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Abstract

In this paper, we focus on the approximation of smooth functions f : [−π, π] → C, up to an

unresolvable global phase ambiguity, from a finite set of Short Time Fourier Transform (STFT) mag-

nitude (i.e., spectrogram) measurements. Two algorithms are developed for approximately inverting

such measurements, each with theoretical error guarantees establishing their correctness. A detailed

numerical study also demonstrates that both algorithms work well in practice and have good numerical

convergence behavior.

1 Introduction

We consider the approximate recovery of a smooth function f : R → C supported inside of a compact

interval I ⊂ R from a finite set of noisy spectrogram measurements of the form

Yω,` :=

∣∣∣∣∫ ∞
−∞

f(x)m̃

(
x− 2π

L
`

)
e
−ixωdx

∣∣∣∣2 + ηω,`.

Here m̃ : R → C is a known mask, or window, and the ηω,` are arbitrary additive measurement errors.

Without loss of generality, we will assume that I ⊆ [−π, π] and seek to characterize how well the function

f , with its domain restricted to [−π, π], can be approximated using dL measurements of this form for

d frequencies ω at each of L shifts `. Toward that end, we present two algorithms which can provably

approximate any such function f (belonging to a general regularity class defined below in Definition 1) up

to a global phase multiple using spectrogram measurements of this type resulting from two different types
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of masks m̃. As we shall see, both algorithms ultimately work by approximating finitely many Fourier

series coefficients of f .

Inverse problems of this type appear in many applications including optics [25], astronomy [10], and

speech signal processing [4, 15] to name just a few. In this paper we are primarily motivated by phase-

less imaging applications such as ptychography [23], in which Fourier magnitude data is collected from

overlapping shifts of a mask/probe (e.g., a pinhole) across a specimen and then used to recover the

specimen’s image. Indeed, these types of phaseless imaging applications directly motivate the types of

masks m̃ : R → C considered below. In particular, we consider two types of masks m̃ including both (i)

relatively low-degree trigonometric polynomial masks representing masking the sample f with shifts of a

periodic structure/grating, and (ii) compactly supported masks representing the translation of, e.g., an

aperture/pinhole across the sample during imaging. Note that first type of periodic masks are reminicent

of some of the Coded Diffraction Pattern type measurements for phase retrieval analyzed by Candès et

al. in the discrete (i.e., finite-dimensional f and m̃) setting [7, 8]. (See Section 1 of [22] for a related

discussion.) The second type of compactly supported masks, on the other hand, correspond more closely

to standard ptychographic setups in which Fourier magnitude data is collected from small overlapping

portions of a large sample f in order to eventually recover its global image.

Although a number of algorithms exhibiting great empirical success were designed decades ago for

phaseless imaging, e.g., [11], [14], [15], the mathematical community has only recently begun to undertake

the challenge of designing measurement setups and corresponding recovery algorithms with provable

accuracy and reconstruction guarantees. The vast majority of those theoretical works have only addressed

discrete (i.e., finite-dimensional) phase retrieval problems, (see e.g., [4], [3], [7], [8], [17], [13]) where the

signal of interest and measurement masks are both discrete vectors and where the relevant measurement

vectors are generally random and globally supported.

In this paper, we develop a provably accurate numerical method1 for approximating smooth functions

f : R→ C from a finite set of Short-Time Fourier Transform (STFT) magnitude measurements. Though

there has been general work concerning the uniqueness and stability of reconstruction from STFT mag-

nitude measurements in this setting (see, e.g., recent work by Alaifari, Cheng, Daubechies, and their

collaborators [2], [9]), to the best of our knowledge, no prior work exists concerning the development

or analysis of provably accurate numerical methods for actually carrying out such reconstructions from

a finite set of such measurements. Perhaps the closest prior work is that of Thakur [24], who gives an

algorithm for the reconstruction of real-valued bandlimited functions up to a global sign from the ab-

solute values of their point samples, and that of Gröchenig [16], who considers/surveys similar results

in shift-invariant spaces. Other related work includes that of Alaifari et al. [1], which proves (among

other things) that one can not hope to stably recover a periodic function up to a single global phase

using a trigonometric polynomial mask of degree ρ/2, as done below, unless its Fourier series coefficients

do not vanish on any ρ consecutive integer frequencies in between two other frequencies with nonzero

Fourier series coefficients. This helps to motivate the function classes we consider recovering here. (In

particular, if a function f satisfies Definition 1 below, then any strings of zero Fourier series coefficients in

{f̂(n)}n∈Z longer than a certain finite length must be part of an infinite string of zero Fourier coefficients

associated with all frequencies beyond a finite cutoff.) We also refer the reader to [19] and [9] for similar

considerations in the discrete setting.

1Numerical implementations of the methods proposed here are available at https://bitbucket.org/charms/blockpr.
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1.1 Problem Setup and Main Results

Let m̃, f : R → C be Ck-functions for some k ≥ 2. Let d be an odd number, and let K and L divide d.

Let D = {−d−1
2 , . . . , 0, . . . , d−12 }, and let Y = (Yω,`)ω,`∈D be the d× d measurement matrix defined by

Yω,` :=

∣∣∣∣∫
R
f(x)m̃

(
x− 2π

d
`

)
e
−ixωdx

∣∣∣∣2 + ηω,`, (1)

where η = (ηω,`)ω,`∈D is an arbitrary additive noise matrix. The goal of this paper is to address the

following question.

Question 1. Under what conditions on f and m̃ can we produce an efficient and noise robust algorithm

which provably recovers f from the K ×L measurement matrix YK,L obtained by subsampling equispaced

entries of Y.

In order to partially answer this question, we will assume that f satisfies a regularity assumption

defined below in Definition 1 and also that one of the following two assumptions hold:

1. f is compactly supported with supp(f) ⊆ [−π, π] and m̃ is a trigonometric polynomial given by

m̃(x) =

ρ/2∑
p=−ρ/2

m̂(p)eipx

for some even number ρ < d and some complex numbers m̂(−ρ/2), . . . , m̂(0), . . . , m̂(ρ/2).

2. Both f and m̃ are compactly supported with supp(f) ⊆ (−a, a) and supp(m̃) ⊆ (−b, b) for some

a and b such that a+ b ≤ π.

We will introduce a four-step method which relies on recovering the Fourier coefficients of f . In

our discretization step, we approximate the mask m̃ by a function with finitely many nonzero Fourier

coefficients. Therefore, we effectively regard the mask as being compactly supported in the frequency

domain. As mentioned above, several previous works, including [19], [1], and [9], have noted that this

implies that the recovery of f is impossible if f has many consecutive Fourier coefficients which are equal to

zero followed by nonzero Fourier coefficients at higher frequencies. Moreover, if there are many consecutive

small Fourier coefficients followed by larger coefficients at higher frequencies, the problem is inherently

unstable. Therefore, we will remove such pathological functions from consideration by assuming that our

function f is a member of the following function class for a suitable choice of β. This choice of β will

depend on whether f and m̃ satisfy Assumption 1 or Assumption 2, respectively.

Definition 1. Let β be a positive integer and let Dn = max|m−n|<β/2 |f̂(m)|. We say that f has β Fourier

decay if Dn ≥ Dn′ whenever |n| ≤ |n′|.

A useful property of this function class, which follows immediately from the definition, is summarized

in the following remark.

Remark 1. Suppose f has β Fourier decay, and let a, n ∈ Z with |a| < |n|. Then the string of β − 1

consecutive integers centered around a contains an integer m such that |f̂(m)| ≥ |f̂(n)|.

We will show that functions satisfying Definition 1 can be reconstructed from Y using the following

four-step approach:
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1. Approximate the matrix of continuous measurements Y, defined in terms of functions f and m̃, by

a matrix of discrete measurements T′, defined in terms of corresponding vectors x and z.

2. Apply a discrete Wigner distribution deconvolution method [22] to recover a portion of the Fourier

autocorrelation matrix x̂x̂∗.

3. Recover x̂, the discrete Fourier transform of x, via a greedy angular synchronization scheme along

the lines of the one used in [20].

4. Estimate f by a trigonometric polynomial with coefficients given by x̂.

The details of step 2 are quite different depending on whether f and m̃ satisfy Assumption 1 or Assumption

2. However, we emphasize that the other three steps of the process are identical in either case. The result

of this approach is two algorithms which allow for the reconstruction of f under either Assumption 1 or

2, as well as two theorems providing theoretical guarantees. The following main results are variants of

Corollaries 1 and 2 presented in Section 4.

Theorem 1. Let Ckρ/2 be the set of all compactly supported functions f : R → C with supp(f) ⊆ [−π, π]

that are Ck-smooth for some k ≥ 5 and that have ρ/2 Fourier decay. Then, there exist degree ρ/2

trigonometric polynomial masks m̃ such that for all f ∈ Ckρ/2, K = d ≥ 2ρ + 6, and L dividing d with

2 + ρ ≤ L ≤ 2ρ the trigonometric polynomial fe(x) output by Algorithm 1 is guaranteed to satisfy

min
θ∈[0,2π]

∥∥∥eiθf − fe∥∥∥2
L2([−π,π])

≤ Cf,m
((

1

d

)k−9/2
+

d3

L1/2
‖ηd,L‖F

)
,

where ηd,L is the d × L matrix obtained by subsampling equispaced entries of η and Cf,m is a constant

only depending on f, m̃, and k.

Proof. Apply Corollary 1 with s = d(d + 1)/2e and r = d − s − 1 ≥ d/2 − 2. The assumption that

d ≥ 2ρ+ 6, implies that ρ ≤ r−1. Noting now that κ := L−ρ ≥ 2 and applying Proposition 1 for choices

of m̃ satisfying (17) with κ replaced by ρ (since ρ ≥ κ), we have that µ−11 ≤ Cmd for a mask-dependent

constant Cm.

Theorem 1 guarantees the existence of periodic masks which allow the exact recovery of all sufficiently

smooth f as above as d → ∞ in the noiseless case (i.e., when η = 0). In particular, it is shown that a

single mask m̃ will work with all sufficiently large choices of d as long as d has a divisor in [ρ + 2, 2ρ].

Furthermore, Theorem 1 demonstrates that Algorithm 1 is robust to small amounts of arbitrary additive

noise on its measurements for any fixed d. We note here that the d3 term in front of the noise term

‖ηd,L‖F is almost certainly highly pessimistic, and the numerical results in Section 5 indicate that the

method performs well with noisy measurements in practice. We expect that this d3 dependence in our

theory can be reduced, especially for more restricted classes of functions f that are compatible with less

naive angular synchronization approaches than the one utilized here. (See, for example, recent work on

angular synchronization approaches for phase retrieval by Filbir et al. [12].)

Focusing on the total number of STFT magnitude measurements (1) used by Algorithm 1, we can

see that Theorem 1 guarantees that KL ≤ 2dρ will suffice for accurate reconstruction when the mask m̃

is a trigonometric polynomial. In particular, this is linear in d for a fixed ρ. As we shall see below, the

situation appears more complicated when m̃ is compactly supported. In particular, Theorem 2 stated

below requires KL = d2/3 STFT magnitude measurements in that setting (and more generally, the

argument we give here always requires KL ≥ Cbd2, where C is an absolute constant, and b is the support

size of the mask as per Assumption 2).
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Theorem 2. Let C̃ka,β be the set of all compactly supported functions f : R → C with supp(f) ⊆ (−a, a)

for some a ∈ (0, π− 3/4) that are Ck-smooth for some k ≥ 4 and have β Fourier decay. Let b = 3/4, and

then fix d = L to be a multiple of three large enough that all of the following hold: β < ddb/2πe − 1/2,

s = r = ddb/2πe < d/8 − 1, and 5d/21 < δ = bdb/πc < d/4. Finally, set K = d/3. Then, for any

compactly supported mask m̃ with supp(m̃) ⊆ (−b, b) and µ2 > 0 (see (29) and (8) for the definition of

µ2) the trigonometric polynomial fe(x) output by Algorithm 2 is guaranteed to satisfy

min
θ∈[0,2π]

∥∥∥eiθf − fe∥∥∥2
L2([−π,π])

≤ Cf,m
(

1

µ2σmin(W)dk
+
‖ηK,d‖F
µ2σmin(W)

+

(
1

d

)2k−2)
for all f ∈ C̃ka,β, where Cf,m is a constant only depending on f, m̃, and k. Here σmin(W) denotes the

smallest singular value of the (2(d/3 − b3d/4πc) − 1) × ddb/2πe partial Fourier matrix W defined in

Section 3.2 and ηK,d is the K × d matrix obtained by subsampling equispaced entries of η.

Proof. We first note that δ + (s + 1)/2 < 5d/16 ≤ K ≤ 10d/21 < 2δ. Next, we apply Corollary 2 with

s, r, δ, and all other parameters set as above. Next, we observe that W will be full rank given that it is a

Vandermonde matrix. Therefore, σmin(W) > 0 will always hold. Finally, we note that, for any choice of

d and b ≤ π − a, Proposition 2 guarantees the existence of a smooth and compactly supported mask m̃

with µ2 > 0.

Theorem 2 demonstrates that sufficiently smooth functions f can be approximated well for measure-

ment setups and masks having µ2 and σmin(W) not too small. Furthermore, Proposition 2 demonstrates

that masks exist for which µ2 scales polynomially in d (independently of f and k). It remains an open

problem, however, to find a single compactly supported mask m̃ which will provably allow recovery for all

choices of d, as well as optimal constructions of such masks more generally. Nonetheless, our numerical

results in Section 5 demonstrate that Algorithm 2 does indeed work well in practice for a fixed compactly

supported mask and that the mask we evaluate has reasonable values of µ2 for the range of choices of d

evaluated there.

1.2 Notation

We will denote matrices and vectors by bold letters. We will let Mj denote the j-th column of a matrix

M and, if x and y are vectors, we will let
x

y

denote their componentwise quotient. For any odd number n, we will let

[n]c :=

[
1− n

2
,
n− 1

2

]
∩ Z

be the set of n consecutive integers centered at the origin. In a slight abuse of notation, if n is even, we

will define [n]c := [n+ 1]c, so that in either case [n]c is the smallest set of at least n consecutive integers

centered about the origin. We will let d be an odd number, let K and L divide d, and let

D := [d]c, K := [K]c, and L := [L]c.

For ` ∈ Z, we let S` : Cd → Cd be the circular shift operator defined for x = (xp)p∈D by

(S`x)p = xp+`,

where the addition p + ` is interpreted to mean the unique element of D which is equivalent to p + `

modulo d.
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If K and L are integers which divide d, and M = (Mk,`)k,`∈D is a d× d matrix, we will let MK,L be

the K × L matrix obtained by subsampling M at equally spaced entries. That is, for k ∈ K and ` ∈ L,

we let

(MK,L)k,` = Mk d
K
,` d
L
. (2)

We let Fd be the d× d Fourier matrix with entries given by

(Fd)j,k =
1

d
e
−2πijk

d

for j, k ∈ D, and similarly let FL and FK be the L×L and K×K Fourier matrices with indices in L and

K, respectively. Finally, we will often use generic constants whose values change from line to line, but

whose dependencies on other quantities are explicitly tracked and noted. These constants will be denoted

by capital C and have subscripts that indicate the mathematical objects on which they depend.

2 Discretization

Let m̃, f : R → C be Ck-functions for some k ≥ 2 such that supp(f) ⊆ [−π, π], and assume that either

Assumption 1 or Assumption 2 holds. We will define m to be a periodic function which coincides with m̃

on [−π, π]. Specifically, we let

m(x) :=

{
m̃(x) if Assumption 1 holds,∑

n∈Z m̃(x+ 2πn) if Assumption 2 holds.

As in Section 1, let D be the set of d consecutive integers centered at the origin, and define Z =

(Zω,`)ω,`∈D to be the d× d matrix with entries given by

Zω,` :=

∣∣∣∣∫
R
f(x)m̃

(
x− 2π

d
`

)
e
−ixωdx

∣∣∣∣2 .
Our goal is to recover f from the matrix Y = (Yω,`)ω,`∈D of noisy measurements given by

Yω,` := Zω,` + ηω,`,

where η = (ηω,`)ω,`∈D is an arbitrary additive noise matrix. Since the support of f is contained in [−π, π],

we note that

Zω,` =

∣∣∣∣∫ π

−π
f(x)m̃

(
x− 2π

d
`

)
e
−ixωdx

∣∣∣∣2 . (3)

Furthermore, under either Assumption 1 or Assumption 2, we note that we may replace m̃ with m in (3),

i.e.,

Zω,` =

∣∣∣∣∫ π

−π
f(x)m

(
x− 2π

d
`

)
e
−ixωdx

∣∣∣∣2 . (4)

Under Assumption 1, this is immediate since m̃(x) = m(x) by definition. Under Assumption 2, we note

that

supp(m̃−m) ⊆ (−∞, b− 2π] ∪ [2π − b,∞)

and that
∣∣2π`
d

∣∣ < π for all ` ∈ D. Therefore, we have that

m̃

(
x− 2π

d
`

)
−m

(
x− 2π

d
`

)
= 0 for all |x| < π − b.
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As a result, the assumptions that the support of f is contained in (−a, a) and that a < π − b imply that∫ π

−π
f(x)

(
m̃

(
x− 2π

d
`

)
−m

(
x− 2π

d
`

))
e
−ixωdx = 0

and so (4) follows.

For any C2-smooth function g : R→ C, we will define

ĝ(n) :=
1

2π

∫ π

−π
g(x)e−inxdx

for all n ∈ Z, and note that, if g is 2π-periodic, we may use Fourier series to write

g(x) =
∑
n∈Z

ĝ(n)einx. (5)

We also note that, if g is not 2π-periodic, but its support is contained in (−π, π), then (5) still holds for

all x ∈ (−π, π) since we may view {ĝ(n)}n∈Z as the Fourier coefficients of the periodized version of g. For

any set A ⊆ Z, we define PA to be the Fourier projection operator given by

PAg(x) :=
∑
n∈A

ĝ(n)einx. (6)

Now, let r, s, and d be odd numbers with r + s < d. Let R := [r]c, S := [s]c, and D = [d]c be the

sets of r, s, and d consecutive integers centered at the origin. Let T := (Tω,`)ω,`∈D denote the matrix of

measurements obtained by replacing f with PSf and m with PRm in (4), i.e., the matrix whose entries

are given by

Tω,` :=

∣∣∣∣∫ π

−π
PSf(x)PRm

(
x− 2π

d
`

)
e
−ixωdx

∣∣∣∣2 . (7)

If Assumption 1 holds, we will assume that r > ρ+ 1 which implies PRm(x) = m(x).

The following lemma provides a bound on the `∞-norm of the error matrix Z−T.

Lemma 1. Let r, s, and d be odd numbers with r + s < d, and let m̃ : R → C and f : R → C be

Ck-smooth functions for some k ≥ 2. Then, under Assumption 1, we have

‖Z−T‖∞ ≤ Cf,m
(

1

s

)k−1
,

and, under Assumption 2, we have

‖Z−T‖∞ ≤ Cf,m
((

1

s

)k−1
+

(
1

r

)k−1)
.

In either case, Cf,m ∈ R+ is a generic constant that depends only on f , m̃, and k (and, in particular, is

independent of s, r and d).

To prove Lemma 1, we need the following auxiliary lemma. Note in particular, it can be applied both

to 2π-periodic functions and to functions whose support is contained in (−π, π).

Lemma 2. Let k ≥ 2, and let g : R→ C be a Ck-smooth function such that (5) holds for all x ∈ (−π, π).

Let n ≥ 3 be an odd number, let N := [n]c, and let A be any subset of Z. Then, there exists a constant Cg
depending only on g and k such that

‖PAg‖L∞([−π,π]) ≤ Cg and ‖g − PN g‖L∞([−π,π]) ≤ Cg
(

1

n

)k−1
,

where PA and PN are the Fourier projection operators defined as in (6).
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For a proof of Lemma 2, please see Appendix A.

The Proof of Lemma 1. We note that the measurements given in (4) and (7) may be written as

Zω,` = |Mω,`|2 and Tω,` = |Uω,`|2,

where

Mω,` :=

∫ π

−π
f(x)m

(
x− 2π

d
`

)
e
−ixωdx and Uω,` :=

∫ π

−π
PSf(x)PRm

(
x− 2π

d
`

)
e
−ixωdx.

Lemma 2 implies

‖PRm‖L∞([−π,π]) ≤ Cm and ‖PSf‖L∞([−π,π]) ≤ Cf .

Therefore,

|Uω,`| ≤ 2π‖PRm‖L∞([−π,π])‖PSf‖L∞([−π,π]) ≤ Cf,m.

Next, letting ˜̀= 2π`/d, we note that

Mω,` − Uω,` =

∫ π

−π

(
f(x)− PSf(x)

)
m(x− ˜̀)e−iωxdx+

∫ π

−π
PSf(x)

(
m(x− ˜̀)− PRm(x− ˜̀)

)
e
−iωxdx.

Therefore, by Lemma 2 and the triangle inequality, we get

|Mω,` − Uω,`| ≤ Cf,m
((

1

s

)k−1
+ ‖m− PRm‖L∞([−π,π])

)
.

Thus, we may use the difference of squares formula to see

|Zω,` − Tω,`| = (|Mω,`|+ |Uω,`|)||Mω,`| − |Uω,`|| ≤ (2|Uω,`|+ |Mω,` − Uω,`|)|Mω,` − Uω,`|

≤ Cf,m
(

1 +

(
1

s

)k−1
+ ‖m− PRm‖L∞([−π,π])

)((
1

s

)k−1
+ ‖m− PRm‖L∞([−π,π])

)
.

Under Assumption 1, we have ‖m− PRm‖L∞([−π,π]) = 0, and thus,

|Zω,` − Tω,`| ≤ Cf,m
(

1 +

(
1

s

)k−1)(1

s

)k−1
≤ Cf,m

(
1

s

)k−1
.

Likewise, under Assumption 2, Lemma 2 implies ‖m− PRm‖L∞([−π,π]) ≤ Cm
(
1
r

)k−1
, and so

|Zω,` − Tω,`| ≤ Cf,m
(

1 +

(
1

s

)k−1
+

(
1

r

)k−1)((1

s

)k−1
+

(
1

r

)k−1)
≤ Cf,m

((
1

s

)k−1
+

(
1

r

)k−1)
.

Algorithms 1 and 2 rely on discretizing the integrals used in the definitions of our measurements.

Towards this end, we define three vectors x := (xp)p∈D, y := (yp)p∈D, and z := (zp)p∈D by

xp := PSf

(
2πp

d

)
, yp := PRm

(
2πp

d

)
, and zp = m

(
2πp

d

)
. (8)
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We note that under Assumption 1, we have PRm(x) = m(x) and therefore y = z. Under Assumption 2,

we have that supp(m) ∩ [−π, π] ⊆ (−b, b). Therefore, supp(z) ⊆ [δ + 1]c, where δ := b bπdc. The following

lemma shows that the integral used in the definition of T can be rewritten as a discrete sum. Please see

Appendix A for a proof.

Lemma 3. Let x = (xp)p∈D and y = (yp)p∈D be defined as in (8). Then, for all ω ∈ D, ` ∈ Z, and
˜̀= 2π`

d , we have that ∫ π

−π
PSf(x)PRm(x− ˜̀)e−ixωdx =

2π

d

∑
p∈D

xpyp−`e
−2πiωp/d,

and as a consequence,

Tω,` =
4π2

d2

∣∣∣∣∑
p∈D

xpyp−`e
−2πiωp/d

∣∣∣∣2. (9)

The matrix T depends on the vector y which is obtained by sampling the trigonometric polynomial

PRm. By construction, y is not compactly supported, even under Assumption 2. In Section 3, we will

apply a Wigner Deconvolution method based on [22] to invert our discretized measurements. In order

to do this, we will need to use the vector z which is obtained by subsampling m rather than PRm. (By

construction, z will be compactly supported under Assumption 2, and under Assumption 1, we have

y = z and so this makes no difference.) This motivates the following lemma which shows that T is

well-approximated by the matrix T′ = (T ′ω,`)ω,`∈D obtained by replacing y with z in (9), i.e.,

T ′ω,` =
4π2

d2

∣∣∣∣∑
p∈D

xpzp−`e
−2πiωp/d

∣∣∣∣2. (10)

Lemma 4. Let T and T′ be the matrices defined in (7) and (10). Then, under Assumption 1, we have

‖T−T′‖∞ = 0,

and under Assumption 2,

‖T−T′‖∞ ≤ Cf,m
(

1

r

)k−1
.

Proof. Under Assumption 1, we have y = z. Thus by (9) and (10) we have T = T′ and therefore the first

claim is immediate. To prove the second claim, we will assume Assumption 2 holds and use arguments

similar to those used in the proof of Lemma 1. Let

Uω,` =
2π

d

∑
p∈D

xpyp−`e
−2πiωp/d and U ′ω,` =

2π

d

∑
p∈D

xpzp−`e
−2πiωp/d.

Then by Lemma 3 we have

Tω,` = |Uω,`|2 and T ′ω,` = |U ′ω,`|2.

By Lemma 2 and the fact that m is a continuous periodic function, we see

‖x‖∞ ≤ ‖PBf‖L∞([−π,π]) ≤ Cf ,
‖y‖∞ ≤ ‖PRm‖L∞([−π,π]) ≤ Cm, and

‖z‖∞ ≤ ‖m‖L∞([−π,π]) ≤ Cm.

9



Therefore,

|Uω,`|+ |U ′ω,`| ≤ Cf,m.

To bound |Uω,` − U ′ω,`|, we may again apply Lemma 2, to see

|Uω,` − U ′ω,`| ≤ 2π‖x‖∞‖y − z‖∞ ≤ Cf‖m− PRm‖L∞([−π,π]) ≤ Cf,m
(

1

r

)k−1
.

Therefore, by the same reasoning as in the proof of Lemma 1, we have

|Tω,` − T ′ω,`| ≤ (|Uω,`|+ |U ′ω,`|)(|Uω,` − U ′ω,`|) ≤ Cf,m
(

1

r

)k−1
.

3 Wigner Deconvolution

In this section, we will use a Wigner Deconvolution method based on [22] to recover x from the matrix

T′ defined in (10). In order to do this, we let E be the total error matrix defined by

E := Y −T′.

We note that E can be decomposed by

E = (Z−T′) + η,

where (Z−T′) is the error due to discretization and η is measurement noise. Let K and L divide d. Let

EK,L, T′K,L, and ηK,L be the K × L matrices obtained by subsampling the columns of E, T′, and η as

in (2). Similarly to [22], we introduce the quantities Ẽ and T̃ defined by

Ẽ := FLEK,L
TFK

T and T̃ := FL(T′K,L)TFK
T .

Since
√
LFL and

√
KFK are unitary, we have

‖Ẽ‖F = ‖FLEK,L
TFK

T ‖F ≤
1√
KL
‖EK,L‖F ≤ ‖Z−T′‖∞ +

1√
KL
‖ηK,L‖F .

Therefore, Lemmas 1 and 4 imply that under Assumption 1 we have

‖Ẽ‖F ≤ Cf,m
(

1

s

)k−1
+

1√
KL
‖ηK,L‖F , (11)

and that under Assumption 2 we have

‖Ẽ‖F ≤ Cf,m
((

1

s

)k−1
+

(
1

r

)k−1)
+

1√
KL
‖ηK,L‖F . (12)

It follows from Theorem 4 of [22] that

T̃`,ω = 4π2d
∑

q∈[ dL ]
c

∑
p∈[ dK ]

c

(
Fd

(
x̂ ◦ SqL−`x̂

))
ω−pK

(
Fd

(
ẑ ◦ S`−qLẑ

))
ω−pK

+ Ẽ`,ω (13)

=
4π2

d

∑
q∈[ dL ]

c

∑
p∈[ dK ]

c

(Fd (x ◦ Sω−pKx))`−qL (Fd (z ◦ Sω−pKz))qL−` + Ẽ`,ω. (14)

In Sections 3.1 and 3.2, we will be able to use (13) and (14) to recover a portion of the Fourier autocor-

relation matrix x̂x̂∗. (Note that [22] uses a different normalization of the discrete Fourier transform and

consequently (13) and (14) have different powers of d than the corresponding equations there.)
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3.1 Wigner Deconvolution Under Assumption 1

In this subsection, we will assume our mask m̃(x) satisfies Assumption 1, i.e., that it is a trigonometric

polynomial with at most ρ nonzero coefficients for some ρ ≤ r − 1. We also assume that K = d, that L

divides d, and that L = ρ+ κ for some 2 ≤ κ ≤ ρ.

Since K = d, equation (13) simplifies to

T̃`,ω = 4π2d
∑

q∈[ dL ]
c

(
Fd

(
x̂ ◦ SqL−`x̂

))
ω

(
Fd

(
ẑ ◦ S`−qLẑ

))
ω

+ Ẽ`,ω.

By construction, supp(ẑ) ⊆ [ρ + 1]c. Therefore, if 1 − κ ≤ ` ≤ κ − 1, we may use the same reasoning as

in the proof of Lemma 10 of [22], to see

ẑ ◦ S`−qLẑ = 0

except for when q = 0. Thus,

T̃`,ω = 4π2d
(
Fd

(
x̂ ◦ S−`x̂

))
ω

(
Fd

(
ẑ ◦ S`ẑ

))
ω

+ Ẽ`,ω for all |`| ≤ κ− 1. (15)

In order use (15) to solve for
(
Fd

(
x̂ ◦ S−`x̂

))
ω
, we must divide by

(
Fd

(
ẑ ◦ S`ẑ

))
ω
. This motivates

us to introduce a mask-dependent constant defined by

µ1 := min
|p|≤κ−1,q∈D

∣∣∣∣ (Fd

(
ẑ ◦ Spẑ

))
q

∣∣∣∣. (16)

Proposition 1 shows that it is relatively simple to construct a trigonometric polynomial m̃(x) such that

µ1 is strictly positive. For a proof, please see Appendix B.

Proposition 1. Assume that m̃ satisfies Assumption 1. Further assume∣∣∣m̂(−ρ
2

)∣∣∣ > 2ρ
∣∣∣m̂(−ρ

2
+ 1
)∣∣∣ (17)

and ∣∣∣m̂(−ρ
2

+ 1
)∣∣∣ ≥ ∣∣∣m̂(−ρ

2
+ 2
)∣∣∣ ≥ . . . ≥ ∣∣∣m̂(ρ

2

)∣∣∣ > 0. (18)

Then the mask-dependent constant µ1 defined as in (16) satisfies

µ1 ≥
1

2d

∣∣∣m̂(−ρ
2

)∣∣∣ ∣∣∣m̂(−ρ
2

+ κ− 1|
)∣∣∣ > 0.

For the rest of this section, we will assume that µ1 is non-zero. Therefore, we may make a change of

variables `→ −` in (15) to see that(
Fd

(
x̂ ◦ S`x̂

))
ω

=
1

4π2d

(
T̃−`,ω − Ẽ−`,ω

(Fd(ẑ ◦ S−`ẑ))ω

)
=

1

4π2d

(
T̃−`,ω

(Fd(ẑ ◦ S−`ẑ))ω

)
− 1

4π2d

(
Ẽ−`,ω

(Fd(ẑ ◦ S−`ẑ))ω

)
for all 1− κ ≤ ` ≤ κ− 1. Writing the above equation in column form, we have

Fd

(
x̂ ◦ S`x̂

)
=

1

4π2d

(
T̃T
−`

Fd(ẑ ◦ S−`ẑ)

)
− 1

4π2d

(
ẼT
−`

Fd(ẑ ◦ S−`ẑ)

)

11



and so

x̂ ◦ S`x̂ =
1

4π2d
Fd
−1
(

T̃T
−`

Fd(ẑ ◦ S−`ẑ))

)
− 1

4π2d
Fd
−1
(

ẼT
−`

Fd(ẑ ◦ S−`ẑ

)
, (19)

where, as mentioned in Section 1, the division of vectors is defined componentwise and Mj denotes the

j-th column of a matrix M.

Let Tκ : Cd×d → Cd×d be the restriction operator defined for M ∈ Cd×d by

Tκ(M)ij =

{
Mi,j if |i− j| ≤ κ− 1,

0 otherwise.

Then, we may rewrite (19) in matrix form as

Tκ(x̂x̂∗) = X + Ñ, (20)

where the matrices X = (Xi,j)i,j∈D and Ñ = (Ñi,j)i,j∈D have entries defined by

Xi,j =


1

4π2d

(
Fd
−1
(

T̃Ti−j
Fd(ẑ◦Si−j ẑ)

))
i

if |i− j| ≤ κ− 1,

0 otherwise,

(21)

and

Ñi,j =


−1
4π2d

(
Fd
−1
(

ẼTi−j
Fd(ẑ◦Si−j ẑ)

))
i

if |i− j| ≤ κ− 1,

0 otherwise.

For a d × d matrix, M = (Mi,j)i,j∈D, let R(M) = (R(M)i,j)i∈D,j∈[2κ−1]c be the d × (2κ − 1) matrix

with entries defined by

R(M)i,j = Mi,i+j .

Note that the columns of R(M) are the diagonal bands of M which are near the main diagonal, and that

in particular, the middle column, column zero, is the main diagonal. Since Ñ is a banded matrix whose

nonzero terms are within κ of the main diagonal, we see

‖Ñ‖F = ‖R(Ñ)‖F .

Therefore, since 1√
d
Fd
−1 is unitary, we may bound the `2-norm of the columns of R(Ñ) by

‖R(Ñ)j‖2 =

∥∥∥∥ 1

4π2d
Fd
−1
(

ẼT
−j

Fd(ẑ ◦ S−j ẑ)

)∥∥∥∥
2

≤ 1

4π2d1/2

∥∥∥∥ ẼT
−j

Fd(ẑ ◦ S−j ẑ)

∥∥∥∥
2

≤ 1

4π2d1/2µ1
‖ẼT
−j‖2,

where µ1 is the mask-dependent constant defined in (16). Therefore, by (11) with K = d, we have

‖Ñ‖F = ‖R(Ñ)‖F ≤ C
1

d1/2µ1
‖Ẽ‖F ≤ Cf,m

1

d1/2µ1

((
1

s

)k−1
+

1√
dL
‖ηd,L‖F

)
. (22)

Let H : Cd×d → Cd×d be the Hermitianizing operator

H(M) =
M + M∗

2
. (23)

Since Tκ(xx∗) is Hermitian, applying H to both sides of (20) yields

Tκ(x̂x̂∗) = A + N, (24)

12



where

A := H(X) and N := H(Ñ). (25)

We note that by (22) and the triangle inequality, we have

‖N‖F ≤ ‖Ñ‖F ≤ Cf,m
1

d1/2µ1

((
1

s

)k−1
+

1√
dL
‖ηd,L‖F

)
. (26)

3.2 Wigner Deconvolution Under Assumption 2

In this subsection, we assume f(x) and m̃(x) satisfy Assumption 2, i.e., that supp(f) ⊆ (−a, a) and

supp(m̃) ⊆ (−b, b) with a + b < π. Note that, by construction, this implies that the vector z defined in

(8) satisfies supp(z) ⊆ [δ + 1]c, where δ = b bdπ c. We also assume that L = d, that K divides d and that

K = δ + κ for some 2 ≤ κ ≤ δ. Furthermore, we let s < 2κ− 1.

Since L = d, equation (14) simplifies to

T̃`,ω =
4π2

d

∑
p∈[ dK ]

c

(Fd (x ◦ Sω−pKx))` (Fd (z ◦ Sω−pKz))−` + Ẽ`,ω.

Furthermore, if |ω| ≤ κ− 1, then by the same reasoning as in Lemma 11 and Remark 1 of [22], all terms

in the above sum are zero except for the term corresponding to p = 0. Therefore,

T̃`,ω =
4π2

d
(Fd (x ◦ Sωx))` (Fd (z ◦ Sωz))−` + Ẽ`,ω for all |ω| ≤ κ− 1. (27)

The following lemma is a restatement of Lemma 3 of [22], although we note that our result appears

slightly different due to the fact that we use a different normalization of the discrete Fourier transform.

Lemma 5. For all ` and ω, we have

(Fd (x ◦ Sωx))` = de2πiω`/d
(
Fd

(
x̂ ◦ S−`x̂

))
ω
.

Applying Lemma 5 to (27), we see that

T̃`,ω = 4π2d
(
Fd

(
x̂ ◦ S−`x̂

))
ω

(
Fd

(
ẑ ◦ S`ẑ

))
ω

+ Ẽ`,ω (28)

for all |ω| ≤ κ− 1. In order to solve for
(
Fd

(
x̂ ◦ S−`x̂

))
ω
, we need to divide by

(
Fd

(
ẑ ◦ S`ẑ

))
ω
. This

motivates us to introduce a second mask-dependent constant given by

µ2 := min
ω∈[2κ−1]c,`∈[2s−1]c

∣∣∣∣ (Fd

(
ẑ ◦ S`ẑ

))
ω

∣∣∣∣. (29)

Proposition 2 shows that, for any given d, it is relatively simple to construct a mask m̃(x) such that µ2
is strictly positive. For a proof please see Appendix B.

Proposition 2. Assume that m̃(x) satisfies Assumption 2. Let z = (zp)p∈D be the vector defined as in

(8) by zp = m
(
2πp
d

)
, and let δ = b bπdc. Let δ̃ ≤ δ+ 1 and assume that supp(z) = {n, n+ 1, . . . , n+ δ̃− 1}

for some κ ≤ δ̃ ≤ δ + 1. Further assume that

|zn| > 2δ̃|zn+1| (30)

and that

|zn+1| ≥ |zn+2| ≥ . . . |zn+δ̃−1| > 0. (31)

Then the mask-dependent constant µ2 defined in (29) satisfies

µ2 ≥
1

2d2
|zn||zn+κ−1| > 0.
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Remark 2. Given any vector z = (zp)p∈D, one may construct, e.g., through spline interpolation, a

function m̃(x) such that m̃
(
2πp
d

)
= zp for all p ∈ D.

For the rest of this section, we will assume that µ2 is not equal to zero. Therefore, we may make a

change of variables `→ −` in (28) to see that(
Fd

(
x̂ ◦ S`x̂

))
ω

=
1

4π2d

(
T̃−`,ω − Ẽ−`,ω

(Fd(ẑ ◦ S−`ẑ))ω

)
=

1

4π2d

(
T̃−`,ω

(Fd(ẑ ◦ S−`ẑ))ω

)
− 1

4π2d

(
Ẽ−`,ω

(Fd(ẑ ◦ S−`ẑ))ω

)
.

Now, recall that s ≤ 2κ − 1, and let B := (Bω,`),C := (Cω,`), and D := (Dω,`) be (2κ − 1) × (2s − 1)

matrices with entries defined by

Bω,` =
(
Fd

(
x̂ ◦ S`x̂

))
ω
, Cω,` =

1

4π2d

(
T̃−`,ω

(Fd(ẑ ◦ S−`ẑ))ω

)
, Dω,` =

−1

4π2d

(
Ẽ−`,ω

(Fd(ẑ ◦ S−`ẑ))ω

)
(32)

for ω ∈ [2κ− 1]c and ` ∈ [2s− 1]c so that

B = C + D.

Note that

‖D‖F ≤
1

4π2dµ2
‖Ẽ‖F , (33)

where µ2 is the mask-dependent constant defined in (29).

Next observe that we may factor B = WV, where V := (Vj,k)j∈S,k∈[2s−1]c is the s×(2s−1) matrix with

entries defined by Vj,k = (x̂◦Skx̂)j and W := (Wj,k)j∈[2κ−1]c,k∈S is the (2κ−1)× s partial Fourier matrix

with entries Wj,k = (Fd)j,k. Since s ≤ 2κ − 1, we may let W† := (W∗W)−1W∗ be the pseudoinverse of

W and see

V = W†C + W†D.

Now, let Λ : Cs×(2s−1) → Cd×d be the lifting operator defined by

(Λ(M))i,j = Mi,j−i.

Note that the columns of M are diagonal bands of Λ(M) with the middle column on the main diagonal.

By construction, we have T2s−1(x̂x̂∗) = Λ(V). Therefore, since T2s−1(x̂x̂∗) is Hermitian, we have

T2s−1(x̂x̂∗) = H(Λ(V)),

where H is the Hermitianizing operator introduced in (23). Therefore,

T2s−1(x̂x̂∗) = A + N, (34)

where

A := H(Λ(W†C)) and N := H(Λ(W†D)). (35)

Since H is contractive, (33) implies

‖N‖F ≤ ‖Λ(W†D)‖ = ‖W†D‖F ≤
1

σmin(W)
‖D‖F ≤

1

4π2dµ2σmin(W)
‖Ẽ‖F ,

where σmin(W) is the smallest singular value of W. Combining this with (12) yields

‖N‖F ≤ Cf,m
1

dµ2σmin(W)

((
1

s

)k−1
+

(
1

r

)k−1
+

1√
Kd
‖ηK,d‖F

)
. (36)
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4 Convergence Guarantees of Algorithms 1 and 2

In this section, we will provide convergence guarantees for Algorithms 1 and 2. Specifically, we will prove

Theorem 3 which guarantees that we can reconstruct f(x) from a noisy Fourier autocorrelation matrix.

Corollaries 1 and 2, which guarantee the convergence of our algorithms, will then follow immediately from

(24), (26), (34), and (36), which are proved in Section 3.

For the rest of this section, we will assume that there exists 1 ≤ γ ≤ d such that

Tγ(x̂x̂∗) = A + N. (37)

Here, A = (Ai,j)i,j∈D is a known approximation of the partial Fourier autocorrelation matrix Tγ(x̂x̂∗) and

N ∈ Cd×d is an arbitrary noise matrix. We note that, under Assumption 1, equation (24) shows that (37)

holds with γ = κ. Similarly, under Assumption 2, equation (34) shows that (37) holds with γ = 2s − 1.

We also remark that (26) and (36) provide bounds on ‖N‖F in these cases. We will also assume for the

remainder of this section that there exists β < γ/2 such that f belongs to the class of functions with β

Fourier decay introduced in Definition 1.

By construction, the discrete Fourier transform of the vector x defined in (8) satisfies

x̂n = f̂(n) for all n ∈ S,

and so the square magnitudes of the Fourier coefficients of f lie on the main diagonal of the matrix

Tγ(x̂x̂∗). Therefore, we view an :=
√
|An,n| as an approximation of |x̂n|. More specifically, Lemma 3

of [20] shows that ∣∣∣an − |f̂(n)|
∣∣∣2 ≤ 3‖N‖∞. (38)

For each n ∈ S, the greedy entry selection algorithm, Algorithm 3, outputs a sequence {n`}b`=0, where

n0 = arg maxn∈S an and nb = n. Given that sequence, we define

αn :=

b−1∑
l=0

arg
(
An`+1,n`

)
. (39)

To understand this definition, we let

θ0 := arg(f̂(n0)) and τn :=
b−1∑
l=0

arg
(
(x̂x̂∗)n`+1,n`

)
. (40)

By construction, τn = arg
(
f̂(n)

)
− θ0. Therefore

e
−iθ0 f̂(n) = |f̂(n)|eiτn

for all n ∈ S. (Note that n0 does not depend on n.) Since A is a noisy approximation of (a portion

of) x̂x̂∗, we intuitively view αn as a noisy approximation of τn (up to a phase shift θ0). Lemma 7 will

show that this intuition is correct when |f̂(n)| is sufficiently large. Therefore, in light of (38), we define

a trigonometric polynomial, fe(x), which estimates f(x) by

fe(x) :=
∑
n∈S

ane
iαne

inx. (41)

The following theorem shows that fe(x) is a good approximation of f(x).
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Theorem 3. Assume that f(x) has β Fourier decay for some β < γ/2. For n ∈ S, let αn be defined as

in (39), let an =
√
An,n, and let fe(x) be the trigonometric polynomial defined as in (41). Then,

min
θ∈[0,2π]

‖eiθf − fe‖2L2([−π,π]) ≤ C s
(
d

γ

)2

‖N‖∞ + Cf

(
1

s

)2k−2
.

Before proving Theorem 3, we recall that γ = κ under Assumption 1 and γ = 2s−1 under Assumption

2. Therefore, (26), (36), and the fact that ‖N‖∞ ≤ ‖N‖F , immediately lead to the following corollaries.

Corollary 1 (Convergence Guarantees for Algorithm 1). Let s + r < d, let K = d, and let L divide d.

Assume that f(x) and m̃(x) satisfy Assumption 1, that ρ ≤ r−1, and that L = ρ+κ for some 2 ≤ κ ≤ ρ.
Then the trigonometric polynomial fe(x) output by Algorithm 1 satisfies

min
θ∈[0,2π]

‖eiθf − fe‖2L2([−π,π]) ≤ Cf,m
(
sd3/2

κ2µ1

((
1

s

)k−1
+

1√
dL
‖ηd,L‖F

)
+

(
1

s

)2k−2)
,

where µ1 is the mask-dependent constant defined in (16). Moreover, if s > d/2, then

min
θ∈[0,2π]

‖eiθf − fe‖2L2([−π,π]) ≤ Cf,m
(

1

κ2µ1

(
1

d

)k−7/2
+

d2

κ2L1/2µ1
‖ηd,L‖F +

(
1

d

)2k−2)
.

Corollary 2 (Convergence Guarantees for Algorithm 2). Let s + r < d, let L = d, and let K divide d.

Assume f(x) and m̃(x) satisfy Assumption 2 and let δ = b bdπ c. Further, assume that K = δ + κ for some

2 ≤ κ ≤ δ and that s < 2κ− 1. Then the trigonometric polynomial fe(x) output by Algorithm 2, satisfies

min
θ∈[0,2π]

‖eiθf − fe‖2L2([−π,π])

≤ Cf,m
(

d

sµ2σmin(W)

((
1

s

)k−1
+

(
1

r

)k−1
+

1√
Kd
‖ηK,d‖F

)
+

(
1

s

)2k−2)
,

where µ2 is the mask-dependent constant defined in (29). Moreover, if s, r ≥ db
2π , then

min
θ∈[0,2π]

‖eiθf − fe‖2L2([−π,π])

≤ Cf,m
(

1

µ2σmin(W)bk−1dk
+

d1/2

K1/2µ2σmin(W)
‖ηK,d‖F +

(
1

bd

)2k−2)
.

In order to prove Theorem 3, we need the following lemma which provides us with an estimate of

‖e−iθ0PSf − fe‖L2([−π,π]) as well as the uniform convergence of Fourier series.

Lemma 6. Assume that f(x) has β Fourier decay for some β < γ/2. For n ∈ S, let αn be defined as in

(39), let an =
√
An,n, and let fe(x) be the trigonometric polynomial defined as in (41) by

fe(x) =
∑

n∈S ane
iαneinx. Then,∥∥∥e−iθ0PSf − fe∥∥∥2

L2([−π,π])
≤ C s

(
d

γ

)2

‖N‖∞.

In order to prove Lemma 6, we need the following lemma, which is a modification of [20, Lemma 4].

It shows that αn is a good approximation of τn for all n such that |f̂(n)| is sufficiently large. For a proof,

please see Appendix C.
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Lemma 7. Suppose that f has β Fourier decay for some β ≤ γ/2, and let Lf be the set of indices

corresponding to large Fourier coefficients defined by

Lf := {n ∈ S : |f̂(n)|2 ≥ 48‖N‖∞}. (42)

Let n ∈ Lf , and let τn and αn be as in (39) and (40). Then

|eiτn − eiαn | ≤ 4πd

γ

‖N‖∞
|f̂(n)|2

.

The Proof of Lemma 6. Recall that x̂n = f̂(n) for all n ∈ S, and let x̂|S be a vector of length s obtained

by restricting x̂ to indices in S. Define vectors u = (un)n∈S and v = (vn)n∈S by

un = ane
iαn and vn = |f̂(n)|eiαn .

By Parsevals identity, we see∥∥∥e−iθ0PSf(x)−
∑
n∈S

ane
iαne

inx
∥∥∥
L2([−π,π])

=
∥∥∥e−iθ0 ∑

n∈S
f̂(n)einx −

∑
n∈S

une
inx
∥∥∥
L2([−π,π])

≤
√

2π
∥∥∥e−iθ0 x̂|S − u

∥∥∥
`2

≤
√

2π
∥∥∥e−iθ0 x̂|S − v

∥∥∥
`2

+
√

2π‖u− v‖`2

=: I1 + I2.

To estimate I2, we recall (38) and note

I22 = 2π
∑
n∈S
|un − vn|2 = 2π

∑
n∈S

∣∣∣aneiαn − |f̂(n)|eiαn
∣∣∣2 = 2π

∑
n∈S

∣∣∣an − |x̂n|∣∣∣2 ≤ 6πs‖N‖∞. (43)

Using Lemma 7 and the fact that |eiτn − eiαn | ≤ 2, we have

I21 = 2π
∑
n∈S
|f̂(n)|2|eiτn − eiαn |2

≤ C
∑

n∈S\Lf

|f̂(n)|2 + C
∑
n∈Lf

(
d

γ

)2

‖N‖2∞ |f̂(n)|−2

≤ C s ‖N‖∞ + C
∑
n∈Lf

(
d

γ

)2

‖N‖∞

≤ C s
(
d

γ

)2

‖N‖∞,

where Lf is the set of indices corresponding to large Fourier coefficients introduced in (42). Combining

this with (43) yields ∥∥∥e−iθ0PSf(x)−
∑
n∈S

ane
inx
e
iαn
∥∥∥2
L2([−π,π])

≤ C s
(
d

γ

)2

‖N‖∞

as desired.

Theorem 3 now follows readily via Lemma 2 which estimates ‖f − PSf‖2L2([−π,π]).
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The Proof of Theorem 3. Let θ0 = arg(f̂(n0)). Then we get

min
θ∈[0,2π]

∥∥∥eiθf(x)−
∑
n∈S

ane
iαne

inx
∥∥∥
L2([−π,π])

≤ min
θ∈[0,2π]

(∥∥∥eiθf(x)− eiθPSf(x)
∥∥∥
L2([−π,π])

+
∥∥∥eiθPSf(x)−

∑
n∈S

ane
iαne

inx
∥∥∥
L2([−π,π])

)
≤ ‖f(x)− PSf(x)‖L2([−π,π]) +

∥∥∥e−iθ0PSf(x)−
∑
n∈S

ane
iαne

inx
∥∥∥
L2([−π,π])

.

By Lemma 6, we know that∥∥∥e−iθ0PSf(x)−
∑
n∈S

ane
iαne

inx
∥∥∥2
L2([−π,π])

≤ C s
(
d

γ

)2

‖N‖∞.

Therefore, we conclude by applying Lemma 2 to see

‖f − PSf‖2L2([−π,π]) ≤ 2π‖f − PSf‖2L∞([−π,π]) ≤ Cf
(

1

s

)2k−2
.

5 Empirical Evaluation

We now present numerical results demonstrating the efficiency and robustness of Algorithms 1 and 2.

5.1 Empirical Evaluation of Algorithm 1

We begin by investigating the empirical performance of Algorithm 1 in recovering the following class of

compactly supported C∞-smooth test functions,

f(x) :=

J∑
j=1

αj ξc1,c2(x− νj). (44)

Here J ∈ N, αj ∈ C, νj ∈ [−π, π], and ξc1,c2 denotes a C∞-smooth bump function with ξc1,c2(x) > 0

in (c1, c2) and ξc1,c2(x) = 0 for x /∈ [c1, c2]. For the experiments below, we set J = 4, c1 = −π/5,

c2 = π/5, and choose αj such that its real and complex components are both i.i.d. uniform random

variables U [−1, 1]. The shifts νj are selected uniformly at random (without repetition) from the set

{−νmax + j(2νmax/(2J − 1))}2J−1j=0 where νmax = 0.9π − max{|c1|, |c2|} so that supp(f) ⊆ [−π, π]. A

representative plot of (the real and imaginary parts of) such a test function is provided in Fig. 1a.

To generate masks satisfying Assumption 1 (see Section 1.1), we choose the Fourier coefficients m̂

from a zero mean, unit variance i.i.d. complex Gaussian distribution and empirically verify that the

mask-dependent constant µ1 (as defined in (16) is strictly positive. Fig. 1b plots such a (complex)

trigonometric mask for ρ = 20, where ρ + 1 is the (two-sided) bandwidth of the mask. Table 1 lists the

empirically calculated µ1 values, and averaged over 100 trials) for such masks. The left two columns of

the table list µ1 for a fixed discretization size (d = 211) and varying ρ; they show that µ1 is approximately

constant for fixed d. The right two columns list µ1 values for fixed ρ and varying d; they show µ1 decreases

slowly with d (roughly proportional to 1/d). This verifies that constructing admissible (i.e., with µ1 6= 0)

trigonometric masks as per Assumption 1 is indeed possible for reasonable values of d and ρ.
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Algorithm 1 Signal Recovery with Trigonometric Polynomial Masks

Inputs

1. Trigonometric polynomial mask m̃ satisfying Assumption 1.

2. Matrix Y = (Yω,`)ω∈D,`∈L of spectrogram measurements defined as in (1).

Steps

1. Define vector z = (zp)p∈D by zp = m̃
(
2πp
d

)
.

2. Let κ = L− ρ, and for 1− κ ≤ ` ≤ κ− 1, estimate

Fd

(
x̂ ◦ S`x̂

)
≈ 1

4π2Ld2

(
(FLYTFd

T )−`

Fd(ẑ ◦ S−`ẑ)

)
.

3. Invert the Fourier transforms above to recover estimates of the vectors x̂ ◦ S`x̂.

4. Organize these vectors into a banded matrix X = (Xi,j)i,j∈D described as in (21).

5. Hermitianize X to obtain the matrix A = (Ai,j)i,j∈D as described in (25).

6. Estimate |f̂(n)| ≈ an =
√
|An,n|.

7. For n ∈ S, choose {n`}b`=0 according to Algorithm 3.

8. Approximate

arg
(
f̂(n)

)
≈ αn =

b−1∑
`=0

arg
(
An`+1,n`

)
.

Output

An approximation of f given by

fe(x) =
∑
n∈S

ane
iαne

inx.
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(b) Mask (Trigonometric Polynomial; ρ = 20)

Figure 1: Representative Test Function and Mask Satisfying Assumption 1.
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Algorithm 2 Signal Recovery with Compactly Supported Masks

Inputs

1. Compactly supported mask m̃ satisfying Assumption 2.

2. Matrix Y = (Yω,`)ω∈K,`∈D of spectrogram measurements defined as in (1).

Steps

1. Define vector z = (zp)p∈D by zp = m̃
(
2πp
d

)
.

2. Let κ = K − δ, and for 1− κ ≤ ω ≤ κ− 1, 1− s ≤ ` ≤ s− 1 estimate

Fd

(
x̂ ◦ S`x̂

)
≈ 1

4π2Kd2

(
(FdYTFK

T )−`

(Fd(ẑ ◦ S−`ẑ))

)
.

3. Form the matrix C according to (32).

4. Compute V = W†C, where W = ((Fd)j,k)j∈[2κ−1]c,k∈S is the (2κ− 1)× s partial Fourier matrix.

5. Apply lifting operator Λ.

6. Hermitianize Λ(V) to obtain the matrix A = (Ai,j)i,j∈D as described in (35).

7. Estimate |f̂(n)| ≈ an =
√
|An,n|.

8. For n ∈ S, choose {n`}b`=0 according to Algorithm 3.

9. Approximate

arg
(
f̂(n)

)
≈ αn =

b−1∑
`=0

arg
(
An`+1,n`

)
.

Output

An approximation of f given by

fe(x) =
∑
n∈S

ane
iαne

inx.

(d = 211, ρ) µ1 (Average over 100 trials) (d, ρ = 50) µ1 (Average over 100 trials)

(211, 20) 1.957× 10−4 (111, 50) 4.825× 10−4

(211, 40) 1.704× 10−4 (223, 50) 1.560× 10−4

(211, 60) 1.563× 10−4 (447, 50) 6.199× 10−5

(211, 80) 1.500× 10−4 (895, 50) 2.162× 10−5

(211, 100) 1.530× 10−4 (1791, 50) 8.247× 10−6

Table 1: Empirically evaluated µ1 values (mask constant) for Algorithm 1. (Fourier coefficients of mask

chosen as i.i.d. complex standard normal entries. Left two columns show µ1 values for fixed d, right two

columns show µ1 values for fixed ρ.)
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Algorithm 3 Entry Selection

Inputs

1. Vector of amplitudes a = (an)n∈D, an =
√
|An,n|.

2. Entry n ∈ S.

Steps

1. Choose n0 = arg maxn∈S an.

2. Let b = 0.

3. While: |n− nb| ≥ γ.

If: n > nb, let nb+1 ← arg maxnb+γ−β≤m<nb+γ am.

If: n < nb, let nb+1 ← arg maxnb−γ<m≥nb−γ+β am.

b← b+ 1.

4. nb ← n.

Output

A sequence {n`}b`=0, |n`+1 − n`| < 2β, nb = n, b ≤ d
β .

Finding closed form analytical expressions for the integral in (3) is non-trivial. Therefore, we use

numerical quadrature computations on an equispaced fine grid (of 10, 001 points) in [−π, π] to generate

phaseless measurements corresponding to (3) under both Assumptions 1 and 2.

We now investigate the noise robustness of Algorithm 1. For the results shown in Fig. 2a (where each

data point is generated by averaging the results of 100 trials), we add i.i.d. random (real) Gaussian noise

to the phaseless measurements (3) at desired signal to noise ratios (SNRs). In particular, the noise matrix

ηK,L ∈ Rd×L in Section 3 is chosen to be i.i.d. N (0, σ2I). The variance σ2 is chosen such that

SNR (dB) = 10 log10

(
‖Z‖2F
dLσ2

)
where Z denotes the corresponding matrix of perfect (noiseless) measurements. Errors in the recovered

signal are also reported in dB with

Error (dB) = 10 log10

(
h
∑N

i=0 |f(xi)− fe(xi)|2

h
∑N

i=0 |f(xi)|2

)
,

where f and fe denote the true and recovered functions respectively, and xi denotes (equispaced) grid

points in [−π, π], i.e. xi = −π + hi with h := 2π/N . Errors reported in this section use N = 2003.

Fig. 2a plots the error in recovering a test function using Algorithm 1 (for d = 257, ρ = 32, κ =

ρ − 1 and (2ρ − 1)d total measurements) over a wide range of SNRs. For reference, we also include

results using an improved reconstruction method based on Algorithm 1, as well as the popular HIO+ER

alternating projection algorithm [5, 11, 21]. Refinements over Algorithm 1 included use of an improved

eigenvector-based magnitude estimation procedure in place of Step 6 (see [18, Section 6.1] for details), and

(exponential) low-pass filtering2 in the output Fourier partial sum reconstruction step of Algorithm 1.

2With filter order increasing with SNR; we used a 2nd-order filter at 10dB SNR and a 12th-order filter at 60dB SNR.
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The HIO+ER algorithm implementation used the zero vector as an initial guess, although use of a

random starting guess did not change the qualitative nature of the results. As is common practice, (see

for example [11]) we implemented the HIO+ER algorithm in blocks of eight HIO iterations followed

by two ER iterations in order to accelerate convergence of the algorithm. To minimize computational

cost while ensuring convergence (see Fig. 2d), the total number of HIO+ER iterations was limited to

30. As we see, Algorithm 1 compares well with the popular HIO+ER algorithm, with the improved

method offering even better noise performance. Furthermore, this post-processing procedure does not

significantly increase the computational cost. Fig. 2b plots the execution time (in seconds, averaged over

100 trials) to recover a test signal using dL measurements, where d is the discretization size, L = 2ρ− 1

and ρ = min{(d−5)/2, 2blog2(d)c}. Both Algorithm 1 and its refined variant are essentially O(dL), where

dL is the number of measurements acquired, with Algorithm 1 performing much faster than the HIO+ER

procedure. Finally, we note that reconstruction error can be reduced by increasing the number of shifts L

acquired (and consequently, the total number of measurements). Fig. 2c plots the error in reconstructing

a test signal discretized using d = 257 points, κ = ρ − 1 and Ld = (2ρ − 1)d measurements for different

values of ρ (and correspondingly L). As expected, we see that noise performance improves as L increases.

Additional numerical experiments studying the convergence behavior of Algorithm 1 (in the absence of

measurement errors) can be found in Appendix D.

10 20 30 40 50 60

-50

-40

-30

-20

-10

0

10

(a) Noise Robustness

102 103

10 -3

10 -2

10 -1

100

(b) Computational Cost

10 20 30 40 50 60
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

(c) Error vs. No. of Shifts

10 20 30 40 50 60 70 80 90 100
-25

-20

-15

-10

-5

0

(d) HIO+ER Iterations3

Figure 2: Empirical Evaluation of Algorithm 1 and Selection of HIO+ER Parameters for Comparison

5.2 Empirical Evaluation of Algorithm 2

We next present empirical simulations evaluating the robustness and efficiency of Algorithm 2. As detailed

in Assumption 2 (see Section 1.1), we recover compactly supported test functions with supp(f) ⊆ (−a, a)

using compactly supported masks which satisfy supp(m̃) ⊆ (−b, b), where a+ b < π. For experiments in

this section, we choose b = 3/4 and a = 0.9(π− 3/4). The test functions are generated as detailed in (44)

of Section 5.1, as a (complex) weighted sum of shifted C∞-smooth bump functions, but with a maximum

shift of νmax = a− b. A representative test function is plotted in Fig. 3a. The corresponding compactly

supported masks are generated as the product of a trigonometric polynomial and a bump function using

m̃(x) = ξ−b.b(x) ·

 ρ/2∑
p=−ρ/2

m̂(p)eipx/b

 , (45)

where ξ−b,b is the C∞-smooth bump function described in Section 5.1, and the term in the parenthesis

describes a (complex) 2b-periodic trigonometric polynomial. A representative example of such as mask

3The notation (HIO,ER)=(x,y) in this figure denotes implementation of the HIO+ER algorithm in “blocks” of x iterations

of the HIO algorithm followed by y iterations of the ER algorithm. We choose 30 total iterations of the red dashed plot in

our implementations of the HIO+ER algorithm in this section.
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is provided in Fig. 3b with ρ = 16 and the coefficients m̂ chosen from a zero mean, unit variance i.i.d.

complex Gaussian distribution.
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Figure 3: Representative Test Function and Mask Satisfying Assumption 2.

(d = 189, κ) µ2 (Average over 100 trials) (d, κ = 27) µ2 (Average over 100 trials)

(189, 3) 2.563× 10−3 (165, 27) 9.722× 10−5

(189, 10) 2.873× 10−4 (223, 27) 8.866× 10−5

(189, 31) 8.331× 10−5 (495, 27) 4.686× 10−5

(189, 94) 2.642× 10−19 (1045, 27) 2.448× 10−5

Table 2: Empirically evaluated µ2 values (mask constant) for Algorithm 2. The left two columns show

µ2 values for fixed d, right two columns show µ2 values for fixed κ. Here, δ = κ+ 1 and s = κ− 1.

Representative values of the mask constant µ2 (as defined in (29) and averaged over 100 trials) are listed

in Table 2. The first two columns list µ2 values for fixed discretization size d, while the last two columns

list µ2 values for fixed κ. In both cases, we set K = 2κ+ 1 and ensure that K divides d. We note that κ

denotes the number of modes used in the Wigner deconvolution procedure (Step 2) in Algorithm 2. Since

the masks constructed using (45) are compactly supported and smooth, we expect the autocorrelation

of their Fourier transforms (and the corresponding Fourier coefficients of this autocorrelation) to decay

rapidly. Therefore, we expect µ2 to be small for large κ values; indeed, this is seen in the last row of

Table 2 where the µ2 value is essentially zero when d = 189, κ = 94. However, as the functions we expect

to recover also exhibit rapid decay in Fourier coefficients, we only require a small number of their Fourier

modes to ensure accurate reconstructions. Hence, small to moderate κ values suffice. As seen in Table

2, it is feasible to construct admissible masks (i.e., µ2 > 0) for such (d, κ) pairs. Experiments have also

been conducted with m̃ chosen to be the bump function ξ−b,b and a (truncated) Gaussian, However, these

experiments yield smaller mask constants µ2, which make the resulting reconstructions more susceptible

to noise. Selection of “optimal” and physically realizable compactly supported masks is an open problem

which we defer to future research.

We note that due to the equivalence of (27) and (28), the Wigner deconvolution step (Step 2) in

Algorithm 2 may be instead evaluated using (27). While theoretical analysis of this equivalent procedure

is more involved, it offers computational advantages since it does not require solving4 the Vandermonde

system of Step 4 in Algorithm 2. The corresponding µ2 values for this procedure also follow the qualitative

4We use the Iterated Tikhonov method (see [6], [22, Algorithm 3]) to invert the Vandermonde system in Step 4 of Alg. 2.
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behavior in Table 2. This variant of Algorithm 2 is used in generating some of the plots in Appendix D,

while Fig. 4 provides a comparison of Algorithm 2 and this alternate implementation.
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Figure 4: Empirical Evaluation of Algorithm 2 and Selection of HIO+ER Parameters for Comparison

We now study the robustness and computational efficiency of Algorithm 2. Fig. 4a plots the error in

recovering a test function (with each data point averaged over 100 trials) for discretization size d = 189, δ =

32, κ = δ−1, s = 29 and d/3 total measurements over a wide range of SNRs. For reference, we also include

results using the HIO+ER alternating projection algorithm, as well as the alternate implementation of

Algorithm 2 (using (27) to implement the Wigner deconvolution Step 2). As in Section 5.1, the alternate

implementation of Algorithm 2 and the HIO+ER implementations utilize (exponential) low-pass filtering.

The HIO+ER algorithm is implemented in blocks of eight HIO iterations followed by two ER iterations

in order to accelerate the convergence of the algorithm, with a total of 100 iterations used to ensure

convergence while minimizing computational cost (see Fig. 4c). The proposed method (especially the

alternate implementation) compares well with the HIO+ER algorithm. Additionally, we also provide

results using a post-processed implementation of Algorithm 2 using just 10 iterations of HIO+ER. In

this context, we can view the proposed method as an initializer which accelerates the convergence of

alternating projection algorithms such as HIO+ER. Finally, Fig. 4b, which plots the execution time (in

seconds, averaged over 100 trials) to recover a test signal, shows that the proposed method in Algorithm

2 and its alternate implementation are computationally efficient, with all implementations running in

O(dK) time where dK is the number of measurements acquired.

A The Proofs of Lemmas 2 and 3

The Proof of Lemma 2. We first note that ‖g‖L∞([−π,π]) < ∞ since g is a continuous periodic function.

Next, we see that since g is Ck-smooth, we have |ĝ(ω)| ≤ Cg

(
1
|ω|

)k
for all ω ∈ Z \ {0}, where Cg is a

constant which depends on only g and k. As a result, we have

‖PAg‖L∞([−π,π]) ≤
∑
ω∈Z
|ĝ(ω)| ≤ |ĝ(0)|+ 2Cg

∞∑
m=1

1

mk
= Cg.

Similarly,

‖g − PN g‖L∞([−π,π]) ≤
∑

|ω|≥n+1
2

|ĝ(ω)| ≤ 2Cg
∑

|ω|≥n+1
2

(
1

|ω|

)`
≤ Cg

(
1

n

)`−1
.

The desired result now follows.
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The Proof of Lemma 3. Let g := PSf and h := PRm, where PS and PR are the Fourier projection

operators defined as in (6). Since g and h are trigonometric polynomials and R+ S ⊆ D, we may write∫ π

−π
g(x)h(x− ˜̀)e−ixωdx =

∑
m∈R

∑
n∈S

ĝ(n)ĥ(m)e−im
˜̀
∫ π

−π
e
i(m+n−ω)xdx

=
∑
m∈R

∑
n∈S

ĝ(n)ĥ(m)e−im
˜̀2π

d

∑
p∈D

e
2πip(n+m−ω)/d

=
2π

d

∑
p∈D

(∑
n∈S

ĝ(n)e2πipn/d

)(∑
m∈R

ĥ(m)e(( 2πim
d )(p−`))

)
e
−2πimpω/d

=
2π

d

∑
p∈D

g

(
2πp

d

)
h

(
2π(p− `)

d

)
e
−2πipω/d

=
2π

d

∑
p∈D

xpyp−`e
−2πiωp/d.

B The Proofs of Propositions 1 and 2

The Proof of Proposition 1. We first note that

ẑq =

{
m̂(q) if |q| ≤ ρ/2,
0 if |q| > ρ/2.

Therefore, for all |p| ≤ κ− 1, we have

(
ẑ ◦ Spẑ

)
q

=

{
m̂(q)m̂(p+ q) if − ρ/2 ≤ q, p+ q ≤ ρ/2,
0 otherwise.

For any |p| ≤ κ− 1, let

Ip := {q ∈ D : −ρ/2 ≤ q ≤ ρ/2 and − ρ/2 ≤ q + p ≤ ρ/2}.

One may check that

Ip =

{[
−ρ

2 − p,
ρ
2

]
∩ Z if p < 0[

−ρ
2 ,

ρ
2 − p

]
∩ Z if p ≥ 0

.

Therefore, making a simple change of variables in the case p < 0, we have that

Fd

(
ẑ ◦ Spẑ

)
q

=
1

d

∑
`∈Ip

m̂(`)m̂(p+ `)e−2πiq`/d =
1

d

ρ/2−|p|∑
`=−ρ/2

m̂(`)m̂ (`+ |p|) eiφp,q,` ,

where eiφp,q,` is a unimodular complex number depending on p, q and `. Using the assumptions (17) and

(18), we see that∣∣∣∣1d
ρ/2−|p|∑

`=−ρ/2+1

m̂(`)m̂(`+ |p|)eiφp,q,`
∣∣∣∣ ≤ ρ

d

∣∣∣∣m̂(−ρ2 + 1

)∣∣∣∣ ∣∣∣∣m̂(−ρ2 + 1 + |p|
)∣∣∣∣

≤ 1

2d

∣∣∣∣m̂(−ρ2
)∣∣∣∣ ∣∣∣∣m̂(−ρ2 + |p|

)∣∣∣∣ .
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With this, we may use the reverse triangle inequality to see∣∣∣∣Fd

(
ẑ ◦ Spẑ

)
q

∣∣∣∣ =

∣∣∣∣1d
ρ/2−|p|∑
`=−ρ/2

m̂(`)m̂(`+ |p|)eiφp,q,`
∣∣∣∣

≥ 1

d

∣∣∣∣m̂(−ρ2
) ∣∣∣∣ ∣∣∣∣m̂(−ρ2 + |p|

)∣∣∣∣− 1

d

∣∣∣∣ ρ/2−|p|∑
`=−ρ/2+1

m̂(`)m̂(`+ |p|)eiφp,q,`
∣∣∣∣

≥ 1

2d

∣∣∣∣m̂(−ρ2
)∣∣∣∣ ∣∣∣∣m̂(−ρ2 + |p|

)∣∣∣∣
≥ 1

2d

∣∣∣∣m̂(−ρ2
)∣∣∣∣ ∣∣∣∣m̂(−ρ2 + κ− 1|

)∣∣∣∣ .

The Proof of Proposition 2. First, we note that by applying Lemma 5, and setting p = ω, q = `, we have

µ2 = inf
ω∈[2κ−1]c,`∈[2s−1]c

|(Fd(ẑ◦S`ẑ))ω| =
1

d
inf

ω∈[2κ−1]c,`∈[2s−1]c
|(Fd(z◦Sωz))`| =

1

d
inf

p∈[2κ−1]c,q∈[2s−1]c
|(Fd(z◦Spz))q|.

For |p| ≤ κ− 1, we have

(z ◦ Spz)q =

{
zqzp+q if n ≤ q, p+ q ≤ n+ δ̃ − 1,

0 otherwise.

For any |p| ≤ κ− 1, let

Ip := {q ∈ D : n ≤ q ≤ n+ δ̃ − 1 and n ≤ q + p ≤ n+ δ̃ − 1}.

One may check that

Ip =

{
[n− p, n+ δ̃ − 1] ∩ Z if p < 0,

[n, n+ δ̃ − 1− p] ∩ Z if p ≥ 0.

Therefore, making a simple change of variables in the case p < 0, we have that in either case

∣∣∣Fd (z ◦ Spz)q

∣∣∣ =
1

d

∣∣∣∣ ∑
`∈Ip

z`zp+`e
−2πi`q/d

∣∣∣∣ =
1

d

∣∣∣∣ n+δ̃−1−|p|∑
`=n

z`z`+|p|e
iφp,q,`

∣∣∣∣,
where eiφp,q,` is a unimodular complex number depending on p, q and `. Using the assumptions (30) and

(31) we see that ∣∣∣∣1d
n+δ̃−1−|p|∑
`=n+1

z`z`+|p|e
iφp,q,`

∣∣∣∣ ≤ δ̃

d
|zn+1|

∣∣zn+1+|p|
∣∣ ≤ 1

2d
|zn||zn+|p||.

With this,

∣∣∣Fd (z ◦ Spz)q

∣∣∣ =

∣∣∣∣1d
n+δ̃−1−|p|∑

`=n

z`z`+|p|e
iφp,q,`

∣∣∣∣ ≥ 1

d
|zn||zn+|p|| −

∣∣∣∣1d
n+δ̃−1−|p|∑
`=n+1

z`z`+|p|e
iφp,q,`

∣∣∣∣
≥ 1

2d
|zn||zn+|p|| ≥

1

2d
|zn||zn+κ−1|.

26



C The Proof of Lemma 7

Proof. Our proof requires the following sublemma which shows that, if n ∈ Lf , then Algorithm 3 used in

the definition of αn will only select indices n` corresponding to large Fourier coefficients.

Lemma 8. Let n ∈ Lf , and let n0, . . . , nb be the sequence of indices as introduced in the definition of αn.

Then

|f̂(n`)| ≥
|f̂(n)|

2
for all 0 ≤ ` ≤ b.

Proof. When ` = b, the claim is immediate from the fact that nb = n. For all 0 ≤ ` ≤ b− 1, the definition

of n` implies that there exists an interval I` of length β, which is centered at some point a with |a| ≤ |n|,
such that

an` = max
m∈I`

am.

Letting ε =
√

3‖N‖∞, we see that by (38) and Remark 1

|f̂(n`)| ≥ an` − ε = max
m∈I`

am − ε ≥ max
m∈I`

|f̂(m)| − 2ε ≥ |f̂(n)| − 2ε.

The result now follows from noting that ε < |f̂(n)|
4 for all n ∈ Lf .

With Lemma 8 established, we may now prove Lemma 7. Let n ∈ Lf and let n0, . . . nb be the sequence

describe in the definition of αn. For 0 ≤ ` ≤ b− 1, let t` := f̂(n`+1)f̂(n`), a
′
` := f̂(n`+1)f̂(n`) +Nn`+1,n` ,

and N ′` := Nn`+1,n` . Consider the triangle with sides a′`, t`, and N ′` with angles θ` = | arg(a′`) − arg(t`)|
and φ` = | arg(a′`)− arg(N ′`)|, as illustrated in Figure 5. By the law of sines and Lemma 8, we get that

a′` N ′`

t`

θ`

φ`

Figure 5: Triangle in the complex domain.

| sin(θ`)| =
∣∣∣∣N ′`t` sin(φ`)

∣∣∣∣ ≤ ‖N‖∞
|f̂(n`)||f̂(n`+1)|

≤ 4‖N‖∞
|f̂(n)|2

(46)

for all 0 ≤ ` ≤ b. By the definition of Lf and Lemma 8, we have that for all `

|N ′`| ≤ ‖N‖∞ ≤
|f̂(n)|2

4
≤ |f̂(n`)||f̂(n`+1)| = |t`|.

Therefore, 0 ≤ θ` ≤ π
2 , and so by (46), we have

|θ`| ≤
π

2
| sin(θ`)| ≤ 2π

‖N‖∞
|f̂(n)|2

.

By definition τn =
∑b−1

`=0 arg(t`) and αn =
∑b−1

l=0 arg(a′`). Therefore, we have

|eiτn − eiαn | ≤ |αn − τn| =
∣∣∣∣ b−1∑
`=0

arg(a′`)− arg(t`)

∣∣∣∣ =

∣∣∣∣ b−1∑
`=0

θ`

∣∣∣∣ ≤ 2πb
‖N‖∞
|f̂(n)|2

.
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From the definition of n`, we have

|n` − n`−1| ≥ γ − β ≥
γ

2

for all 1 ≤ ` ≤ b− 1. Therefore, the path length b is bounded by

b ≤ |n− n0|
min |n` − n`−1|

≤ 2d

γ
.

Thus, we have

|eiτn − eiαn | ≤ 2πb
‖N‖∞
|f̂(n)|2

≤ 4πd

γ

‖N‖∞
|f̂(n)|2

as desired.

D Additional Numerical Simulations using Algorithms 1 and 2
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Figure 6: Evaluating the convergence behavior of Algorithm 1. Figure plots reconstructions of the real

part of the test function at d = 33 and d = 1025 (along with an expanded view of the reconstruction in

[0, 1]) on a discrete equispaced grid in [−π, π] of 7003 points; we set ρ = min{(d− 5)/2, 16blog2(d)c} and

κ = ρ− 1.

In this section, we provide additional numerical simulations studying the empirical convergence be-

havior of Algorithms 1 and 2. We start with a study of the convergence behavior of Algorithm 1.

Here, we reconstruct the same test function using different discretization sizes d (with ρ chosen to be

min{(d − 5)/2, 16blog2(d)c} and κ = ρ − 1), where the total number of phaseless measurements used is

Ld = (2ρ − 1)d. Fig. 6 plots representative reconstructions (of the real part of the test function) for

two choices of d (d = 33 and d = 1025). We note that the (smooth) test function illustrated in the

figure has several sharp and closely separated gradients, making the reconstruction process challenging.

This is evident in the partial Fourier sums (PNf) plotted for reference alongside the reconstructions from

Algorithm 1 (fe). For small d and ρ, we observe oscillatory behavior similar to that seen in the Gibbs

phenomenon. Nevertheless, we see that the proposed algorithm closely tracks the performance of the

partial Fourier sum, with reconstruction quality improving significantly as d (and ρ) increases.

We next evaluate the convergence behavior of Algorithm5 2 by reconstructing the same test function

using different discretization sizes d (with K = d/3, δ = (K + 1)/2, κ = δ − 1 and s = κ − 1). Fig. 7

plots representative reconstructions (of the real part of the test function) for two choices of d (d = 57 and

5using the alternate implementation – with (27) utilized in place of (28) in Step 2 of the Algorithm – as described in

Section 5
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(b) d = 57 (zoom)
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(c) d = 921
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Figure 7: Evaluating the convergence behavior of Algorithm 2. Figure plots reconstructions of the real

part of the test function at d = 57 and d = 921 (along with an expanded view of the reconstruction in

[0, 1]) on a discrete equispaced grid in [−π, π] of 7003 points; we set K = d/3, δ = (K+1)/2 and κ = δ−1.

d = 921). As in Fig. 6, we note that the (smooth) test function has several sharp and closely separated

gradients, making the reconstruction process challenging. Again, the partial Fourier sums (PNf) plotted

alongside the reconstructions from Algorithm 2 (fe) exhibit Gibbs-like oscillatory behavior for small d

and κ. Nevertheless, we see that the proposed algorithm closely tracks the performance of the partial

Fourier sum, with reconstruction quality improving significantly as d (and δ, κ) increases.
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