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Abstract: Sediment cores were collected from the Xiangxi River, a tributary of the Three Gorges
Reservoir, the deposition time in the longest sediment core (90 cm) was measured by radiometry
(137Cs, 210Pb) activities and polychlorinated dibenzo-p-dioxins/furan (PCDD/F) concentrations in
different depths of the sediment core were measured. The results indicated that the mean deposition
rate was 1.01 cm/a. The total PCDD/F concentrations ranged from 19.28 to 70.07 pg/g d.w. with
a mean of 35.06 pg/g d.w. PCDD/Fs in the 1960–1990s were higher than others, which were
significantly different in the various layers and cores (p < 0.05). PCDD occupied 63.42–87.33% of
PCDD/Fs, and octachlorianted debenzo-p-dioxin (OCDD) was the predominant congener. The ratio
of PCDD to PCDF was 2.26–8.08. PCDD/Fs significantly correlated with total organic carbon (TOC)
(p < 0.01). The toxic equivalent (TEQ) ranged from 0.15 to 0.98 pg/g d.w. No significant difference
was found in TEQ (p > 0.05). It was concluded that the spatio-temporal heterogeneity determined
by hydrodynamics and total organic carbon (TOC) was the distribution pattern of PCDD/Fs in the
sediment cores of Xiangxi River, the concentrations of PCDD/Fs were low, with a low environmental
pollution risk, and by-products of sodium pentachlorophenate might be the main source.

Keywords: polychlorinated dibenzo-p-dioxins; polychlorinated dibenzo-p-furans; sediment; envi-
ronmental pollution risk; three gorges reservoir (TGR)

1. Introduction

Dioxin is typical of persistent organic pollutants; polychlorinated dibenzo-p-dioxins
(PCDDs) and polychlorinated dibenzofurans (PCDFs) are two groups of dioxin compounds
including 22 pollutants recognized under the Stockholm Convention. No PCDD/F is
produced intentionally; they are formed as halogenated aromatic by-products in a variety of
industrial activities and combustion processes [1]. The most important sources of PCDD/F
are the organochlorine industries, the incineration of mixed waste, metal smelting, refining
and the chlorine bleaching of pulp; they present a threat to animal and human health with
their persistence and toxicity [2]. In aquatic ecosystems, PCDD/Fs are particle-associated
in abiotic compartments, but for biota, they are primarily associated with lipids due to the
hydrophobic/lipophilic properties, which lead to the tendency of PCDD/Fs to accumulate
in sediments [3]; consequently, the sediment becomes an important secondary emission
source, which constitutes a particular threat to the associated biota and other organisms
throughout the food web. The contamination status of PCDD/F in sediment is important
for the environmental safety of aquatic ecosystems.
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Three Gorges Reservoir (TGR) is the largest river-type reservoir with many tributaries
in the world, playing an important role in water resource exploitation and economic devel-
opment in China, which is highly concerned with ecological and health risks. Pollutants
in the TGR, such as organic pollutants, microplastics, heavy metals (Cr, Cd, Cu, Hg, As
and Zn) and so on, have been addressed [4–6]. Tributaries carry the runoff and bring
nutrients/pollutants into the TGR, all of which affect the TGR‘s environmental safety and
sustainable utilization; so, water environment safety in tributaries is very important. Infor-
mation on nutrient loading, dissolved organic matters and heavy metal in some tributaries
of TGR has been reported [5,7–10]. Although PCDD/Fs are a particular threat, to date, there
are few documents on the water environmental safety assessment based on PCDD/Fs data.

The Xiangxi River originates from the Shennongjia Forest Region, with a length of
94 km and a watershed area of 3099 km2. It is the largest tributary of the Three Gorges
Reservoir (TGR) in Hubei and the closest tributary to the Three Gorges Dam (the distance is
38 km). As a typical tributary of TGR, its environmental safety is concerned. Investigations
were conducted on microplastics, nutrient distribution, greenhouse gases and pollutant
transport in Xiangxi River [5,11–13]. Though all the results indicated that the ecological and
environmental problems in the Xiangxi River were serious, no data on persistent organic
pollutants could be found. In this study, our hypothesis was that the distribution pattern of
dioxins in sediment cores from tributaries of TGR was heterogeneous due to the long-term
environment variation. The Xiangxi River was selected as the delegate of the tributary,
and PCDD/Fs in sediment cores were screened. The data of PCDD/Fs in different depths
of sediment filled the knowledge gaps in the tributaries of TGR. The environmental risk
based on PCDD/Fs was evaluated using the toxic equivalent (TEQ) from the world health
Organization (WHO) [14]. It is the first report on the dioxins in sediment cores from the
tributaries of TGR.

2. Materials and Methods
2.1. Sample Site and Sampling Methods

Three sediment cores were obtained from the XX, XK and PYK sample stations in
June, 2010, which represented the downstream, midstream and upstream of this river,
respectively (Figure 1). The distance between every two stations was about 10 km.
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Before the sample collection, all glassware for the collection and storage of samples
was thoroughly cleaned with 10% HNO3 and rinsed with double-distilled water three
times before use. Sediment cores were collected by a stainless gravity sampler (100 cm
length and 2.5 cm diameter; 100 L, Hubei Xiakoushegtai Ltd, Yichang, China). Samples
were obtained by direct extrusion, capped, and frozen immediately before the samples
were transferred to the laboratory. Each core was sliced into 10 cm fractions (samples) with
a spatula from the bottom to the top layers; the samples were mixed and stored at −20 ◦C
for analysis after they were dried with a freeze-dryer at 0 ◦C (CTFD-12S, Qingdao Yonghe
Ltd., Qingdao, China).

2.2. Sediment Rate Measurement

The radiometry activities of 210Pb, 226Ra and 137Cs in the samples were analyzed by
a direct gamma assay using Ortec HPGe GWL series well-type coaxial low background
intrinsic germanium detectors (Alpha Suite α, Ortec, Shanghai, China). The standards of
210Pb, 226Ra and 137Cs were obtained from the China Institute of Atomic Energy. 210Pb
was determined via its gamma emissions at 46.5 keV. and 226Ra was determined by the
295 and 352 keV γ-rays emitted by its daughter isotope 214Pb following 3 weeks of storage
in sealed containers to allow for radioactive equilibration. 137Cs was measured by its
emissions at 662 keV. The absolute efficiencies of the detectors were determined using
calibrated sources and sediment samples of known activity. Corrections were made for the
effect of the self-absorption of low-energy γ-rays within the sample. Radiometric dates
were calculated from 210Pb and 137Cs records using the procedures described in Appleby
(1998) [15]. Standard errors in the dates determined by uncertainties in the measured data
were calculated using the methods described in Appleby (2001) [16].

2.3. Analysis of PCDD/Fs

All reagents used in this study were of trace analysis quality and from LGC Stan-
dards GmbH (Wesel, Germany), including silica and alumina adsorbents. All 13C-labeled
PCDD/Fs standards were purchased from Cambridge Isotope Laboratories (Andover, MA,
USA) or Wellington Laboratories (Guelph, ON, Canada). The C18- modified silica was
purchased from Macherey–Nagel (Düren, Germany).

About 20 g of subsamples was used for extraction. The extraction was conducted by
ASE 2000 (Dionex, Germany) using n-hexane: acetone (75:25, v/v) at 120 ◦C and 12 MPa.
The extraction temperature was 120 ◦C at 120 bar, and then 13C-labeled PCDD/Fs standards
were added. The clean-up procedure encompassed alumina and carbon chromatographic
columns. PCDD/F analysis was performed with a high-resolution mass spectrometer
Finnigan MAT 95S (Thermo, Germany) coupled with an Agilent GC 6890 (Agilent, USA).
The instrumental parameters were described in Chen et al. [17], PCDD and PCDF were
identified and quantified in pg WHO-TEQ/g. The enforcing lab was operating a quality
assurance system according to DIN EN ISO/IEC 17025 and was accredited for the analysis
of PCDD/Fs. The method detection limits for the 17 PCDD/F congeners were in the range
of 0.01 to 0.08 pg/g d.w.; these were calculated on the basis of the signal-to-noise ratio (3:1)
of the mass traces quantified in each individual analysis.

2.4. Total Organic Carbon Measurement

The total organic carbon (TOC) in the sediment samples was tested by the multi N/C
2100/2100S TOC analyzer (Analytik Jena, Germany) according to the standard method.
The oxidation furnace temperature is 1100 degrees, The ceramic sample boat was soaked
with 2 mol/L hydrochloric acid for 20 min and then washed with the distilled water three
times and dried. After that, it was put into the 900 ◦C mav furnace for 30 min and then put
into the dryer for use. Sediment samples were directly put into the ceramic sample boat
and sent into the oxidation furnace at 1100 ◦C.
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2.5. Statistical Analysis

SPSS statistics 24.0 software was used for one-way ANOVA analysis; a t-Test with the
least significant difference was used to identify the significant difference among different
samples and locations. Principal component analysis (PCA, Canoco for Windows 4.5) was
used to identify the principal component.

3. Results and Discussion

The length of the sediment cores in the upstream, midstream and downstream were
30 cm, 50 cm and 90 cm, respectively, and the mean annual water velocity was 0.73, 0.48 and
0.21 m/s, respectively. Downstream was the main sedimentation area, and the length of
the sediment core was the longest. The sedimentation process showed a significant spatial
difference. McAnally et al. [18] proved that the river’s hydraulic regime could strongly
influence the sedimentation process and led to the different lengths of the sediment depth
in different areas. It was deduced that the hydrodynamics in Xiangxi River led to the
difference in the sediment cores length.

The radiometry activities of 210Pb, 226Ra and 137Cs were measured in different layers
from the longest sediment core. The activities of 137Cs and 226Ra were low, with no regular
change; the activities of 210Pb showed a relative regular change (Table 1). Clear and
undisturbed 210Pb gradients in different layers indicated that the data were credible. The
sediment accumulation rates calculated by 210Pb were 1.01 cm/a, and the samples A3, A4,
A5 and A6 were from the 1960s, 1970s, 1980s and 1990s, respectively.

Table 1. The activities of 210Pb, 226Ra and 137Cs in the 80 cm-long sediment core XX from the
Xiangxi River.

Sample
Number Depth (cm)

137Cs
(Bq/kg)

210Pbexe
(Bq/kg)

226Ra
(Bq/kg)

Total 210Pb
(Bq/kg)

A0 10.0 1.49 236.19 84.07 280.61
A1 20.0 1.58 187.63 87.43 222.03
A2 30.0 1.73 228.41 92.35 253.04
A3 40.0 2.23 176.53 83.14 222.30
A4 50.0 4.08 142.85 64.75 160.77
A5 60.0 3.78 155.56 85.50 157.82
A6 70.0 1.26 166.74 66.28 180.61
A7 80.0 4.42 131.37 71.17 122.03
A8 90.0 2.16 102.65 61.21 117.63

The concentrations of PCDD/F are shown in Table 2. The total PCDD/F ranged from
19.28 to 70.07 pg/g d.w., with the mean being 35.06 pg/g d.w. Compared to other rivers
(Table 3), the PCDD/Fs in the Xiangxi River were lower.

The mean PCDD/F concentrations in the sediment core from the upstream, mid-
stream and downstream were 24.40 ± 10.32 pg/g d.w., 20.12 ± 23.84 pg/g d.w. and
46.91 ± 23.65 pg/g d.w., respectively. PCDD was dominant and occupied more than
80.55% of the total PCDD/Fs. OCDD and OCDF occupied 75.80% and 9.63% of the total
homologues, respectively. Compared to others, 1,2,3,4,6,7,8-HpCDD, 1,2,3,4,6,7,8-HpCDF,
OCDD and OCDF were higher; OCDD was the main congener (Table 2). The ratio of
PCDD to PCDF was 2.26–8.08, which indicated that dioxins did not originate from local
combustion but rather from the exogenous input. Similar results were obtained in other
areas of the Yangtze River [19], the Xiangjiang River [20] and the Peal River. These areas
have the same history suffering from schistosomiasis, which was treated by the application
of sodium pentachlorophenate (Na-PCP) as a valid drug to control the spread of snail-borne
schistosomiasis from the 1960s to the 1990s. PCDD/Fs, especially OCDD, were discharged
into the environment, accompanied by Na-PCP as inevitable by-products, and accumulated
in these areas. The samples A3, A4, A5 and A6 were deposited in the 1960s–1990s (Table 1);
PCDD/Fs, especially OCDD depositing in the 1960s–1990s, were significantly higher than
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in other times (Table 2). It was concluded that PCDD in the Yangtze valley mainly resulted
from the impurities of the exogenous Na-PCP as the important source. On the other hand,
the vertical distribution of PCDD/Fs could also be seen in Table 2; samples at different
depths reflected the time-scale of deposition. PCDD/Fs quantified in different depths
exhibited marked differences (ANOVA, p < 0.05; n = 18), indicating significant correlations
with time for the concentrations of PCDD/Fs in the core. The OCDD deposition in the
samples A3, A4, A5 and A6 in the 1960s–1990s was significantly higher than that at other
times (Table 2). The PCDD/F concentrations in the cores showed significant temporal
heterogeneity (p < 0.05).

Table 2. PCDD/F concentrations (pg/g d.w.), TEQ (pg/g d.w.) and carbon contents (mg/g d.w.) in
samples from the sediment cores of Xiangxi River (n = 18).

Location: XX XK PYK

Sample Number: A0 A1 A2 A3 A4 A5 A6 A7 A8 B0 B1 B2 B3 B4 C0 C1 C2

2,3,7,8-TCDD n.d. n.d. n.d. n.d. 0.02 n.d. 0.05 n.d. n.d. n.d. n.d. 0.08 n.d. 0.04 n.d. 0.06 0.21
1,2,3,7,8-PeCDD n.d. 0.08 0.03 0.1 0.1 0.16 0.09 n.d. n.d. 0.26 n.d. 0.08 n.d. 0.09 0.20 0.09 0.40

1,2,3,4,7,8-HxCDD 0.14 0.13 n.d. 0.09 0.11 n.d. 0.06 0.07 n.d. 0.12 n.d. 0.05 n.d. 0.06 n.d. 0.06 0.06
1,2,3,6,7,8-HxCDD n.d. 0.15 0.06 0.12 0.1 n.d. 0.16 0.28 0.13 0.14 0.04 0.04 0.07 0.11 0.12 0.15 0.55
1,2,3,7,8,9-HxCDD n.d. 0.12 0.08 0.16 0.13 n.d. 0.15 0.15 0.08 0.14 0.07 0.08 0.11 0.09 0.18 0.12 0.21

1,2,3,4,6,7,8-HpCDD 1.2 1.4 0.9 1.7 1.5 0.94 1.7 1.2 1 0.77 0.67 0.66 0.74 0.71 1.3 0.75 0.96
OCDD 37.9 33.8 22 58.1 43.7 26.2 56.2 33 24.9 14.3 14.6 17.6 16.5 15.5 18.5 12.0 15.0

Total PCDDs 39.28 35.68 23.07 60.27 45.67 27.31 58.47 34.69 26.11 15.73 15.38 18.59 17.42 16.6 20.30 13.27 17.39
The mean 38.95 ± 12.75 16.78 ± 1.3 16.99 ± 2.88

2,3,7,8-TCDF 0.23 0.15 0.24 0.2 0.26 0.26 0.36 0.22 0.16 0.17 0.09 0.08 0.11 0.15 0.21 0.14 0.35
1,2,3,7,8-PeCDF n.d. 0.18 0.12 0.19 0.17 n.d. 0.2 0.15 0.12 0.14 0.18 0.07 0.14 0.08 0.35 0.11 0.16
2,3,4,7,8-PeCDF 0.15 0.19 0.09 0.17 0.11 n.d. 0.21 0.1 0.13 0.22 0.09 0.07 0.1 0.17 0.35 0.12 0.21

1,2,3,4,7,8-HxCDF n.d. 0.39 0.19 0.28 0.33 0.2 0.36 0.27 0.26 0.24 0.25 0.17 0.19 0.24 0.72 0.30 0.35
1,2,3,6,7,8-HxCDF 0.19 0.34 0.14 0.25 0.22 0.2 0.26 0.2 0.18 0.28 0.22 0.18 0.21 0.26 0.77 0.32 0.36
1,2,3,7,8,9-HXCDF n.d. 0.11 0.07 0.05 0.09 n.d. 0.13 0.12 0.08 n.d. 0.07 0.04 n.d. 0.06 0.09 0.05 0.06
2,3,4,6,7,8-HxCDF 0.18 0.31 0.12 0.21 0.19 0.13 0.28 0.14 0.16 0.16 0.17 0.14 0.22 0.24 0.55 0.26 0.32

1,2,3,4,6,7,8-HpCDF 0.99 2.1 1 1.4 1.2 0.62 1.7 1.2 0.88 1.6 1.2 0.77 0.95 1.1 4.2 1.6 1.9
1,2,3,4,7,8,9-HpCDF 0.15 0.27 0.23 0.25 0.19 n.d. 0.24 0.18 0.15 0.23 0.14 0.08 0.09 0.13 0.57 0.22 0.21

OCDF 3.8 6 8 5.6 4.8 2.8 7.8 5.2 3.8 1.4 1.5 0.73 0.82 1.1 3.9 1.4 2.1
Total PCDFs 5.7 10 10.2 8.6 7.6 4.2 11.6 7.8 5.9 4.4 3.9 2.3 2.8 3.5 11.7 4.5 6.0

The mean 7.96 ± 2.27 3.38 ± 0.75 7.4 ± 3.1
Sum 44.98 45.68 33.27 68.87 53.27 31.51 70.07 42.49 32.01 20.13 19.28 20.89 20.22 20.10 32.01 17.79 23.41

PCDD/PCDF 6.891 3.568 2.262 7.008 6.009 6.502 5.041 4.447 4.425 3.575 3.944 8.083 6.221 4.743 1.734 2.940 2.889
TEQ (WHO 2005) 0.15 0.39 0.2 0.37 0.35 0.27 0.44 0.22 0.2 0.53 0.17 0.29 0.17 0.37 0.72 0.36 0.98

TC 7.12 7.82 12.50 16.71 13.23 14.71 16.45 13.33 13.13 22.39 17.49 27.18 27.74 24.42 22.48 18.40 27.90
TOC 1.37 1.57 1.59 7.92 4.92 3.48 5.83 3.19 2.02 10.29 8.05 8.19 8.00 5.68 8.60 9.87 12.38
TIC 5.75 6.25 10.91 8.79 8.31 11.23 10.62 10.14 11.11 12.10 9.44 18.99 19.74 18.74 13.88 8.53 15.52

∑PCDD/Fs/TOC* 32.83 29.10 20.92 8.70 10.83 9.05 12.02 13.32 15.85 1.96 2.40 2.55 2.53 3.54 3.72 1.80 1.89

n.d.: not detectable; ΣPCDD/Fs/TOC*: the significant relationship between ΣPCDD/Fs and TOC; TCDD:
Tetrachlorodibenzo-p-dioxin; PeCDD: Pentachlorodibenzo-p-dioxin; HxCDD: Hexachlorodibenzo-p-dioxin;
HpCDD: Heptachlorodibenzo-p-dioxin; OCDD: Octachlorodibenzo-p-dioxin; PCDD: Polychlorinated dibenzo-p-
dioxin; TCDF: Tetrachlorodibenzofuran; PeCDF: Pentachlorodibenzofuran; HxCDF: Hexachlorodibenzofuran;
HpCDF: HeptacMorodibezofuran; TEQ: Toxic equivalency; TC: Total carbon; TOC: Total organic carbon; TIC:
Total inorganic carbon.

Table 3. Concentrations of dioxins in different rivers (pg/g d.w.).

River Name Country Dioxins
Concentration TEQ References

Estuary of
Yangtze China 62–171 0.29–0.78 [19]

Xiangjiang River China 876–497,759 21.5 [20]
Peal River China 472–2582 0.6–10.2 [21]

Kanzaki River Japan 930–8200 41 [22]
Saginaw River USA 55,200 3–3820 [23]
Detroit River Canada 200–1600 2.30–306 [24]
Saigon River Vietnam 250–1800 0.73−17 [25]

Elbe River German 169,610–507,060 2290–7680 [26]
Xiangxi River China 20.10–70.07 0.15–0.98 This study
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PCDD/Fs in the midstream and upstream showed no significant difference; the two
stations showed significant differences from the downstream (p < 0.05). The concentrations
in the downstream were more than twice the concentrations in the midstream or upstream
(Figure 2). PCA analysis indicated that samples could be divided into two groups (Figure 3);
samples from the downstream were categorized as one group, while other samples were
categorized as another group due to the different congener concentrations. The higher
concentrations of OCDD, 1,2,3,4,5,7,8-HpCDD and OCDF were mainly responsible for
differentiating the downstream from the others, especially OCDD and OCDF, which were
primarily associated with the principal component axes, and OCDD was the main differ-
entiating factor. When the different lengths of the sediment core from different locations
were combined, all of the data differentiated downstream from other locations. Similar
results [27,28] indicated that stream outlets were the main areas for PCDD/F sinks. It was
deduced that hydrodynamics might be the determining factor in the spatial pattern of
dioxins distribution.
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TOC, TIC, TC and the carbon-based concentrations of PCDD/F (Table 2) indicated
significant spatio-temporal heterogeneity in organic carbon distribution (ANOVA, p < 0.05).
The relationship between TOC and PCDD/F and the correlation between TOC and the
PCDD/F/TOC value were significant (p < 0.01). Nie et al. [29] also found that the distri-
bution of organic matter in the sediments decisively affected the partitioning of dioxins.
Dioxins were usually partitioned predominantly in the organic matter of the sediment,
while TOC played an important role in the distribution of dioxins.

The average TEQ was 0.36 pg/g d.w., ranging from 0.15 to 0.98 pg/g d.w. The vertical
TEQ in different layers showed no significant difference (Table 2). The mean TEQ from
upstream to downstream (Figure 3) indicated an obvious difference. The TEQ levels in
the Xiangxi River were lower, and the pollution risk was low according to the Canadian
Sediment Quality Guidelines, with its threshold value of 0.85 pg/g d.w.

4. Conclusions

The PCDD/F content in the sediment from the Xiangxi River was low, with a low
environmental pollution risk. The PCDD/F distribution showed a heterogeneous spatio-
temporal pattern; hydrodynamics and TOC played determining roles. PCDD/Fs indicated
that the origins and the exogenous input of by-products of Na-PCP were the main sources.
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