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Abstract

The Million Veteran Program (MVP) was established in 2011 as a national research initiative to 

determine how genetic variation influences the health of U.S. military veterans. We genotyped 

312,571 MVP participants using a custom biobank array and linked the genetic data to laboratory 

and clinical phenotypes extracted from electronic health records covering a median of 10.0 years 

of follow-up. Among 297,626 veterans with at least 1 blood lipid measurement including 57,332 

blacks and 24,743 Hispanics, we tested up to ~32 million variants for association with lipid levels 

and identified 118 novel genome-wide significant loci after meta-analysis with data from the 

Global Lipids Genetics Consortium (total N > 600,000). Through a focus on mutations predicted 

to result in a loss of gene function and a phenome-wide association study, we propose novel 

indications for pharmaceutical inhibitors targeting PCSK9 (abdominal aortic aneurysm), 

ANGPTL4 (type 2 diabetes), and PDE3B (triglycerides and coronary disease).

Klarin et al. Page 3

Nat Genet. Author manuscript; available in PMC 2019 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Lipids; population genetics; genome-wide association studies; coronary artery disease

Introduction

Large-scale biobanks offer the potential to link genes to health traits documented in 

electronic health records (EHR) with unprecedented power1. In turn, these discoveries are 

expected to improve our understanding of the etiology of common and complex diseases as 

well as our ability to treat and prevent these conditions. To this end, the Million Veteran 

Program (MVP) was established in 2011 by the Veteran Affairs (VA) Office of Research and 

Development as a nationwide research program within the VA healthcare system2. The 

overarching goal of MVP is to reveal new biologic insights and clinical associations broadly 

relevant to human health and to enhance the care of veterans (former U.S. military 

personnel) through precision medicine.

Blood concentrations of low-density lipoprotein cholesterol (LDL-C), triglycerides, total 

cholesterol, and high-density lipoprotein cholesterol (HDL-C) are heritable risk factors for 

atherosclerotic cardiovascular disease3, a highly prevalent condition among U.S. veterans. 

Genome-wide association studies (GWAS) to date have identified at least 268 loci that 

influence these levels4-12, many of which are under investigation as potential therapeutic 

targets13,14. However, off-target effects have dampened enthusiasm for some of these 

molecules15,16. Understanding the full spectrum of clinical consequences of a genetic 

variant through phenome-wide association scanning (“PheWAS”17) may shed light on 

potential unintended effects as well as novel therapeutic indications for some of these 

molecules.

We first performed a GWAS including a discovery phase in MVP and a replication phase in 

the Global Lipids Genetics Consortium (GLGC) (Fig. 1). In the discovery phase (Stage 1), 

we performed association testing among 297,626 white (European ancestry), black (African 

ancestry), and Hispanic MVP participants with blood lipids stratified by ethnicity followed 

by a meta-analysis of results across all three groups. Replication of MVP findings was 

conducted in Stages 2a or 2b with data from either one of two independent studies from the 

GLGC. Next, we leveraged the results of our discovery and meta-analysis to i. estimate the 

variance explained by known and newly discovered lipid loci, ii. assess the potential of the 

use of multiple lipid measurements in discovery within MVP, iii. perform a transcriptome-

wide association study (TWAS), a competitive gene-set pathway analysis, and a tissue-

expression analysis. We then focused on novel, genome-wide lipid-associated, low-

frequency missense variants unique to our non-European populations as well as predicted 

loss of gene function (pLoF) mutations across all ethnic groups, as these associations have 

revealed target pathways for pharmacologic inactivation and modulation of cardiovascular 

risk14,18,19. Lastly, we performed a PheWAS for a set of DNA sequence variants within 

genes that have already emerged as therapeutic targets for lipid modulation, leveraging the 

full catalog of ICD-9 diagnosis codes in the VA EHR to better understand the potential 

Klarin et al. Page 4

Nat Genet. Author manuscript; available in PMC 2019 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



consequences of pharmacologic modulation of these genes or their products. We followed up 

significant findings from our PheWAS with multivariate Mendelian randomization analyses.

Results

Demographics of Genotyped MVP Participants

A total of 353,323 veterans had genetic data available in MVP, with clinical phenotypes 

recorded in the VA EHR over 3,088,030 patient-years prior to enrollment (median of 10.0 

years per participant) and 61,747,974 distinct clinical encounters (median of 99 per 

participant). We categorized veterans into three mutually exclusive ancestral groups for 

association analysis: 1) non-Hispanic whites, 2) non-Hispanic blacks, and 3) Hispanics. 

Admixture plots depicting the genetic background of the black and Hispanic groups are 

shown in Supplementary Figures 1 and 2. Demographics and participant counts for a 

number of cardiometabolic traits for the 312,571 white, black, and Hispanic MVP 

participants that passed our quality control are depicted in Table 1.

A subset of 297,626 participants passing quality control had at least 1 laboratory 

measurement of blood lipids in their EHR. These individuals collectively had a total of 

15,456,328 lab entries for blood lipids, or a median of 12 measures per lipid fraction per 

participant. To minimize potential confounding from the use of lipid-altering agents with 

variable adherence, we selected a participant’s maximum LDL-C, triglycerides, and total 

cholesterol as well as his or her minimum HDL-C for genetic association analysis20. Table 2 

summarizes characteristics at enrollment and the distribution lipid levels for MVP 

participants included in our analysis. As expected, participants were largely male but 28% 

were of non-European ancestry. While approximately 45% had evidence of a statin 

prescription at the time of enrollment, only 8 to 9% participants had such evidence at the 

time of their maximum LDL-C or total cholesterol measurement used for our GWAS 

analysis.

Lipid Genetic Association and Conditional Analyses

We successfully imputed [INFO > 0.3, minor allele frequency (MAF) > 0.0003] 19.3, 31.4, 

and 30.4 million variants in white, black, and Hispanic veterans, respectively, using the 1000 

Genomes Project21 reference panel (Table 2). Black and Hispanic participants had 

substantially more variants available for analysis, reflecting the known greater genetic 

diversity within these populations21,22. We also identified 6,657 pLoF variants in 4,294 

genes across the three ethnicities (Supplementary Fig. 3).

We compared the Z scores and effect estimates from the published literature with those 

observed in MVP for 444 previously reported11 exome-wide significant variants for lipids. 

We found a strong correlation of genetic associations across all four traits, validating the 

lipid data secured through the EHR (Supplementary Fig. 4, 5).

We performed association testing separately among individuals of each of three ancestries 

(whites, blacks, and Hispanics) in our initial discovery analysis and then meta-analyzed 

results across ancestry groups using an inverse variance-weighted fixed effects method (Fig. 

1a, Supplementary Fig. 6). Following trans-ethnic meta-analysis in the discovery phase of 
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our study (Stage 1), a total of 46,526 variants at 188 of the 268 known loci for lipids met the 

genome-wide significance threshold (P < 5×10−8) (Supplementary Tables 1-4). We 

performed pairwise comparisons of the allele frequencies and effect estimates between 

whites and blacks as well as between whites and Hispanics for 354 of the 444 previously 

established independent variants for lipids which were well imputed in all three ancestral 

groups in MVP (Fig. 2)11. We observed a much stronger correlation between white and 

Hispanic effect allele frequencies (Pearson correlation coefficient R = 0.96) than between 

whites and blacks (R = 0.72), likely reflecting the greater European admixture in the MVP 

Hispanic participants. The effect estimates among the three ethnicities varied by lipid trait 

(Fig. 2, Supplementary Fig. 7).

We sought replication for variants within MVP with suggestive associations (P < 1×10−4) in 

either Stages 2a or 2b (Fig. 1b). We first attempted replication of these variants using 

summary statistics from the 2017 GLGC exome array meta-analysis (Stage 2a)11. If 

association statistics for promising DNA sequence variants from Stage 1 were not available 

for replication in the 2017 exome array-focused study, we sought replication of these 

variants in publicly available summary statistics from the 2013 GLGC “joint meta-analysis” 

(Stage 2b). We did not attempt replication of any variant in both studies given the substantial 

overlap of participants in these two studies. A total of 170,925 variants demonstrated 

suggestive association (P<10−4) in the MVP discovery analysis. Among these variants, 

39,663 were also available for in silico replication in either Stage 2a (GLGC 2017) or Stage 

2b (GLGC 2013). We defined significant novel associations as those that were at least 

nominally significant in replication (P<0.05) with consistent direction of effect and had an 

overall P < 5×10−8 (genome-wide significance) in the discovery and replication cohorts 

combined. Following replication, 118 novel loci (from 142 lead variants) exceeded genome-

wide significance (P < 5×10−8, Supplementary Tables 5-8). MAF of lead variants ranged 

from 0.08% to 49.9%, with effect sizes ranging from 0.01 to 0.243 standard deviations. For 

example, carriers of a rare missense mutation in the gene encoding Sorting Nexin-8 [SNX8 
p.Ile414Thr, (rs144787122, NC_000007.13:g.2296552A>G) MAF = 0.35% in MVP] 

demonstrated a 0.10 standard deviation (3.8 mg/dL) higher plasma LDL-C after testing in 

587,481 individuals.

More than one variant may independently affect plasma lipid levels at any given genetic 

locus. We performed a conditional analysis using combined summary statistics from MVP 

and publicly available data from GLGC for each lipid trait (Supplementary Fig. 8) and 

identified a total of 826 independently associated lipid variants across 118 novel and 268 

previously identified loci (Supplementary Table 9).

Variance Explained Using Multiple Lipid Measurements

The previously mapped 444 lipid variants explain about 7.5-10.5% of the phenotypic 

variance in lipid levels in the MVP population. The 118 novel loci in our study explain an 

additional 0.38-0.74% in phenotypic variance, and the 826 independent variants identified in 

our conditional analysis increase the overall phenotypic variance explained to 8.8-12.3% 

(Supplementary Table 10).
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We subsequently explored the impact of multiple lipid measurements in an analysis 

restricted to 171,314 European MVP participants with ≥ 5 lipid measurements in their EHR. 

We constructed a weighted genetic risk score (GRS) of 223 variants across 268 of the 

previously mapped loci with effect estimates available in the 2017 GLGC exome array 

analysis summary statistics (Supplementary Table 11)11. Generally across the four lipid 

traits, the GRS explained a larger proportion of the phenotypic variance with an increasing 

number of lipid measurements included in the analysis (Supplementary Table 12). In 

addition, when the maximal/minimal lipid values were used as in our discovery GWAS, the 

GRS explained more total variance than when using up to 5 lipid measurements for the 

LDL-C, triglycerides, and total cholesterol phenotypes.

Transcriptome-wide Association Study

We next performed a TWAS23 using: 1) pre-computed weights from expression array data 

measured in peripheral blood from 1,245 unrelated control individuals from the Netherlands 

Twin Registry (NTR)24, RNA-seq data measured in adipose tissue from 563 control 

individuals from the Metabolic Syndrome in Men study (METSIM)23, and RNA-seq data 

from post-mortem liver (97 individuals) and tibial artery (285 individuals) tissue from the 

Genotype-Tissue Expression project25 (GTEx V6), and 2) combined MVP and GLGC 

summary statistics for each of the four lipid traits (Supplementary Fig. 8). Briefly, this 

approach integrates information from expression reference panels (variant–expression 

correlation), GWAS summary statistics (variant–trait correlation), and linkage 

disequilibrium (LD) reference panels (variant–variant correlation) to assess the association 

between the cis-genetic component of expression and phenotype23. The results yield 

candidate causal genes from the GWAS results under the assumption that the causal 

mechanism of the tested genes involves changes in cis-expression.

Our TWAS identified a total of 655 genome-wide significant (P < 5×10−8) gene-lipid 

associations (summed across expression reference panels) in 333 distinct genes, including 

194 that were significant in more than one tissue or lipid trait (Supplementary Tables 13-16, 

Supplementary Fig. 9-10). The 333 distinct genes fell within 122 genomic loci, 117 of which 

were within a lipid GWAS region (± 1mB around a mapped sentinel GWAS variant) 

identified in either a prior analysis or in the current study. However, 5 genes identified with 

TWAS fell outside of previously mapped GWAS regions, representing potentially novel 

genomic loci for lipids (Supplementary Table 17). Previous work has suggested that future 

lipid GWAS with larger sample sizes will likely confirm the novel lipid loci identified by our 

TWAS26. Results from additional competitive gene-set pathway and tissue expression 

analyses are available in the supplementary note.

Non-European Low-Frequency Missense Variant Associations

We next focused on ancestry specific low-frequency (MAF < 5%) missense variants, as 

these variants have been suggested to have a higher likelihood of causality27,28. We 

identified several novel low-frequency missense variants associated with one or more lipid 

levels at genome-wide significance that were specific to blacks or Hispanics. We found a 

total of 5 variants associated with LDL-C and/or total cholesterol among blacks 

(Supplementary Table 18) and2 associated with HDL-C and/or total cholesterol among 
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Hispanics (Supplementary Table 19) in PCSK9, LDLR, APOB, and ABCA1. All 10 

associations were directionally consistent in the 2017 GLGC exome chip meta-analysis with 

9 reaching nominal significance (p < 0.05) among 17,009 blacks and 5,084 Hispanics 

included in the GLGC study. In addition, the 7 variants we identified were either 

monomorphic or had a MAF of < 0.0005 in the ~215,000 white veterans in MVP. Of note, 

we observed the low-frequency 443Thr allele in PCSK9 within Hispanics to be 8 fold more 

common in blacks (MAF = 0.011 in Hispanics versus 0.092 in blacks). We also found this 

variant to be associated with total cholesterol in blacks at genome-wide significance.

Predicted Loss of Gene Function Lipid Associations

We focused next on the subset of genotyped or imputed pLoF variants [variants annotated 

as: premature stop (nonsense), canonical splice-sites (splice-donor or splice-acceptor) or 

insertion/deletion variants that shifted frame (frameshift) by the Variant Effect Predictor 

software29]. A total of 15 distinct pLoF variants demonstrated genome-wide significant lipid 

associations across individuals of all three ethnic groups (Supplementary Table 20). We 

replicated known pLoF associations at PCSK919, APOC318, ANGPTL88, LPL30, CD3631, 

and HBB32, and we observed genome-wide significant associations of comparable 

magnitude of effect in each of the three ethnic groups for 2 pLoF variants: APOC3 c.

55+1G>A and LPL p.Ser747Ter.

We identified one novel pLoF association. Among white MVP participants, carriers of a rare 

stop-gain mutation in PDE3B (p.Arg783Ter; carrier frequency of 1 in 625), exhibited a 4.72 

mg/dL (0.41 standard deviations) higher blood HDL-C (P < 2.8 × 10−16) and 43.3 mg/dL 

(−0.27 standard deviations) lower blood triglycerides (P = 7.5×10−8). We found this signal to 

be independent of a previously reported genome-wide significant association in the region 

involving a common polymorphism, rs103737811 (p.Arg783Ter conditional analysis P = 6.3 

× 10−16 for HDL-C, and P = 8.91 × 10−8 for triglycerides). We also identified one individual 

who was homozygous for p.Arg783Ter. This PDE3B “human knockout” was in his sixth 

decade of life and had HDL-C and triglycerides levels of 73 and 56 mg/dL, respectively. He 

was not on lipid-lowering medication and was free of coronary artery disease (CAD). We 

replicated the triglyceride and HDL-C associations for this pLoF variant in an independent 

sample of ~45,000 participants of the DiscovEHR study (Fig. 3a,b).

Loss of PDE3B function and risk of Coronary Artery Disease

Hypothesizing that mutations damaging or causing a loss of function in PDE3B could 

protect against the development of CAD based on their association with lifelong lower levels 

of triglycerides in blood, we conducted a case-control study of CAD involving 5 cohorts: 

MVP, UK Biobank, Myocardial Infarction Genetics Consortium (MIGen), Penn Medicine 

Biobank (PMBB), and DiscovEHR. For 3 studies that underwent exome sequencing 

(MIGen, PMBB, DiscovEHR), we combined pLoF variants with missense variants predicted 

to be damaging or possibly damaging by each of 5 computer prediction algorithms (LRT 

score, MutationTaster, PolyPhen-2, HumDiv, PolyPhen-2 HumVar, and SIFT) as performed 

previously30,33. Because damaging mutations are individually rare, we aggregated them in 

subsequent association analysis with CAD (Supplementary Table 21). Among 103,580 

individuals with CAD and 566,813 controls available for meta-analysis in these 5 cohorts, 
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carriers of damaging PDE3B mutations were found to have a 24% decreased risk of CAD 

(OR = 0.76, 95% CI = 0.65-0.90, P = 0.0015, Fig. 3c). Data from an additional analysis 

examining the association of all novel lipid loci identified in our study with CAD is available 

in the supplementary note.

PheWAS of Variants in Genes Targeted by Lipid Therapies

We leveraged a median of 65 unique ICD-9 diagnosis codes per participant prior to 

enrollment in MVP to explore the spectrum of phenotypic consequences of genetic variation 

within genes targeted by lipid-lowering medicines. We selected five lipid genes currently 

being targeted by pharmaceutical agents and identified functional variants in these genes: 

two nonsense variants (LPL p.Ser474Ter, ANGPTL8 p.Gln121Ter) and three missense 

variants (ANGPTL4 p.Glu40Lys, APOA5 p.Ser19Trp, PCSK9 p.Arg46Leu). We considered 

phenotypes to be significantly associated with a variant if they met a Bonferroni corrected P 

< 4.98 × 10−5 [0.05/1004 traits], a conservative threshold given the correlation structure 

present among PheWAS phenotypes34.

A total of 176,913 white veterans were available for analysis after quality control. Among 

these individuals, we identified 33 statistically significant phenotypic associations across the 

5 variants, all of which are correlated with lipids (Supplementary Table 22). We replicated 

known associations with CAD for LPL30, ANGPTL414, and PCSK919. Notably, carriers of 

triglyceride-lowering/HDL-C-raising mutations in ANGPTL4 (p.Glu40Lys, 7,013 carriers) 

were also found to have a reduced risk of type 2 diabetes (Fig. 4). We replicated the type 2 

diabetes association for the ANGPTL4 p.E40K variant in an independent sample of 

~452,000 participants in the recently published trans-ethnic diabetes GWAS35[(OR =0.89, 

95% CI = 0.86-0.93, P =9.24×10−10, Supplementary Fig. 11). In addition, carriers of LDL-

C-lowering mutations in PCSK9 (p.Arg46Leu, 5,537 carriers) also demonstrated a reduced 

risk of AAA (Fig. 5).

Lipids and AAA Mendelian Randomization Analysis

To further explore the causal relationship of lipids on AAA development, we performed a 

multivariate Mendelian randomization analysis using a weighted GRS of 223 lipid 

associated variants and summary data from a GWAS of 5,002 AAA cases and 139,968 

controls in MVP. Consistent with our PheWAS results, a 1-standard deviation genetically 

elevated LDL-C was associated with an increased risk of AAA (OR = 1.47, 95% CI 

=1.28-1.68, P = 4.4×10−8). Furthermore, a 1-standard deviation genetically elevated HDL-C 

was associated with a decreased risk of AAA (OR = 0.79, 95% CI = 0.68-0.91, P = 0.001); 

and a 1-standard deviation genetically elevated triglycerides was associated with an 

increased risk of AAA (OR = 1.40, 95% CI = 1.18–1.66, P = 8.5×10−5, Fig. 6). An MR-

Egger analysis36 indicated no pleiotropic bias of our lipid genetic instruments [MR-Egger 

intercept P > 0.05 for all 3 lipid fractions (Supplementary Table 23)].

Discussion

We leveraged clinical and genetic data from the Million Veteran Program to investigate the 

inherited basis of blood lipids in nearly 300,000 U.S. veterans. Our investigation resulted in 
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several key findings. First, we robustly confirmed 188 previously identified loci while 

concurrently uncovering an additional 118 novel genome-wide significant loci. Next, we 

identified a total of 826 independent lipid associated variants increasing the phenotypic 

variance explained by nearly 2%. We performed a TWAS in four tissues identifying 5 

additional novel lipid loci at a genome-wide level of significance, and performed a pathway 

analysis highlighting lipid transport mechanisms in our GWAS results. We identified 

ancestry-specific effects of rare coding variation on lipids among white, black, and Hispanic 

participants, and observed 15 pLoF mutations associated with lipids at a genome-wide level 

of significance, including a protein-truncating variant in PDE3B that lowers triglycerides, 

raises HDL-C, and protects against CAD. Finally, we examined the full spectrum of 

phenotypic consequences for mutations in lipid genes emerging as therapeutic targets, 

identifying protective effects of functional mutations in PCSK9 for abdominal aortic 

aneurysm and in ANGPTL4 for type 2 diabetes.

We glean four main insights through our findings. First, we confirm the enormous potential 

of a large-scale multi-ethnic biobank built within an integrated health care system in the 

discovery of the genetic basis of human traits. Specifically, we leveraged the VA’s mature 

nationwide EHR to efficiently extract existing repeated laboratory measures of lipids 

collected during the course of clinical care in nearly 300,000 veterans over a median of 10 

years for GWAS analysis. Our results highlight the expected increase in variance explained 

by known loci when repeated lipid measurements are considered but also demonstrate the 

efficiency of examining the single most extreme lipid value least likely influenced by the use 

of lipid altering medications. Subsequent meta-analysis (combined N>600,000) with 

existing datasets increased the number of known independent genetic lipid loci to nearly 400 

including several lipid pathways with links to human disease. For example, common variants 

near genes such as COL4A2 and ITGA1 identified for LDL-C/total cholesterol suggest links 

to extracellular matrix and cell adhesion biology, two pathways recently implicated by 

GWAS of CAD37,38. We also demonstrated that carriers of a rare missense mutation in the 

gene encoding Perilipin-1 (PLIN1 p.Leu90Pro) possess a markedly higher plasma HDL-C 

(0.243 standard deviations). In humans, Perilipin-1 is required for lipid droplet formation, 

triglyceride storage, as well as free fatty acid metabolism, and frameshift pLoF mutations in 

the PLIN1 gene have been reported to result in severe lipodystrophy39. A variant 

downstream of BDNF (encoding Brain-Derived Neurotrophic Factor) was found to be 

associated with HDL-C and triglycerides levels, supporting recent evidence linking this gene 

with metabolic syndrome and diabetes40. These findings not only improve our understanding 

of the genetic basis of dyslipidemia, but also provide insights into targets for the 

development of novel therapeutic agents.

Our second insight embraces the benefit of studying individuals with a diverse ethnic 

background. Such a design can provide valuable incremental information on the nature of 

previously identified human genetic associations. In MVP, we examined nearly 60,000 black 

and 25,000 Hispanic veterans for analysis, representing one of the largest - if not the largest 

- single-cohort GWAS to date for these ethnic groups for any trait. Among these individuals, 

we compared the effect estimates and allele frequencies of lipid-associated variants across 

ancestral groups and identified 7 novel low-frequency coding variants associated with lipids 

only in non-European populations. Conversely, we also confirmed a shared genetic 
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architecture across all three racial groups for pLoF variation at the LPL and APOC3 loci. 

Previous work identifying low-frequency missense and pLoF variation in lipid genes have 

led to the development of the next generation of pharmaceutical agents for cardiovascular 

disease14,15,41,42. Expansion of these efforts to larger sample sizes and additional 

ancestries may help explain differences in blood lipid levels and risk of atherosclerosis 

among select populations.

Our third insight centers around our findings for the deleterious exonic variants within 

PDE3B. These findings lend human genetic support to PDE3B inhibition as a therapeutic 

strategy for atherosclerosis. Cilostazol, an inhibitor of both the 3A and 3B isoforms of the 

phosphodiesterase enzyme, is known to have anti-platelet43, vasodilatory44, and inotropic45 

effects via inhibition of PDE3A, and also has well-documented, substantial effects on 

triglycerides and HDL cholesterol levels46 — likely through antagonism of PDE3B. We 

demonstrate that a PDE3B pLoF variant recapitulates the known lipid effects of cilostazol, 

and extend these findings to show that damaging PDE3B mutations are also associated with 

reduced risk of CAD. Randomized control trials to date have demonstrated cilostazol’s 

efficacy in intermittent claudication46 and prevention of restenosis following percutaneous 

coronary intervention47. The drug is also currently used off-label for the prevention of stroke 

recurrence through a presumed anti-platelet effect48. We note that mice genetically deficient 

in Pde3b display reduced atherosclerosis49 as well as decreased infarct size and improved 

cardiac function following experimental coronary artery ligation50. In light of our findings, 

use of cilostazol, or one of its derivatives, for the primary or secondary prevention of CAD 

deserves further consideration.

Our final insight highlights the potential benefit of phenome-wide association scanning 

across a large-scale EHR-based biobank to predict both potentially adverse as well as 

beneficial consequences of artificially inhibiting gene function. Here, we provide evidence 

that pharmacologic PCSK9 inhibition may reduce abdominal aortic aneurysm risk in 

addition to its known effects on atherosclerotic cardiovascular disease13. This finding is 

further supported by: our Mendelian randomization results; a recently published analysis 

using an independent AAA dataset51; and a recent report demonstrating that a PCSK9 gain-

of-function mutation augments AAA development in a mouse model52. However, we also 

recognize the possibility that these results may be a consequence of pleiotropic effects 

induced by a high phenotypic correlation between AAA and the presence of advanced 

atherosclerotic disease. Thus, additional studies are necessary before definitive conclusions 

can be made on causality. Similarly, we expand on the potential indications for ANGPTL4 

inhibition to include type 2 diabetes. Future PheWAS efforts may reveal associations that 

facilitate prioritization of drugs currently in development, repurposing of therapies already 

in clinical use, or prediction of adverse or off-target effects prior to investigation through 

expensive and time-consuming clinical trials.

Several limitations deserve mention. First, our MVP lipid phenotype definitions are based 

entirely on EHR data with a high prevalence of use of lipid-lowering therapy at enrollment. 

We used maximum or minimum values to capture untreated lipid levels, but the possibility 

of misclassification of lipid levels remains for participants entering the VA healthcare system 

on therapy. Such misclassification, however, would be expected to generally reduce our 
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power to detect genetic associations. Second, participants in MVP are overwhelmingly male. 

Although almost 25,000 women were included in our discovery analysis, we did not attempt 

to detect genetic associations specific to females or heterogeneity of effects between sexes 

due to suspected limited power. Third, our TWAS identifies candidate causal genes under the 

assumption that the causal mechanism of the tested genes involves changes in cis-

expression. However, we are unable to discriminate between instances of pleiotropy (when a 

given variant may alter gene expression and affect lipid levels independently) with TWAS 

alone and further functional analysis may be necessary. Fourth, our analysis demonstrating a 

lack of association between HDL-C raising alleles and CAD risk may be underpowered 

given the small number of alleles examined, though this finding has been demonstrated 

consistently in previous studies53,54. Lastly, power to detect associations with less common 

diseases in our PheWAS may also be limited despite the overall number of participants 

included in the analysis.

In conclusion, we identified >100 new genetic signals for blood lipid levels utilizing a 

biobank that exploits existing EHRs of U.S. veterans. We demonstrate the potential of this 

approach in the discovery of novel genetic associations and the development of novel 

therapeutic agents.

Online Methods

The design of the Million Veteran Program (MVP) has been previously described2. Briefly, 

individuals aged 19 to 104 years have been recruited from more than 50 VA Medical Centers 

nationwide since 2011. Each veteran’s EHR data are being integrated into the MVP 

biorepository, including inpatient International Classification of Diseases (ICD-9) diagnosis 

codes, Current Procedural Terminology (CPT) procedure codes, clinical laboratory 

measurements, and reports of diagnostic imaging modalities. The MVP received ethical and 

study protocol approval from the VA Central Institutional Review Board (IRB) in 

accordance with the principles outlined in the Declaration of Helsinki. Informed consent was 

obtained from all participants of the MVP study.

Genetic Data

DNA extracted from whole blood was genotyped using a customized Affymetrix Axiom 

biobank array, the MVP 1.0 Genotyping Array. With 723,305 total DNA sequence variants, 

the array is enriched for both common and rare variants of clinical significance in different 

ethnic backgrounds. Veterans of three mutually exclusive ethnic groups were identified for 

analysis: 1) non-Hispanic whites (European ancestry), 2) non-Hispanic blacks (African 

ancestry), and 3) Hispanics. Further details of methods used to assign ancestry and perform 

sample quality control are described in the supplementary note.

Variant Quality Control

Prior to imputation, variants that were poorly called (genotype missingness > 5%) or that 

deviated from their expected allele frequency based on reference data from the 1000 

Genomes Project21 were excluded. After pre-phasing using EAGLE55 v2, genotypes from 

the 1000 Genomes Project21 phase 3, version 5 reference panel were imputed into Million 
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Veteran Program (MVP) participants via Minimac3 software56. Ethnicity-specific principal 

component analysis was performed using the EIGENSOFT software57.

Following imputation, variant level quality control was performed using the EasyQC R 

package58 (see URLs), and exclusion metrics included: ancestry specific Hardy-Weinberg 

equilibrium59 P <1×10−20, posterior call probability < 0.9, imputation quality/INFO <0.3, 

minor allele frequency (MAF) < 0.0003, call rate < 97.5% for common variants (MAF > 

1%), and call rate < 99% for rare variants (MAF < 1%). Variants were also excluded if they 

deviated > 10% from their expected allele frequency based on reference data from the 1000 

Genomes Project21.

EHR-Based Lipid Phenotypes

EHR clinical laboratory data were available for MVP participants from as early as 2003. We 

extracted the maximum LDL-C/triglycerides/total cholesterol, and minimum HDL-C for 

each participant for analysis. These extreme values were selected to approximate plasma 

lipid concentrations in the absence of lipid lowering therapy as described previously20. For 

each phenotype (LDL-C, natural log transformed triglycerides, HDL-C, and total 

cholesterol), residuals were obtained after regressing on age, age2, sex, and 10 principal 

components of ancestry. Residuals were subsequently inverse normal transformed for 

association analysis. Statin therapy prescription at enrollment was defined as the presence of 

a statin prescription in the EHR within 90 days before or after enrollment in MVP. Statin 

therapy prescription at the maximum lipid measurement was defined as the presence of a 

statin prescription in the EHR within 90 days prior to the maximum lipid laboratory 

measurement used in our GWAS analysis. Further details of lipid phenotype quality control 

are described in the supplementary note.

MVP Association Analysis

Genotyped and imputed DNA sequence variants with a MAF > 0.0003 were tested for 

association with the inverse normal transformed residuals of lipid values through linear 

regression assuming an additive genetic model. In our initial discovery analysis (Stage 1), 

we performed association testing separately among individuals of each of three genetic 

ancestries (whites, blacks, and Hispanics) and then meta-analyzed results across ethnic 

groups using an inverse variance-weighted fixed effects method. For variants with suggestive 

associations (association P < 10−4), we sought replication of our findings in one of two 

independent studies: the 2017 GLGC exome array meta-analysis11 (Stage 2a) or the 2013 

GLGC “joint meta-analysis5“ (Stage 2b). Replication was first attempted using summary 

statistics from the 2017 GLGC exome array study (Stage 2a). A total of 242,289 variants in 

up to 319,677 individuals were analyzed after quality control and were available for 

replication. If a DNA sequence variant was not available for replication in the above exome 

array-focused study, we sought replication from publicly available summary statistics from 

URLs
R Statistical Software, www.R-project.org. EasyQC, https://www.uni-regensburg.de/medizin/epidemiologie-praeventivmedizin/
genetische-epidemiologie/software/. PheWAS. https://github.com/PheWAS/PheWAS. GCTA, http://cnsgenomics.com/software/gcta/
#Overview. FUMA, http://fuma.ctglab.nl/. ExAC Browser, http://exac.broadinstitute.org/. SNPTEST software program, http://
mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html; CARDIoGRAMplusC4D and MIGen and CARDIoGRAM Exome 
investigators datasets, www.CARDIOGRAMPLUSC4D.ORG.
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the 2013 GLGC “joint meta-analysis” (Stage 2b). An additional 2,044,165 variants in up to 

188,587 individuals were available for replication in this study. In total, 2,286,454 DNA 

sequence variants in up to 319,677 individuals were available for independent replication in 

either Stage 2a or Stage 2b. We emphasize that if a variant was available for replication in 

both studies, replication was performed only using summary statistics from the 2017 GLGC 

exome array study given its larger sample size. We defined significant novel associations as 

those that were at least nominally significant in replication (P<0.05) and had an overall P < 5 

×10−8 (genome-wide significance) in the discovery and replication cohorts combined. Novel 

loci were defined as being greater than 1 mB away from a known lipid genome-wide 

associated lead variant. Additionally, linkage disequilibrium information from the 1000 

Genomes Project21 was used to determine independent variants where a locus extended 

beyond 1 mB. All association P values were two-sided. Further details of the association 

analysis are described in the supplementary note.

Conditional Analysis

We used the COJO-GCTA software (see URLs) to perform an approximate, stepwise 

conditional analysis to identify independent variants within lipid-associated loci given that 

individual level data for the prior GLGC lipid analyses are not publicly available. We used 

summary statistics of ~1.9 million overlapping variants that we meta-analyzed across either 

one of the two GLGC datasets (predominantly European) and the European MVP dataset to 

conduct this analysis (Supplementary Figure 8) combined with an LD-matrix obtained from 

10,000 unrelated European individuals randomly sampled from the UK Biobank interim 

release.

Variance Explained Using Multiple Lipid Measurements

We estimated the proportion of variance explained by the set of 444 previously mapped 

independent lipid variants, the 118 novel lipid loci identified in our study, and the 826 

independent lipid variants identified from conditional analysis using ridge regression with 

the glmnet R package. The variance explained was determined after tuning the 

hyperparameter (lambda) to approximate an optimal value, and then calculating the model 

R2 after performing linear regression with the inverse normal transformed lipid outcome and 

each set (444, 118, 826) of independent genome-wide variants as predictors.

We estimated the variance explained for a GRS of 223 previously described GWAS lipid 

variants weighted by their previously reported effect sizes11 (Supplementary Table 11) as a 

function of the number of lipid measurements in MVP to assess the potential impact of using 

multiple lipid measurements in discovery. We performed this analysis using the mean of one, 

two, three, four, and five lipid measurements for each individual starting with their 

measurement closest to enrollment and moving backward in time. To account for the use of 

statin therapy, individuals with evidence of a statin prescription in their EHR at the time of 

enrollment had their LDL-C/total cholesterol values adjusted by dividing by 0.7/0.8, 

respectively as previously described5. In addition, we also calculated the variance explained 

by the single maximal triglycerides, LDL-C/total cholesterol, and minimal HDL-C from the 

EHR without adjustment for lipid lowering therapy. Our analyses were restricted to a subset 

of 171,314 European MVP participants with ≥ 5 lipid measurements.
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Lipids Transcriptome-wide Association Study

We performed a TWAS using summary statistics after a meta-analysis of ~1.9 million 

overlapping variants among GLGC (predominantly European) and European MVP datasets 

(Supplementary Figure 8) and four gene-expression reference panels (NTR whole blood, 

METSIM adipose tissue, and tibial artery and liver from GTEx) in independent samples as 

previously described23. In brief, for a given gene, variant-expression weights in the 1-mB cis 
locus were first computed with the BSLMM60, which: “models effects on expression as a 

mixture of normal distributions to account for the sparse expression architecture. Given 

weights w, lipid Z scores Z, and variant-correlation (LD) matrix D; the association between 

predicted expression and lipids (i.e., the TWAS statistic) was estimated as ZTWAS = w’Z/

(w’Dw)1/2 (details in ref. 23).” We computed TWAS statistics by using either the variants 

genotyped in each expression reference panel or imputed HapMap3 variants. To account for 

multiple hypotheses we applied a genome-wide significant P value threshold (two-sided P < 

5 ×10−8), significantly more stringent than previously used Bonferroni corrections in prior 

TWAS26. We defined novel TWAS loci as a TWAS gene falling outside of a previously 

identified lipid GWAS region (± 1mB around a mapped sentinel GWAS variant).

Identification of Independent Low-Frequency Coding Variant Lipid Associations Specific to 
Blacks and Hispanics

We used the P value and linkage disequilibrium-driven clumping procedure in PLINK 

version 1.90b (--clump) to identify associations between low-frequency coding variants and 

lipids specific to blacks and Hispanics. Input included summary lipid association statistics 

from our MVP 1000 Genomes imputed genome-wide association study of black and 

Hispanic individuals, and reference linkage disequilibrium panels of 661 African (AFR) and 

347 Ad Mixed American (AMR) samples from 1000 Genomes phase 3 whole genome 

sequencing data. Variants were clumped with stringent r2 (<0.01) and P (< 5 × 10−8) 

thresholds in a 1mB region surrounding the lead variant at each locus to reveal independent 

index variants at genome-wide significance. From this list of independent variants, we report 

novel protein-altering variants specific to blacks and Hispanics at a MAF < 0.05.

Loss of Gene Function Analysis

We used the Variant Effect Predictor29 software to identify pLoF DNA sequence variants 

defined as: premature stop (nonsense), canonical splice-sites (splice-donor or splice-

acceptor) or insertion/deletion variants that shifted frame (frameshift). For the pLoF lipids 

analysis, we then merged these variants with data from the Exome Aggregation 

Consortium27 (Version 0.3.1, see URLs), a publicly available catalogue of exome sequence 

data to confirm consistency in variant annotation. We required that pLoF DNA sequence 

variants be observed in at least 50 individuals, and set a statistical significance threshold of P 

< 5 × 10−8 (genome-wide significance).

Loss of PDE3B Gene Function and Coronary Artery Disease

We identified a novel lipid association for a pLoF mutation in the PDE3B gene 

(rs150090666, p.Arg783Ter). For carriers of damaging mutations in Phosphodiesterase 3B, 

we examined the mutation’s effects on risk for CAD using logistic regression in five 
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separate cohorts: MVP, UK Biobank, and 3 cohorts with exome sequencing: the Myocardial 

Infarction Genetics Consortium (MIGen), the Penn Medicine Biobank (PMBB), and 

DiscovEHR. In studies with exome sequencing, we combined pLoF variants with missense 

variants predicted to be damaging or possibly damaging by each of 5 computer prediction 

algorithms (LRT score, MutationTaster, PolyPhen-2, HumDiv, PolyPhen-2 HumVar, and 

SIFT) as performed previously30,33. Because any individual damaging mutation was rare, 

variants were aggregated together for subsequent phenotypic analysis. We performed logistic 

regression on disease status, adjusting for age, sex, and principal components of ancestry as 

appropriate. Effects of PDE3B damaging mutations were pooled across studies using an 

inverse-variance weighted fixed effects meta-analysis. Further details of participating 

cohorts and CAD case definitions are described in the supplementary note. We set a two-

sided P < 0.05 threshold for statistical significance.

PheWAS of Variation in Genes Targeted by Lipid Lowering Therapies

For a set of DNA sequence variants within genes targeted by lipid-lowering medicines, we 

performed a PheWAS leveraging the full catalog of EHR ICD-9 diagnosis codes. We 

selected five lipid genes currently being targeted by pharmaceutical agents and identified 

functional variants in these genes: two nonsense variants (LPL p.Ser474Ter, ANGPTL8 
p.Gln121Ter) and three missense variants (ANGPTL4 p.Glu40Lys, APOA5 p.Ser19Trp, 

PCSK9 p.Arg46Leu). Details of PheWAS quality control, case definitions, and association 

analysis are described in the supplementary note. We considered phenotypes to be 

significantly associated with a variant if they met a Bonferroni corrected two-sided P < 4.98 

× 10−5 [0.05/1004 traits]. For replication of our ANGPTL4 p.E40K type 2 diabetes finding, 

we combined the PheWAS results with publicly available data from the recently published 

trans-ethnic type 2 diabetes GWAS35 using an inverse variance-weighted fixed effects 

method.

Lipids and Abdominal Aortic Aneurysm Mendelian Randomization Analysis

Summary-level data for 223 genome-wide lipids-associated variants were obtained from 

publicly available data from the Global Lipids Genetics Consortium11. We then utilized 

results from a GWAS of 5,002 AAA cases and 139,968 controls performed in white MVP 

participants using the definition proposed by Denny et al17. The effect alleles were matched 

with all lipid and AAA summary data and 3 different Mendelian randomization analyses 

were performed: 1) inverse variance–weighted; 2) multivariable; 3) MR-Egger to account for 

pleiotropic bias. First, we performed inverse-variance–weighted Mendelian randomization 

using each set of variants for each lipid trait as instrumental variables. This method, 

however, does not account for possible pleiotropic bias. Therefore, we next performed 

inverse-variance–weighted multivariable Mendelian randomization. This method adjusts for 

possible pleiotropic effects across the included lipid traits in our analyses using effect 

estimates from the variant-AAA outcome and effect estimates from variant-LDL-C, variant-

HDL-C, and variant-triglycerides as predictors in 1 multivariable model. We additionally 

performed MR-Egger as previously described36. This technique can be used to detect bias 

secondary to unbalanced pleiotropy in Mendelian randomization studies. In contrast to 

inverse variance–weighted analysis, the regression line is unconstrained, and the intercept 
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represents the average pleiotropic effects across all variants. Bonferroni-corrected two-sided 

P values (P=0.016; 0.05/3) for 3 tests were used to declare statistical significance.

Reporting Summary

Further information on experimental design is available in the Nature Research Life 

Sciences Reporting Summary linked to this article.

Data availability.

The full summary level association data from the trans-ancestry meta-analysis for each lipid 

trait from this report are available through dbGaP, accession code __.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. GWAS Study Design
a) DNA sequence variants across 3 separate ancestry groups in the Million Veteran Program 

were meta-analyzed using an inverse-variance weighted fixed effects method in the 

discovery phase (Stage 1). Variants with suggestive association were then brought forward 

for independent replication.

b) DNA sequence variants with suggestive association (two-sided linear regression P < 10−4) 

in discovery (Stage 1) were brought forward for independent replication and tested using 

summary statistics from the 2017 exome-array focused GLGC meta-analysis (Stage 2a). 

Only variants with suggestive association in Stage 1 that were not present in the GLGC 2017 

exome-array study (Stage 2a) were alternatively replicated in the 2013 GLGC “joint meta-

analysis” (Stage 2b).

Abbreviations: MVP, Million Veteran Program; GWAS, genome-wide association study; 

EHR, electronic health record; GLGC, Global Lipids Genetics Consortium
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Figure 2. Comparison of 354 Independent Lipid Associated Variants Across Ethnicities
Allele frequencies observed in white individuals (n=215,196; x-axes) compared to black (a, 

n=57,280; R = 0.72,) or Hispanic (b, n=24,742; R = 0.96) individuals for lipid-associated 

variants are shown. Effect estimates for LDL-C association in white individuals (n = 

215,196; x-axes) compared to black (c, n = 57,280; β = 1.07) or Hispanic (d, n = 24,742; β = 

1.06) individuals are also depicted.

Abbreviations: SD, Standard Deviations; LDL-C, Low-Density Lipoprotein Cholesterol; R = 

Pearson correlation coefficient
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Figure 3. PDE3B Loss of Gene Function, Lipids, and Coronary Disease
Linear regression results for the association of the predicted loss of function mutation 

p.Arg783Ter in PDE3B with HDL-C (a) and triglycerides (b) for white veterans in MVP 

with independent replication in the DiscovEHR study. Two-sided P values are displayed.

c) Meta-analysis of the association of damaging PDE3B mutations and coronary artery 

disease across five studies, including three (MIGen, PMBB, DiscovEHR) with exome 

sequencing. Logistic regression results were pooled in an inverse-variance weighted fixed 

effects meta-analysis. Minimal evidence of heterogeneity across cohorts was observed (I2 = 

0%). Two-sided P values are displayed.

Abbreviations: MVP, Million Veteran Program; HDL-C, High-Density Lipoprotein 

Cholesterol; TG, Triglycerides; UKBB, UK Biobank; MIGen, Myocardial Infarction 

Genetics Consortium; PMBB, Penn Medicine Biobank
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Figure 4. ANGPTL4 40Lys Carrier Disease Associations.
Forest plot for a representative 33 of the 1004 disorders tested in the ANGPTL4 p.Glu40Lys 

PheWAS. Statistically significant logistic regression associations are shown in blue. Two-

sided P values are displayed.
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Figure 5. PCSK9 46Leu Carrier Disease Associations
Forest plot for a representative 33 of the 1004 disorders tested in the PCSK9 p.Arg46Leu 

PheWAS. Statistically significant logistic regression associations are shown in blue. Two-

sided P values are displayed.
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Figure 6. Lipid Associations with Abdominal Aortic Aneurysm
Logistic regression association results of the 223 variant lipid genetic risk score with 

abdominal aortic aneurysm in a multivariable Mendelian randomization analysis. Odds 

ratios are displayed per 1-standard deviation genetically increased lipid fraction. Two-sided 

P values are displayed.

Abbreviations: HDL, High-Density Lipoprotein; LDL, Low-Density Lipoprotein
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Table 1

Demographic and clinical characteristics of black, white, and Hispanic individuals passing quality control in 

the Million Veteran Program

Basic Demographics Genotyped Veterans

N 312,571

Age at Enrollment ± SD, years 62.4 ± 13.5

Male, n (%) 287,441 (92.0%)

Body Mass Index ± SD, kg/m2 30.3 ± 6.0

Current Smoker, n (%) 59,385 (19.0%)

Former Smoker, n (%) 159,459 (51.0%)

N with ≥ 1 Measurement of Plasma Lipids, (%) 297,626 (95.2%)

Number of Lipid Measurements, (Median Per Lipid Fraction) 15,456,328 (12)

Race/Ethnicity

Black, n (%) 59,007 (18.9%)

White, n (%) 227,817 (72.8%)

Hispanic, n (%) 25,747 (8.1%)

Cardiometabolic Disease at Enrollment*

Coronary Artery Disease, n (%) 67,912 (21.7%)

Type 2 Diabetes, n (%) 92,079 (29.5%)

Peripheral Artery Disease, n (%) 21,418 (6.9%)

Abdominal Aortic Aneurysm, n (%) 5,618 (1.8%)

Deep Venous Thrombosis or Pulmonary Embolism, n (%) 7,009 (2.2%)

*
Diseases are defined by International Classification of Disease, Ninth Edition (ICD-9) diagnosis codes.

Abbreviations: SD, Standard Deviation
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Table 2

Demographic and clinical characteristics for 297,626 veterans in the Million Veteran Program lipids analysis

White Black Hispanic

Veterans, N (%) 215,551 (72.4%) 57,332 (19.3%) 24,743 (8.3%)

Age at Enrollment ± SD, years 64.2 ± 13 57.7 ± 11.8 56.3 ± 15.0

Male, n (%) 200,900 (93.2%) 50,059 (87.3%) 22,601 (91.3%)

Body Mass Index ± SD, kg/m2 30.1 ± 5.9 30.4 ± 6.3 30.7 ± 5.8

Statin Therapy Prescription at Enrollment, n (%) 100,024 (46.4%) 23,302 (40.6%) 9,646 (39.0%)

Statin Therapy Prescription at time of Max LDL-C Blood Draw, n (%) 18,818 (8.7%) 5,024 (8.8%) 2,262 (9.1%)

Statin Therapy Prescription at time of Max TC Blood Draw, n (%) 18,433 (8.6%) 5,027 (8.8%) 2,162 (8.7%)

Mean Min HDL-C ± SD, mg/dL 36.2 ± 11.4 38.9 ± 12.8 36.4 ± 11.0

Mean Max LDL-C ± SD, mg/dL 139 ± 38.4 142.2 ± 40.7 141.3 ± 38.1

Median Max TG ± IQR, mg/dL 211 ± 174 179 ± 149 221 ± 184

Mean Max TC ± SD, mg/dL 218.6 ± 46.7 220.8 ± 47.2 221.9 ± 48.0

Variants Included in Analysis 19,342,852 31,448,849 30,455,745

Abbreviations: Min, Minimum; Max, Maximum; SD, Standard Deviation; HDL-C, High-Density Lipoprotein Cholesterol; LDL-C, Low-Density 
Lipoprotein Cholesterol; TG, Triglycerides; TC, Total Cholesterol
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