Using CNNs on Sentinel-2 data for noise modelling
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Abstract—Urbanisation and road traffic noise go hand in hand.
While the WHO and the European Environmental Agency are
concerned about high noise levels and the respective adverse
effects on health, detailed exposure maps are scarce. Utilizing
highly accurate sound propagation models is expensive and
scalable Land-Use Regressions (LUR) are often limited by the
lack of available training data. Also, the portfolio of statistical
models of LURs so far has not been extended towards deep
learning despite their recent contributions in urban remote
sensing. By challenging a semantic segmentation network with
the noise mapping problem, we aimed to test their capabilities.
Different input channels, scoping road data, Sentinel-2 images,
topographical data and a building model are compared against
each other. The best performing model utilizes all eleven features
available and has an overall accuracy of 0.89. Therewith a
methodical cornerstone is laid. We suggest that future studies
shall intensify experiments on input channels, learning strategy
and spatial application.

Index Terms—traffic noise, exposure mapping, deep learning,
semantic segmentation

I. INTRODUCTION

In 2018, 4.2 billion people lived in urban areas [|1]. With on-
going urbanization, traffic volumes and noise levels increase.
However, it often remains unclear for the WHO whether
the long-term day-evening-night road traffic noise level (also
referred to as Lge,)) exceeds a critical threshold of 53 dB(A)
[2]. In Europe alone, an estimated 12,000 premature deaths
are attributed to high noise exposure every year [3]]. Despite
the fact that we are aware of the negative impacts that noise
may have, spatial data is scars and prone to inconsistencies
[4].
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Engineers use sophisticated software simulating the phys-
ical mechanics of acoustics to produce accurate Lg., noise
maps. However, the large expenditure for respective mapping
noise restricts their application. Therefore, the European Noise
Directive (END) obliges member states to map noise only in
urban agglomerations with a population of more than 100,000
people and along main highways with more than 3 million
vehicle crossings per year.

A complementary approach for mapping noise over large
areas are Land-Use-Regression (LUR) models. Here, data on
traffic, surrounding land cover and further spatial predictors are
used to train a multiple regression model. Once introduced for
mapping traffic related air pollution [5] - and being used for
global predictions in this context today [|6] - they have soon
found their way into the noise mapping domain [7]. While
typically, linear- (e.g. [7]) or generalized additive models (e.g.
[8]) are used, recent developments involve random forests [9]
and artificial neural networks [10], too. To the best of our
knowledge though, Convolutional Neural Networks (CNNs)
have not been utilized in this domain yet. This may not
surprise, as CNNs require large amounts of training data and
so far, LURSs are trained using in-situ measurements. Targeting
the subproblem, that such in-situ measurements also do not
reflect source specific Lge, values as required by the END,
we previously demonstrated that European noise maps can be
used as training data for LURs [11].

In the field of earth observation and especially urban remote
sensing, CNNs are recently en vogue [12]-[15]]. Inspired by
their capabilities to cope with diverse problems, in this study,
we want to test CNNs for noise mapping. Due to similarities
of the problem statements, we propose to utilize an image
data stack containing information on traffic roads and the
surrounding environment to the network. Building upon [11]]’s
findings, we use European noise maps of 70 German cities as
reference. They cover approximately 12,250 km?, are ordinally



scaled and show urban noise levels above 55dB(A) with 5
dB(A) increments. Choosing a semantic segmentation model,
our study aims at exemplifying the suitability of CNNs for
noise mapping.

II. DATA AND METHODS

A. Area of Interest

As stated above, in Europe, larger urban agglomerations (=
100k population) are obligated to report noise above a critical
threshold of 55 dB(A). With respect to Germany, this concerns
70 cities, having a population ranging from 3,613,495 (Berlin)
to 103,949 (Moers). Overall, 75% of them have a population
below 330,786.

Working at a 10 meter resolution, we generated a grid of
96x96 pixels covering urban areas of Germany. Each grid
cell - further also referred to as tile - must contain at least
80% reference data. In total, 11.888 tiles are available for our
experimental setup.

B. Reference Noise Data

The strategic noise maps in Europe are produced using
highly accurate engineering simulations and depict a
yearly averaged noise level indicator with a penalty for evening
and nights known as Lg.,,. According to the END, only critical
levels above 55 dB(A) are mapped with 5 dB(A) increments.
The individual communities are free to choose an output
format, but vectorized choropleth maps are most common
[17]. We downloaded the most recent road traffic noise data
available (id est 2017) and harmonized it by rasterizing it to
10x10 meter pixels.

C. Input Data

We consider the presence of noise as a function of both -
noise emission and sound propagation. Correspondingly, we
curated eleven input features (see Figure [I) covering both
aspects. After laying them out below, they are grouped into
three experimental feature sets within the next section.

Starting on the emission side - European noise maps are
source type-specific such that our reference shows road traffic
noise only - roads are an important asset first of all. We re-
trieved OpenStreetMap data for our reference year 2017. With
respect to different road types emitting different magnitudes of
noise (as a function of speed limit, traffic volume and fraction
heavy vehicles), six road types motorway, trunk, primary,
secondary, tertiary and residential are differentiated and are
used as respective proxy [I1]]. In order to inform the network
about roads outside of the tile as well, we used gdal_proximity
to calculate the distance to the nearest road of each type
for each pixel.

Propagating soundwaves interact with the ground. While
soft and porous materials like vegetation have sound absorbing
effects [[19], plain and solid surfaces help noise traveling over
long distances. Here, we rely on a remote-sensing-derived
Sentinel-2 (Level 1C) median mosaic which previously

Fig. 1. Representation of all input features for one exemplary tile (t502082).
A-D showing Sentinel-2 channels 2, 3, 5, and 8. E-J OpenStreetMaps roads
types motorway, trunk, primary, secondary, tertiary and residential. K depicts
Sky-View-Factor derived from land surface model.

used as input as well. Scoping the year 2017, the multi-
temporal image collection was aggregated to the median pixel
value for bands 2, 3, 5 and 8.

Last, propagating sound waves also interact with topography
and buildings. In an urban context, for example, stressed
the unfavorable effects of dense street canyons. Therefore,
we summed up Copernicus DEM (30 meter resolution) and a
building model (LoD1) (rasterized to 10 meters) to a surface
model and derived the sky-view-factor (SVF) using the horizon
R package [22]. The maximum search radius for obstacles is
1000 meters. Low values close to 0 (colored red in Figure
[I) depressed locations with less air volume available and
many high barriers around, while values close to 1 depict
pixels (colored dark blue in Figure [I) allowing free sound
propagation into all directions.

Prior handing over the data to our experimental setup, all
input features were scaled between O (global minimum) and
255 (global maximum). Additionally, the global mean and
standard deviation were were computed for centering the data
(also referred to as whitening).

III. EXPERIMENTAL SETUP

Testing the capabilities of the CNN, we defined three
kinds of input channels: 1) Roads includes proximities to the



six different road types only; complementary 2) RGB only
includes the three Sentinel-2 bands 2, 3 and 5; As well as 3)
All Features embracing all eleven features as presented above.

We chose Resnet50 [23]] as an encoder, because of its
performance and efficiency, and for the decoder we chose the
Unet architecture. The model consists of 32.53 million
trainable parameters.

The toolbox of [25] was altered to the needs of our
objectives, e.g., for the number of potential input channels
to permit a data input of three to eleven input channels.
The models are trained on an NVIDIA Quadro RTX 4000
using a batch size of 128 images and the Adam optimizer.
The training period was set at 100 epochs. As loss function,
we used the soft cross entropy loss with label smoothing
and modified class weights, where the first class weight is
decreased to .1 and all other classes stay at 1. During the
training procedure, an exponentially decreasing learning rate
with a factor of 0.5 is applied. The learning rate is initially set
to 0.0001. Augmentations are a common technique in machine
learning to increase the amount of available training data [26].
Analogous to this, we applied the following augmentations to
our image tiles: horizontal and vertical flip, random crop, and,
sharpen.

To test the resulting model on unseen data, the dataset
is randomly split into 80% training and 20% testing. The
quantitative assessment of the performance of the different
input channel combinations is evaluated based on various types
of evaluation criteria. We present the Overall accuracy (OA),
F1 score, Precision, Recall, and Intersection over Union (IoU;
also known as the Jaccard Index).

IV. RESULTS AND DISCUSSION

A. Performance and Efficiency

Table [I| shows that the Roads data set alone, helped
explaining large proportions of the variance. Vice versa, using
the three RGB channels of Sentinel-2 only, no satisfactory
scores were achieved. The combination of all features available
though - road proximites in conjunction with information on
the surrounding built-up and topographical environment does
increase all accuracy measures to a maximum (highlighted
bold). This is particularly visible for Precision, Recall and its
harmonic mean, the F1 score.

TABLE I
RESULTS FOR THREE INPUT CHANNEL COMBINATIONS FOR THE OVERALL
ACCURACY, Fl SCORE, PRECISION, RECALL, AND THE IOU. THE HIGHEST
METRICS OF THE THREE INPUT CHANNELS IS BOLD.

Overall Fl Precision  Recall ToU
Accuracy score
Roads 0.8863 0.6582 0.6592 0.6571  0.4247
RGB 0.8102 0.4019 0.4153 0.3910 0.2251
All Features 0.8930 0.6781 0.6791 0.6771  0.4387

Also, in the context of green Al though, it is very interesting
to mention that training with Roads did not further improve

from the 57" epoch on, while RGB and All Features was only
interrupted after 91 and 96 epochs respectively.

With respect to the uncertainties, we want to stress potential
inconsistencies in the reference data though. About 3% of
our input tiles contain reference data from more than one
city although the European noise maps may be produced
by different planning bureaus. As a consequence, the legal
degrees of freedom defined within the European Good-Practice
Guide - e.g. guessing building height where no LoD1
model is available - might have been applied. Usually such
inconsistencies are only visible along shared borders when
comparing the produced maps against each other [4]. While
it is impossible to tell from a distance, which city’s reference
data is the most accurate, our experimental setup comprises
these federal inconsistencies.

t171565

t89170

RGB Roads Reference Google Satellite

All Features

below threshold 55 - 59 [l 60 - 64 M 65 - 69 Ml 70 - 74 M > 75 dB(A)

Fig. 2. Predictions produced with our experimental setup for three com-
plementary examples. The first row shows high resolution imagery (Google
Satellite) supporting interpretation of results. Colored according to DIN
18005-2, the second row depicts the reference data, while the rows below
presents predictions made with models trained using Roads, RGB, and All
Features as input channels.



B. Visual Assessment

Comparing the predictions in a visual manner (Figure [2)),
two interesting observation can be made; First, not all noise
emitting roads are covered with a prediction. This can most
prominently be seen at a horizontal road going west in
t502082. Vice versa, not all roads included in OpenStreetMap
do emit critical noise levels. Exemplified in t89170, there is a
road going from north to south, with a junction in the middle
of the tile. It appears logical, that the vehicle count will split
up into both roads which is why the noise levels decrease in
the reference data. Predictions though based on Roads only
do not consider this context. Whereas the predictions based
on 10x10 meter Sentinel-2 RGB pixels only do not lead to
critical noise levels above 55dB(A) at all.

Second, we want to point out the capabilities of the CNN
to consider sound barriers. On a free field, propagating sound
pressure is only damped at a logarithmic scale. This effect,
also known as geometric attenuation is very well visible at the
Roads prediction in t171565. The reference though does show
significant artefacts in the north east and lower south parts
of the image. In comparison with the input data, intensively
built-up areas do block the sound here. Although the RGB data
itself does only produce poor results, in conjunction with All
Features, at least some artefacts become visible.

V. CONCLUSIONS

To the best of our knowledge, this is the first time a semantic
segmentation approach has been used for noise mapping.
Replacing the machine learning method of conventional LUR
models with fully CNNs allow the utilization of ordinal scaled
noise maps - most common in Europe [[17] - as training refer-
ence. Therewith, the existing proof of concept [|11]] is expanded
towards larger data pools. While still more research is required
with respect to chosen architecture, hyper parameter tuning
and selecting the most appropriate input channels, the first
results are promising. Future studies may scale this approach
for national noise exposure mappings and beyond.
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