +1)/2andx =6 — 1

We next evaluate the convergence behavior of Algorithm’ 2 by reconstructing
the same test function using different discretization sizes d (with K = d/3, § =
(K+1)/2,k =6 — 1 and s = k — 1). Figure 8 plots representative reconstructions
(of the real part of the test function) for two choices of d (d = 57 and d = 921).
As in Fig. 7, we note that the (smooth) test function has several sharp and closely
separated gradients, making the reconstruction process challenging. Again, the partial
Fourier sums (Py f) plotted alongside the reconstructions from Algorithm 2 (f.)
exhibit Gibbs-like oscillatory behavior for small d and x. Nevertheless, we see that
the proposed algorithm closely tracks the performance of the partial Fourier sum, with
reconstruction quality improving significantly as d (and 8, «) increases.

Appendix E: Results from Previous Work

The following is a restatement of Theorem 4 of [26] updated to use the notation of this
paper. Notably, in this paper we use a different normalization of the Fourier transform

7 using the alternate implementation—with (34) utilized in place of (35) in Step 2 of the Algorithm—as
described in Sect. 5
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(our Fq is equal to the F,; from [26] divided by d). We also note that the measurements

T/

considered here differ by a factor of % from the measurements Y considered in

[26]. Lastly, we note that the summations in [26] take place over a different string of d
consecutive integers. However, this makes no difference do the the periodicity of the
complex exponential function.

Theorem E.1 [26, Theorem 4] Let T be as in (16). Then for any w € [K]. and
telLl],

ﬁi,w - ﬁ[,a)

4z
=d Yy Y (Fa (&\oSqL_g?))wipK (Fa (7 0 Se—q17)),_
re[i] ocl2],
=$ Y ermalOm K (iosqL,i))w_pK (Fa (m o S, k), , _,

rel#] a<],
T e s (o5
a€| ],

Z (Fa (xo S‘U—I’Ki))é—qL (Fa (mo Sﬂ’_I’Kﬁ))qL—l :

Jooel2],

Il
N

=
N

|

I
Ul =
N
N

—
=

pe
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