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Hepatitis B virus (HBV) infection can cause chronic hep-
atitis B (CHB), which can result in severe liver disease, 
including cirrhosis and liver cancer. A major challenge 
to recovery, even in treated individuals, is the persis-
tence of two forms of the viral genome in hepatocytes: 
the replication- competent, episomal, covalently closed 
circular DNA (cccDNA), and the linear subgenomic 
HBV sequences integrated into the human genome, 
which do not sustain viral replication but can express 
some HBV antigens1. High viral loads and antigens can 
lead to T and/or B cell exhaustion and downregulation 
of innate immune sensors and pathways2–7. Current 
antiviral therapies, which include nucleos(t)ide ana-
logues (NUCs) and pegylated interferon- α (peg- IFNα), 
decrease viral loads and lead to remission of the disease. 
However, although NUCs are well tolerated, they require 
lifelong treatment and do not target cccDNA directly8. 

Conversely, peg- IFNα, the only finite treatment for 
CHB, is less well tolerated but might affect cccDNA 
directly and indirectly9. Treatment results in hepatitis B 
surface antigen (HBsAg) loss (also known as functional 
cure) in a minority of cases10,11. Consequently, new effec-
tive, finite and well- tolerated cure therapies are being 
sought to induce functional cure, fully controlling HBV 
replication and gene expression and/or ultimately elim-
inating cccDNA and integrated HBV DNA (also known 
as sterilizing cure)10,11.

CHB is a major global health challenge, and there is 
an urgent need to develop curative therapies for patients 
with CHB worldwide12. In 2020, mortality from human 
immunodeficiency virus (HIV) infection, malaria and 
tuberculosis continued to decline, but death attributa-
ble to viral hepatitis is still increasing13, with rates pre-
dicted to double by 2040, even though effective cures 
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for hepatitis C virus are already available. The World 
Health Organization (WHO) set a goal for the elimi-
nation of viral hepatitis with a 90% reduction of new 
HBV cases by 2030; it is unlikely to be achieved without 
a substantial increase in the rate of HBV diagnosis. It is 
estimated that less than 10% of individuals with HBV 
infection have been identified, and only 10% of the eli-
gible patients receive treatment globally12. To achieve 
the goal set by WHO, a panel of serum biomarkers will 
likely be required for surveillance to predict treatment 
response and outcome as an armamentarium of new 
therapies is developed. Although a limited number of 
biomarkers is available that permits monitoring of HBV 
DNA replication and treatment response to current 
treatment regimens, biomarkers accurately predicting 
functional cure are lacking. With more than 40 new 
therapeutic approaches in preclinical or clinical trials14,15 

targeting HBV replication or stimulating HBV- specific 
host immune responses, identifying suitable biomarkers 
will become increasingly important.

In October 2020, the International Coalition to 
Eliminate Hepatitis B Virus (ICE- HBV) held a virtual 
and interactive workshop on HBV biomarkers, at which 
stakeholders from academia, clinical practice and the 
pharmaceutical industry, with complementary exper-
tise, presented and participated in panel discussions. The 
clinical utility of both classic and emerging, viral and 
immunological serum biomarkers with respect to the 
course of infection, disease progression, and response  
to current and emerging treatments was appraised. The 
latest advances were discussed and knowledge gaps in our 
understanding and interpretation of HBV biomarkers  
were identified.

This Roadmap summarizes current knowledge 
for existing and emerging HBV virological and 
immune- related biomarkers and suggests a road forward 
to advance the biomarkers required to fast- track an HBV 
cure for all, irrespective of resources, HBV genotype or 
disease stage.

HBV biomarkers
HBV cccDNA, the key molecule in the HBV life cycle, 
is first generated from incoming virions and exists as a 
stable minichromosome in non- dividing hepatocytes1,16. 
cccDNA is the template for transcription of all HBV 
RNAs17, including the pre- genomic RNA (pgRNA) 

Key points

•	As new therapies for hepatitis b virus (Hbv) infection become available, new 
biomarkers to monitor viral and host responses are urgently needed.

•	This roadmap summarizes current knowledge on existing and emerging serum 
biomarkers in the context of chronic Hbv infection.

•	This roadmap discusses the strengths, weaknesses, opportunities and challenges  
of serum Hbv biomarkers.

•	This roadmap provides suggestions of the way forward to advance the biomarkers 
required to fast- track an Hbv cure for all, irrespective of resources, Hbv genotype or 
disease stage.
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replication intermediate that is reverse transcribed 
into new HBV genomes. Thus, cccDNA is responsible 
for the production of virions and subviral particles. 
A detailed description of the viral life cycle has been 
previously presented18. Integrated HBV sequences can 
encode HBsAg and seem to be a major source of HBsAg 
in patients who are negative for hepatitis B e antigen 
(HBeAg)19. In addition, integrated sequences can pro-
duce truncated HBV RNAs and hepatitis B virus x (HBx) 
protein.

Serum biomarkers currently used in clinical practice 
to discriminate CHB and disease stages20 include quan-
titative HBsAg, HBeAg, HBV DNA (Fig. 1) and alanine 
aminotransferase (ALT) serum levels. However, these 
biomarkers are not universally available, particularly 
in resource- limited settings (discussed later), and the 
classification and use of these classic markers do not 
completely reflect CHB complexity or HBV intrahepatic  
activity16. Intrahepatic measurement of cccDNA and 
viral RNAs might improve disease classification but 
entail using liver biopsy samples, which are invasive, not 
routine CHB care and unavailable in resource- limited 
settings. Furthermore, only a small section of the liver 
is sampled by liver biopsies, and HBV is unevenly 

distributed in the liver21,22. Although specific quantitative 
polymerase chain reactions (PCRs) for cccDNA have 
been developed23,24, the coexistence of HBV replicative 
DNA intermediates in infected cells16, including relaxed 
circular and integrated HBV DNA molecules, interferes 
with accurate cccDNA quantification. In this respect, a 
global collaborative project initiated by ICE- HBV aims 
to optimize and harmonize cccDNA detection and 
quantification protocols in liver tissue and cell culture.

Accordingly, there is a pressing need for alternative 
biomarkers that not only accurately reflect the intra hepatic 
cccDNA pool and transcriptional activity25,26 but also bet-
ter characterize the different CHB disease stages and risk 
of complications, detect HBV integration, improve the 
determination of hepatocellular carcinoma (HCC) risk, 
and monitor immune status and response to therapy. For 
example, one study showed that HBV functional cure in 
10 of 14 patients with genotype A HBV infection was 
associated with anti- HBsAg immune complex peaks that 
overlapped with ALT flares in serum levels27. This suggests 
the utility of hepatitis B surface antibody (anti- HBs, also 
known as HBsAb) immune complexes as a biomarker 
of functional cure and warrants further investigation in 
larger studies encompassing additional HBV genotypes.
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Fig. 1 | Course of serum markers in acute resolving hepatitis B virus infection. The curves in the upper part of the 
diagram show the relative concentration of the markers in a typical infection. The lines above the curves show the mean 
lengths of the detection periods of hepatitis B virus (HBV) DNA and hepatitis B surface antigen (HBsAg) as estimated from 
the numbers of HBV nucleic acid testing (NAT) yields, with and without detectable HBsAg. The lengths of the pre- HBsAg 
and post- HBsAg window periods (WPs) and pre- NAT and post- NAT WPs as described by Weusten et al.176. In a later stage 
of occult HBV infection, when titres of antibodies against hepatitis B surface antigen (anti- HBs) have declined to below 
10–100 mIU/mL, occult persisting HBV DNA in the liver can reappear in plasma. If infection occurs perinatally or in very 
early childhood, there is no full recovery because of immune system immaturity, and this can lead to chronic infection in 
90% of cases. The duration of HBsAg positivity is thus prolonged. The lower panel of the figure depicts the stages of natural 
infection according to current European Association for the Study of the Liver (EASL) guidelines (hepatitis B e antigen 
(HBeAg)- positive or HBeAg- negative disease and/or infection)177. Anti- HBc, hepatitis B c antibody; Anti- HBe, hepatitis B e 
antibody; HBeAg, hepatitis B e antigen. Adapted with permission from reF.178, Wiley.
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Ideal biomarkers should be predictive (visible early 
and indicative of clinical outcome), highly specific and 
sensitive, HBV (sub)genotype agnostic, correlative with 
disease activity and severity, reflective of durable viral 
control, reproducible, non- invasive and accessible, rapid, 
simple, and inexpensive28. Biomarkers should also be 
accessible in resource- limited settings.

Various serum HBV markers have been proposed as 
surrogates for intrahepatic viral activity. These markers 
include the complete virion (HBV DNA, hepatitis B 
core antigen (HBcAg), HBsAg), subviral particles (with 
HBsAg), empty virus particles (with HBsAg and HBcAg 
but without HBV DNA or RNA), viral particles contain-
ing HBV RNA, and HBV core- related antigen (HBcrAg) 
consisting of the non- particulate HBeAg and the related 
precore protein that, like HBeAg, is also derived from the 
precore/core open reading frame29. We have appraised 
the clinical utility of both classic (HBV DNA, HBeAg 
and/or hepatitis B e antibody (anti- HBe), HBsAg, 
anti- HBs and hepatitis B core antibody (anti- HBc)) and 
emerging (HBV RNA, HBcrAg and HBsAg isoforms) 
biomarkers of HBV infection with respect to the course 
of infection, disease progression, and response to current 
and emerging treatments.

Classic biomarkers: needs and limitations
A summary of classic biomarkers is presented in 
Supplementary Table 1. More sensitive DNA assays 
might be beneficial in identifying residual and fluc-
tuating HBV levels30,31, predicting the risk of reacti-
vation or severe outcomes following NUC treatment 
withdrawal32, assessing the effect of direct antiviral 
agents on DNA suppression, and accurately detecting 
occult HBV infection (OBI)33. In light of WHO recom-
mendations that, in settings where antenatal HBV DNA 
testing is not available, HBeAg testing can be used to 
determine eligibility for tenofovir therapy to reduce 
the likelihood of mother- to- child HBV transmission34, 
there is a need for point- of- care (POC) HBeAg assays, 
particularly in resource- limited settings. A limitation 
of all HBsAg assays is that they do not differentiate 
between HBsAg derived from cccDNA and integrated 
HBV DNA because the protein derived from either 
source is identical35. More research is required to deter-
mine the usefulness of quantitative anti- HBs, anti- HBe 
and anti- HBc assays to better characterize the risk 
of HCC and reactivation of HBV infection following 
treatment discontinuation or immunosuppression. 
These markers are proving useful in detecting OBI  
(discussed later).

Point- of- care testing: an unmet need
WHO has developed a simplified HBV treatment cas-
cade based on the biomarkers of HBsAg, ALT, presence 
of cirrhosis and HBV DNA levels36. Treatment eligi-
bility requires appropriate screening and assessment 
for active disease. These tools include rapid diagnostic 
tests and ELISA for HBsAg, HBV DNA nucleic acid 
testing (NAT), ALT (liver panel), and fibrosis meas-
urements such as transient elastography or aspartate 
aminotransferase- to- platelet ratio index (APRI) score. 
In addition, regular HCC surveillance with abdominal 

ultrasonography alongside, or not, serum analysis of 
α- fetoprotein (AFP) serum levels is essential.

Unfortunately, many of these tests are not readily 
available as required POC tests, particularly in resource- 
 limited settings37. Their availability will be necessary 
to meet the ASSURED criteria38 (Affordable, Sensitive, 
Specific, User- friendly, Rapid and robust, Equipment- free, 
and Deliverable to those that need them).

Rapid HBsAg screening tests, such as Determine 
HBsAg 2 (Alere Medical, Chiba- ken, Japan) and VIKIA 
HBsAg (bioMérieux SA, Marcy- l’Étoile, France), are 
available for POC screening. POC HBV DNA NAT 
platforms have been validated or are in development. 
In addition, fibrosis measurement by transient elas-
tography (FibroScan) can be adopted for POC with a 
portable FibroScan; however, the availability of transient  
elastography is sparse in resource- limited settings39.

Rapid diagnostic tests for HBsAg for multiple HBV 
genotypes and subtypes40, with results available in 
30 min, have been developed41. Notably, the sensitiv-
ity of HBsAg enzyme- linked immunosorbent assay 
(ELISA) and rapid diagnostic tests varies for different 
HBV genotypes41. Genetic variability in the S gene 
region of HBV can also affect diagnostic efficacy and 
specificity42,43. HBsAg ELISA tests that include multiple 
monoclonal antibodies in the capture phase, together 
with a polyclonal conjugate phase, are more accurate. 
HBsAg rapid diagnostic tests are generally less sensi-
tive than lab- based ELISA tests. In our opinion, rapid 
diagnostic tests, such as Determine and VIKIA, are ade-
quate for HBV screening but are not ideal for monitoring  
treatment response.

Dried blood spot (DBS) tests have numerous advan-
tages compared to obtaining a standard blood sample; 
namely, the capillary finger- stick does not require trained 
health workers, high blood volumes, basic lab facili-
ties, electric power, or a cold chain for transport and 
storage44. In 2017, WHO conditionally recommended 
the use of DBS specimens as an option for HBV DNA 
NAT in settings where there were no facilities or exper-
tise to take venous blood specimens and for persons with 
poor venous access36. Meta- analysis of 12 studies from 
Europe (France, Denmark, Germany and Spain), Africa 
(Ethiopia, Congo, Egypt and Zambia), India and Mexico 
comparing the sensitivity and specificity of DBS versus 
serum samples for HBV DNA showed that DBS sensitiv-
ity ranged from 93% to 100% and specificity from 70% to 
100%44. The limit of detection of the HBV DNA assays for 
serum samples ranged from 10 IU/ml to 100 IU/ml. HBV 
DNA detection limits from DBS specimens ranged from 
approximately 900 IU/ml to 4,000 IU/ml (reF.44). Potential 
issues identified were the various lengths of storage 
before testing, ambient temperature variations, and the 
absence of manufacturer validation for the use of their 
assays with DBS samples or standardization of technical 
guidance. Many manufacturers and investigators have 
validated NAT using DBS by standardized procedures.

DBS have also been used in the HBcrAg assay, show-
ing that HBcrAg correlated strongly with HBV DNA lev-
els for genotypes A–E in individuals with high viral load, 
suggesting that DBS might be useful in resource- limited 
settings with limited access to NAT45. However, the assay 
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used to measure HBcrAg, LUMIPULSE chemilumines-
cent enzyme immunoassay (Fujirebio, Tokyo, Japan), is 
currently not widely available.

Several POC or near POC NAT platforms have been 
developed for other blood- borne viruses, including 
the Xpert HCV Viral Load FS assay (Cepheid, USA), 
Genefrive (Manchester, UK) and the Alere (Abbott, 
USA). The GeneExpert platform (Cepheid, USA) 
is widely available across resource- limited settings 
where it is used routinely for tuberculosis diagnostics 
and HIV viral load monitoring. It is also being used to 
detect severe acute respiratory syndrome coronavirus 2  
(SARS- CoV-2). Importantly, a GenExpert viral load 
assay has also been developed for HBV, which should be 
readily available in many resource- limited settings where 
GeneExpert machines have been placed to monitor 
other pathogens46,47. Fibrosis measurement by transient 
elastography can be adopted for POC with a portable 
FibroScan. FibroScan is the preferred method for cirrho-
sis and fibrosis assessment, with improved performance 
compared to APRI/FIB4 (reF.48). Improving the availabil-
ity of the portable FibroScan in resource- limited settings 
should be prioritized. It is important to note that hepatic 
inflammation and non- fasting states can falsely increase 
fibrosis scores with FibroScan, so the results need to be 
interpreted with care.

To establish a POC model for HBV management 
in resource- limited settings, standardized diagnostic 
assays with rapid diagnostic tests or DBS using cur-
rently available HBV DNA and HBsAg biomarkers are 
urgently required. Together with practical and effective 
guidelines for disease monitoring and therapy, this will 
assist in reaching the WHO goals of HBV elimination, 
particularly in resource- limited settings, where the HBV 
burden is highest.

Novel or emerging biomarkers
HBV RNA
HBV cccDNA is the template for five viral transcripts: 
precore/core RNA, pgRNA, preS1 RNA, preS2/S RNA  
and X RNA17,49,50. pgRNA and precore RNA are over- 
 length molecules of approximately 3.5- kb in size, and 
hence can only be transcribed from cccDNA51–55. Addi-
tional molecules transcribed from cccDNA include 
5′ truncated RNAs with 3′ poly(A) tails56,57 and HBx 
RNA55,58. Subgenomic RNAs encoding HBx or HBsAg 
can also be transcribed from integrated HBV DNA, 
which could be 5′ truncated with poly(A) tails. At least 
15 splice variants of pgRNA54–56 and two splice variants 
of preS2/S mRNA17, which arise from co- transcriptional 
processing, have been isolated from the supernatant of 
transfected cell lines or primary human hepatocytes54 
and patient sera54,59–61. The majority of splice variants 
identified to date encode the 5′ region of pgRNA and 
their contribution to pgRNA levels detected in RNA 
PCR assays requires investigation.

Viral RNA does not circulate freely52 but is found 
in virus- like particles in serum (or supernatant of 
cultured cells)51,56,62. HBV RNA can also be found in 
capsid- antibody complexes62 and naked capsids51,62. The 
secreted HBV RNA- containing viral particles have a sim-
ilar buoyant density to HBV DNA- containing particles. 

However, they are produced at lower levels and, when 
reverse transcription is blocked, levels increase relative 
to HBV DNA- containing particles53. The quasispecies 
of serum and intrahepatic HBV RNA are similar and 
homologous to cccDNA56.

Various strategies for measuring HBV RNA are 
shown in Table  1. Few comparisons of the differ-
ent assays have been performed so far and no widely 
accepted (international) RNA standard is currently 
available63.

Clinical relevance of HBV RNA
The ratios of the different forms of HBV RNA and their  
importance during the different clinical phases or 
treatment responses are unknown. However, we con-
sider that HBV RNA shows promise as a biomarker of 
treatment responses that are not predicted by serum 
HBV DNA levels using current NUC therapy in some 
settings. HBV RNA kinetics are predictors of response 
to treatment in patients who are HBeAg positive64. Even 
though HBV DNA levels decrease following NUC treat-
ment, HBV pgRNA levels can remain relatively high, 
decreasing at a later stage63. This decoupling of pgRNA 
to HBV DNA levels can enable pgRNA to be used as a 
surrogate marker for cccDNA activity or cccDNA copies 
in the cell under NUC therapy63.

In the absence of therapeutic intervention, the level 
of HBV RNA in serum generally correlates closely with 
HBV DNA, albeit 1.5–2 logs lower65,66. The prognostic 
usefulness of HBV RNA in following the natural his-
tory of infection is uncertain and it has become clear, 
through the preparation of this Roadmap, that there is 
a paucity of data on its ability to predict liver- related 
complications, including cirrhosis or HCC. Serum HBV 
RNA and intrahepatic HBV RNA (primarily full- length 
encapsidated pgRNA51,67) levels were lower in patients 
with inactive HBV than in patients with CHB who were 
either HBeAg positive or HBeAg negative65,68. In patients 
with CHB, HBV RNA levels varied according to HBeAg 
status (being higher in patients who were HBeAg posi-
tive), with liver inflammation, HBV genotype, and basal 
core promoter and/or precore mutants24,53,66,69. In the 
HBeAg- positive phase, serum HBV RNA levels showed 
a better correlation to serum HBV DNA levels than to  
either HBsAg or HBeAg66. This correlation seemed 
to be genotype dependent, with HBV RNA showing a 
strong correlation with HBV DNA levels for genotype A  
and with HBsAg levels for genotypes B and C; these 
associations were weakest for genotype D66. The corre-
lation of HBV RNA with HBV DNA held during the 
HBeAg- negative phase, with genotype- specific corre-
lations of HBV RNA levels only determined for geno-
types A and D66. The weak correlation between HBV 
RNA levels and HBsAg in the HBeAg- negative phase is 
most likely due to the large proportion of HBsAg being 
expressed from integrated HBV DNA.

The decline of both full- length and subgenomic HBV 
RNA at 3 and 6 months after the initiation of NUC treat-
ment was the strongest predictor of HBeAg seroconver-
sion compared to other markers, including serum levels 
of HBV DNA, HBsAg, HBeAg, HBcrAg and ALT as 
well as sex, age and HBV genotype64,70. Together with 
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HBcrAg, serum HBV RNA levels are also a prognos-
tic biomarker for predicting ALT flares and the likeli-
hood of HBV reactivation following cessation of NUC 
therapy in the absence of detectable HBV DNA32,71. In 
patients who were HBeAg positive, HBV RNA correlated 
strongly with HBcrAg levels but this was not observed in 
patients who were HBeAg negative32,71. Increased HBV 
RNA levels can also be a marker for viral relapse after 
NUC discontinuation72,73.

As serum pgRNA is derived exclusively from HBV 
cccDNA, its measurement can reflect cccDNA activity1. 
It might also serve as a surrogate marker to assess the 
target engagement of drugs affecting serum RNA levels 
by affecting RNA transcription, pgRNA stability and 
pgRNA packaging (that is, pegylated interferons, small 
interfering RNAs, antisense oligonucleotides, core pro-
tein assembly modulators (also known as capsid assem-
bly modulators (CAMs)). Indeed, the CAM NVR 3–778 
plus peg- IFNα but not the NUC entecavir lowered the 
concentration levels of HBV RNA in serum without 
causing substantial changes in cccDNA loads71,74,75. 
Peg- IFNα treatment reduced HBV RNA levels in the 
liver and serum of humanized mice, with good corre-
lations between serum and intrahepatic pgRNA levels 
but not with cccDNA levels, as such pgRNA reduction 
mostly reflected the suppression of cccDNA activity76. In 
patients who are HBeAg positive, low HBV RNA levels 
can also help predict response, HBeAg loss and sustained 
virological control off- treatment after peg- IFNα and 
combined peg- IFNα–NUC therapy52,77. Although the 

relevance and correlation between viral RNA serum lev-
els and liver damage still need clarification, serum HBV  
RNA could help define treatment end points51,78.

HBV RNA can be an addition to HBV DNA as a 
biomarker in some settings, particularly in predicting 
which patients will benefit most from treatment cessa-
tion. However, because the contributions of serum HBV 
RNA derived from cccDNA, integrated HBV DNA, or 
splice variants were unresolved and different quanti-
tative methods were used79, the clinical and biological 
importance of serum HBV RNA levels should be inter-
preted with caution. There are also currently no HBV 
RNA standards available to validate and compare assays 
in different laboratories. The current Abbott HBV RNA 
assay has utilized WHO- approved DNA standards32,63 
and, until appropriate HBV RNA standards are devel-
oped and calibrated, WHO DNA standards will continue 
to be used where applicable. HBV RNA was undetec-
table by currently available assays in more than 50% of 
patients who were HBeAg negative and on long- term 
NUC therapy and could even be undetectable in patients 
with low HBV DNA levels (as in HBeAg- negative infec-
tion)32 who had not received treatment, suggesting the 
sensitivity of detection needs improvement, especially 
with regards to possible cross- reaction with HBV DNA. 
However, HBV RNA could be detected in patients who 
were HBV DNA negative and was shown to be an accu-
rate predictor for patients who might relapse following 
NUC treatment cessation32, demonstrating the promise 
of this biomarker in clinical settings.

Table 1 | Methods for quantification of HBV RNA in serum

Method Details Reverse 
transcription 
primer

Primer 
sites

LLOQ and LLOD

RT- qPCR RNA isolation (including DNase 
treatment) and subsequent PCR 
method with specific primers either 
detecting pre- genomic or all HBV 
RNAs52,76,165,166

HBV specific Precore, 
X, C or  
S region

2.55 log10 copies/mL 
(LLOQ)10; 1.85 log10 
copies/mL (LLOD)63

2.6 log10 copies/mL 
(LLOD)75

Droplet digital PCR Droplet digital PCR53,167,168 HBV specific all regions 100 copies/mL =  
2 log10 copies/mL 
(LLOD)79

3′ Rapid amplification 
of cDNA ends 
(RACE)- based

Oligo (dT) primer plus a unique 
artificial anchored sequence to 
generate cDNA63,64,169

Oligo(dT) 
primer

Poly(A) tail 2.6–3.4 log10 copies/mL  
(LLOD)80,81

QuantGene assays Hybridization- based and via branched 
DNA signal amplification technology–
measurement via luminometer54

NA X region NA

Indirect HBV (DNA + RNA) minus DNA 
determined by real- time PCR170,171

Serum HBV pgRNA minus HBV pcRNA 
determined by real- time PCR172

HBV specific Precore 
and C 
region

2.2–2.3 log10 copies/mL  
(LLOD)170–172

Commercial RNA assays (currently research use only)

Abbotta Serum HBV RNA, real- time PCR74 NA NA 10 copies/mL (LLOD, V2)

Rocheb173 Serum HBV RNA, real- time PCR NA NA 10 copies/mL (LLOQ); 
10–109 copies/mL (linear 
range)

C, core (capsid); HBV, hepatitis B virus; LLOD, lower limit of detection; LLOQ, lower limit of quantification; NA, not applicable;  
PCR, polymerase chain reaction; pcRNA, precore RNA; pgRNA, pregenomic RNA; RT- qPCR, reverse transcription- quantitative PCR.  
aIU/ml applies to the Abbott assay; however, there is no international standard for HBV RNA and the IU reported by the Abbott 
assay is currently based on the WHO HBV DNA standard. bFor ‘Research Use Only’ and not FDA approved at this stage.
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Hepatitis B core- related antigen
HBcrAg, a composite antigen found in the blood of 
patients with HBV infection, has emerged as a potential 
marker to monitor intrahepatic cccDNA and its trans-
criptional activity, thereby defining new meaningful 
treatment end points80–82. HBcrAg components and 
their biogenesis are illustrated in Fig. 2. Each HBcrAg 
component can have distinct functions and applications 
in reflecting intrahepatic viral activities29,83, varying 
between genotypes and individual patients29.

Clinical relevance of HBcrAg. HBcrAg can distinguish 
the different clinical phases of CHB83,84, although this 
ability is limited by the presence of basal core promoter 
and/or precore mutants that influence HBeAg levels.  
Serum HBcrAg levels were higher in the HBeAg- 
positive phase than in the HBeAg- negative phase82,85,86, 
and correlation with intrahepatic cccDNA levels and 
transcriptional activity was stronger during HBeAg- 
positive CHB82. HBcrAg also showed potential for dis-
tinguishing between HBeAg- negative inactive and active 
disease82,85,87–91. Using principal component analysis, 
researchers could discriminate between patients who 
were HBeAg positive or HBeAg negative. When HBcrAg 
was considered, a third group of patients was identi-
fied characterized by higher cccDNA, transcriptional 

activity, high fibrosis and necro- inflammatory activity 
that could not be discriminated by serum HBV DNA 
and HBeAg alone32,82,92. Multiple studies show that 
HBcrAg correlated well with pgRNA in HBeAg- negative 
CHB. An improved assay for HBcrAg assay with 10- fold 
increased sensitivity compared to previous assays has 
been developed93.

HBV DNA and pgRNA levels in the liver were higher 
in patients who were HBcrAg positive than in those who 
were HBcrAg negative, suggesting active HBV replication 
in HBcrAg- positive livers94. HBcrAg was a non- inferior 
biomarker to HBV DNA in predicting cirrhosis in 
patients who were HBeAg negative95, with elevated 
HBcrAg levels in patients with CHB who were treatment 
naive and HBeAg negative, correlating with increased 
risk of progression to cirrhosis96. Thus, although an ele-
vated HBV DNA level is still the main indicator for initi-
ation of NUC treatment, HBcrAg might also have a role 
in identifying patients of high risk with an intermediate 
HBV viral load who could bene fit from early NUC treat-
ment to prevent progression to cirrhosis96. HBcrAg levels 
can also predict the risk of HCC82,94, which is important 
as NUC therapy does not eliminate this risk97. In a large 
study of 2,666 patients with CHB who were infected 
with genotypes B or C, HBcrAg was an independent risk 
factor for HCC (209 patients were positive for HCC)98.  

Component

Precore-related antigen 
(PreC or ‘p22cr’)

HBcAg

HBaAg

Description

The predominant form of HBcrAg and any factors affecting its expression will 
affect HBcrAg levels significantly

PreC/p22Cr retains the N-terminal signal peptide sequence of the precursor of HBeAg

A minor constituent of HBcrAg and levels do not always correlate with HBeAg or PreC,
contributed mostly by empty (ca. 99%) virions with little contribution from complete or DNA 
(ca. 1%) virions; thus, serum HBcAg levels can reflect hepatic cccDNA

HBcrAg

HBc (p21)

pgRNA

Precore/core ORF

Precore mRNA

Precore (p25)

P22

HBeAg (p17)

PreC (p22cr)

Complete virion Empty virion

NTD Linker CTD

1401 149 183

1401–10

–10

–10

–29

–28

149 183

1401 149

1401 149

–10 1401 149

183

ATG
1812

ATG
1899

Precore Core

Fig. 2 | Schematic representation of HBcrAg biogenesis29. Hepatitis B core antigen (HBcAg), translated from 
pre- genomic RNA (pgRNA), forms the icosahedral capsid inside complete and empty virions179. The direct translation 
product from the precore mRNA is the precore precursor protein (p25), from which hepatitis B virus e antigen (HBeAg)  
and precore (PreC; also known as p22cr) are both derived. Removal of the N- terminal signal peptide of p25, by the signal 
peptidase during p25 translocation into the endoplasmic reticulum lumen, leads to the production of p22 (reF.180), which  
is further processed at its C- terminal domain (CTD) before being secreted as the dimeric HBeAg (p17)181,182. cccDNA, 
covalently closed circular DNA; HBc, hepatitis B c; HBcrAg, hepatitis B virus core- related antigen; NTD, N- terminal domain; 
ORF, open reading frame. Adapted with permission from reF.29, American Society for Microbiology.
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Whether this observation applies to patients with dif-
ferent HBV genotypes requires investigation. Despite 
sustained viral suppression, persistently high levels of 
on- treatment HBcrAg and detectable levels after antiviral 
therapy termination might predict long- term HCC risk 
in patients with CHB treated with NUC94,97,99. Detection 
of residual HBcrAg, in combination with secreted HBV 
RNA but not HBV DNA, also predicted severe relapse 
following NUC treatment withdrawal in three of four 
patients32 and might be a useful biomarker to contrain-
dicate NUC re- treatment and predict relapse100 following 
treatment cessation.

HBcrAg is also associated with response to cur-
rent antiviral therapy for HBeAg- positive CHB101 and, 
together with secreted HBV RNA, should be consid-
ered when evaluating new antiviral therapies aiming at 
a functional cure by direct or indirect targeting of the 
intrahepatic cccDNA activity102. Although used in Japan, 
further studies are needed to inform whether HBcrAg 
can be used in clinical practice more broadly.

HBcrAg assay. The current commercial HBcrAg assay, 
the chemiluminescent enzyme immunoassay (CLEIA; 
Lumipulse G HBcrAg, Fujirebio), is for research use 
only. It detects a combination of HBcAg, HBeAg (both 
free and in the HBeAg–HBe antibody complex) and 
precore proteins in the blood following sodium dodecyl 
sulfate and heat treatment103–105 and has been validated 
for DBS45. The relative contribution of each component 
of HBcrAg in this assay has not been elucidated and 
affects the accuracy and utility of HBcrAg as a biomarker 
for cccDNA. Both viral and host factors can affect the 
expression of the different components of HBcrAg. 
Mutations that affect HBeAg (and precore) expression 
can influence HBcrAg levels, and this reduction obvi-
ously cannot be correlated to a reduction of cccDNA 
activity or copy number. This is also true for increased 
clearance of HBeAg (and precore) from the serum via 
a peripheral mechanism such as antibody- mediated 
clearance29,106.

HBsAg isoforms
The HBsAg components, large and medium surface 
proteins, differ during the various phases of CHB107 and 
have different dynamics under treatment107,108. Except for 
genotype G, which has impaired HBsAg release, no dif-
ference in glycosylation, subcellular distribution, release 
of HBsAg or formation of subviral particles was evident 
between genotypes when compared in vitro109. However, 
there were differences in the proportions of HBsAg iso-
forms both intracellularly and extracellularly between 
different genotypes, with different post- translational 
modification patterns for large surface proteins109. Large 
and medium surface proteins were shown in patients 
to decrease earlier than small surface proteins prior to 
HBsAg loss, suggesting that these proteins might rep-
resent promising novel biomarker candidates to pre-
dict functional cure108. However, more basic research is 
required to understand the biology of HBsAg isoforms 
and their clinical relevance, particularly as surrogate 
markers for HBsAg expression from cccDNA versus 
integrated HBV DNA and to ascertain if they provide 

additional diagnostic benefits for the staging of CHB or 
in monitoring response to current treatment modalities; 
they might prove to be valuable in monitoring future 
therapeutic approaches.

HBV biomarkers during treatment
Receiver operating characteristic curves showed that 
absolute HBV RNA levels were consistently superior 
to the change from baseline for predicting peg- IFNα 
response in patients77. No single biomarker seemed supe-
rior when comparing HBV RNA, HBV DNA, HBeAg 
and HBsAg. However, HBV RNA and HBsAg were more 
accurate at predicting non- responders than HBeAg and 
HBV DNA77. Furthermore, patients with CHB who were 
HBeAg negative and treated with peg- IFNα showed 
rapid HBV RNA decline that correlated with treatment 
response and long- term HBsAg loss110. This finding 
likely reflects the ability of peg- IFNα to act as an immune 
modulator and to lower HBV transcript levels. Similarly, 
HBcrAg was associated with treatment response for 
NUC, with and without peg- IFNα, in patients with CHB 
who were HBeAg positive and in those with CHB who 
were HBeAg negative101,111. However, HΒcrAg was not 
superior to HBsAg in predicting therapy response.

The different mechanisms of action of HBV drugs 
might affect the performance of HBV serum biomark-
ers, and this needs to be considered, particularly as new 
therapies targeting different aspects of the HBV life cycle 
are developed. For example, the reduction in RNA levels 
was consistently higher in patients treated with CAMs 
in combination with NUCs than in those treated with 
NUCs alone112. The reduction of serum HBV RNA dur-
ing treatment with CAMs is consistent with their mecha-
nism, which blocks pgRNA packaging into capsids as 
required for their secretion into blood113. In this case, 
serum RNA will no longer correlate with cccDNA levels 
or transcriptional activity but can serve to monitor target 
engagement.

Immunological serum biomarkers
In CHB, HBV persists with dynamic variations in 
hepatocellular injury with inflammation versus disease 
and/or virus control and the participation of multiple 
immune effectors and regulatory pathways2–7. Given the 
lack of safe and convenient access to the liver compart-
ment, examining the serum immune markers is needed 
to gain mechanistic, clinical and prognostic insights.

As HBV is non- cytopathic, HBV- associated liver 
disease is largely immune mediated, with the host 
immune response being induced upon viral recogni-
tion (Fig. 3). HBV persistence is associated with global 
and virus- specific adaptive immune dysregulation or 
tolerance. In persistent HBV infection without a robust 
adaptive immune response, multiple inflammatory 
mechanisms can be activated to mediate hepatocellular  
injury114. The immune exhaustion, tolerance and patho-
genic mechanisms with associated markers and cell 
subsets, summarized in box 1, also provide potential 
avenues for therapeutic immune restoration115.

A challenge and opportunity is the measurement of 
biomarkers in serum that can reflect immunological 
activity in the liver. In theory, this could be achieved 
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using cytokines, chemokines, and immune regulatory 
and metabolic factors that can be followed in relation to 
the clinical course of CHB and response to antiviral ther-
apy (box 2). Currently, none of these markers seems to be 
superior to other clinical and virological measures, and 
further investigations are required to evaluate the poten-
tial clinical role of these markers. However, they might 
collectively provide insights to host responses during 
novel HBV therapies with potential mechanistic and 
prognostic implications. In this regard, as a first option, 
serum biomarkers (for example, cytokines, chemo-
kines, metabolic markers, soluble PD1, soluble CD14) 
might be more readily examined in clinical studies as 
only a small amount of blood is needed to measure hun-
dreds of markers simultaneously in highly multiplexed 
assays116. A second option is the examination of cellular 
immune phenotype and function in peripheral blood. 
This approach can vary in complexity yet can be feasible 
at scale once optimized, and can range from a simple 
cytokine stimulation assay to assess HBV- specific T cells 
similar to what has been done for coronavirus disease 
2019 (COVID-19)117–119 or the diagnostic test for tuber-
culosis that uses an IFNγ release assay120, to a more com-
plex phenotypic and functional analysis. Considering 
global and virus- specific immune dysfunction in CHB, 
a therapeutic goal is to achieve sustained virus control 
with immune restoration by suppressing viral antigen 
expression and the viral life cycle. Accordingly, there is a 
strong rationale to examine how the immune phenotype 
and function are affected by novel therapies, including 
immune- modulatory therapies such as Toll- like recep-
tors agonists, therapeutic vaccines, checkpoint inhibitors  
and those targeting the viral life cycle with potential 
immune effect121. As a third option, despite growing 

challenges, direct sampling of the intrahepatic compart-
ment (for example, through liver biopsy) is needed to 
visualize viral and immune markers simultaneously122,123, 
and such analyses can currently be done more compre-
hensively by using various emerging highly multiplexed 
and computational approaches124–126 to better under-
stand the spatial landscape of HBV and host responses  
in the liver.

Biomarkers of occult HBV infection
OBI is defined as the presence of cccDNA in the liver 
and/or HBV DNA in the blood of people who tested 
negative for HBsAg by currently available assays33,127. 
Statements on the biology and clinical effect of OBI 
suggested that the ideal diagnosis method for OBI is 
the detection of replication- competent HBV DNA 
in the liver33. The recommended methods included 
nested- PCR techniques to amplify at least three dif-
ferent viral genomic regions, real- time PCR assays or 
droplet digital PCR (ddPCR) assays. In each case, the 
assay must include primer sets enabling the detection of 
replication- competent HBV DNA33.

The diagnosis of OBI depends on the sensitivity of 
assays used to detect HBV DNA in liver tissue and/or 
blood samples and HBsAg in serum samples. Sensitivity 
for HBV DNA detection is improving with new tech-
nologies such as ddPCR assays. In a study of 100 trans-
plant liver donors who were anti- HBc positive, OBI was 
diagnosed using four parallel nested PCRs to detect 
HBV surface, core, polymerase and X sequences128. 
Next, ddPCR was used to quantify cccDNA, which was 
detected in 52% (52 of 100) of the individuals who were 
OBI positive, with a median of 13 copies per 105 cells 
(95% CI 5–25)128. More sensitive HBsAg assays have also 
been developed. Commonly used assays detect HBsAg 
at 0.05 IU/ml; however, the newly developed assays can 
detect HBsAg with a sensitivity of 0.005 IU/ml (reF.129). 
These more sensitive assays can improve the detection 
rate of low- level HBsAg, HBsAg variants, and HBsAg 
with anti- HBs130,131 and can provide improved detection  
of OBI132.

In addition to HBsAg assays, inadequately sensitive 
HBV DNA assays can lead to false- negative HBV DNA 
results and a missed OBI diagnosis30. Commercially 
available real- time PCR- based assays for serum HBV 
DNA detection are sufficiently sensitive to detect many 
(but not all) OBI cases. ddPCR assays might increase 
the rate of OBI detection and need to be evaluated sys-
tematically in the OBI setting. In addition, consider-
ation should be given to the need to diagnose OBI by 
re- screening samples by ddPCR, which is only accessi-
ble via research facilities but not routinely available in  
diagnostic laboratories31,133.

Lessons can be learned from HBV reactivation 
studies in patients with chronic hepatitis C treated 
with direct- acting antiviral agents. Nested- PCR test-
ing of longitudinally collected serum samples from  
40 patients revealed that serum HBV DNA was intermit-
tently detected in 25% (10 of 40) at baseline and 52.5% 
(21 of 40) at 3 months after termination of direct- acting 
antiviral treatment. Moreover, HBsAg and HBcrAg 
biomarkers were negative at baseline and remained 
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Fig. 3 | Adaptive immune responses against HBV. Control of hepatitis B virus (HBV) 
infection requires both cellular (CD4+ and CD8+ T cells) and humoral (antibody 
production by B cells) arms. Using both cytolytic and cytokine- mediated non- cytolytic 
mechanisms and major histocompatibility (MHC) class I and class II antigen recognition, 
CD8+ T cells have a primary effector role to kill and cure HBV- infected hepatocytes7,114. 
CD4+ T cells have a key regulatory role144,183. Neutralizing antibodies to hepatitis B surface 
antigen (anti- HBsAg) bind circulating virus, thereby reducing viral spread and providing 
protective immunity184. A key role for B cells in protective immunity to HBV has also been 
suggested by the high rate of HBV reactivation in patients undergoing B cell depletion 
with anti- CD20 (reF.185). IFNγ, interferon- γ.
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persistently negative (without any fluctuation) in all the 
serially collected serum samples134. Thus, as HBV DNA 
is usually present in low concentrations and can only 
be intermittently detected in people with OBI, testing 
blood samples collected at more than one timepoint 
and testing DNA extracts from at least 1 ml of serum or 
plasma is recommended for OBI diagnosis33,127. Indeed, 
it should be considered that OBI is characterized by peri-
ods of transient HBV viraemia alternating with periods 
in which the viral DNA is undetectable in blood135–138. 
Moreover, evidence demonstrated an association 
between the reappearance of circulating HBV DNA and 
phases of ALT serum level increases, suggesting a role in 
the transient reactivation of HBV replication in liver cell 
injury136,137. Furthermore, Candotti et al. described nine 
cases of undetected HBV transfusion- transmission from 
OBI- positive blood donation despite the use of highly 
sensitive HBsAg and HBV DNA screening assays30. 
Importantly, the availability of archive samples from 
both donors and recipients and large- volume (2–24 ml) 
follow- up donor samples enabled the researchers to 
detect HBV transfusion- transmitted infection asso-
ciated with extremely low HBV DNA loads. These 
results led the researchers to conclude that, until more 
sensitive assays become available, long- term archiv-
ing of large- volume pretransfusion plasma samples 
from both donors and recipients is essential to identify 
transfusion- transmission of undetected OBI to limit 
delays in the therapeutic management of patients with 
HBV infection30.

As molecular tests are not always available, there is 
a strong consensus that detection of anti- HBc in the 
blood can be used as a surrogate biomarker for OBI 
in blood and/or organ donors and in people initiating 
immunosuppressive therapies33,139. Although serum lev-
els of anti- HBc correlate with cccDNA positivity128, the 
absence of anti- HBc does not rule out OBI33. High base-
line levels of anti- HBc (and low or absent anti- HBs) were 
shown to predict HBV reactivation in 36 of 192 patients 
with lymphoma and resolved HBV infection receiving  
B cell- depleting chemotherapies (hazard ratio of 17.29 for  
HBV reactivation (95% CI 3.92–76.30; P <0.001))140,141. 
Anti- HBc quantification and analysis of circulating 
HBV- specific T cells in patients who are HBsAg neg-
ative might be interesting biomarkers but require fur-
ther confirmation in the setting of OBI. Currently, HBV 
DNA is the only reliable diagnostic marker of OBI and a 
standardized diagnostic procedure for OBI remains an 
important unmet clinical need.

Biomarkers of liver cancer
Chronic HBV infection causes liver cancer, the sixth 
most common cancer and the third leading cause of 
cancer- related death worldwide. HCC is more common 
in men (2–4 times higher incidence than in women) and 
the prognosis is poor in all regions of the world, with inci-
dence and mortality rates being roughly equivalent. The 
median survival of patients with early HCC is >5 years 
but is <1 year when detected at an advanced stage. Due 
to a lack of appropriate biomarkers, most HCC cases are 

Box 1 | Mechanisms contributing to immune dysregulation or tolerance and leading to pathogenesis in CHB

Mechanisms of T cell dysfunction
•	Antigen- specific exhaustion with the induction of checkpoint molecules such as PD1 and CTlA4 (reFs.114,186) in addition 

to epigenetic changes.

•	T cell	deletion	through	the	pro-	apoptotic	protein	Bcl2-	interacting	mediator	(Bim)187 or activated NK cells188.

•	Induction	of	regulatory	T cells,	cytokines	and	chemokines189–191.

•	myeloid- derived suppressor cells that secrete soluble arginase192	that	can	deplete	arginine	from	T cells.

•	mitochondrial alterations with further metabolic deficit193.

Mechanisms of B cell dysfunction or tolerance
•	Increased PD1 expression can lead to global and Hbv- specific impairment of b cell differentiation and function194.

•	excess HbsAg contributes to b cell exhaustion with HbeAg mediating antigen- specific immune tolerance195.

Regulatory and pathogenic mechanisms
•	Inflammatory cytokines and/or chemokines (for example, from dendritic cells and Kupffer cells) can increase hepatic 

inflammatory infiltrates, induce inflammatory NK cells and promote hepatocellular susceptibility to apoptosis.

•	Apoptosis can be induced through TrAIlr2 (reF.196), contributing to hepatocellular injury, with fluctuations in levels  
of AlT, Hbv DNA, HbsAg and/or HbeAg, ultimately leading to liver disease progression.

•	NK	cells	can	also	kill	HBV-	specific	T cells	through	NKG2D-	dependent	and	TRAIL-	dependent	lysis188.

•	Damaged hepatocytes and myeloid- derived suppressor cells release soluble arginase, which depletes arginine and 
leads	to	suppression	of	T cell	proliferation114,191,192,197,198.

•	Platelets can also promote accumulation of inflammatory cells in the liver, contributing to pathogenesis199.

•	liver sinusoidal endothelial cells can prime CD4+ and CD8+	T cells	with	diverse	effects,	they	can	also	produce	IL-10	 
and express PDl1 with potential regulatory effect with activated immune cells expressing PD1 (reFs.200,201).

•	Altered phenotype and/or function of γδ	T cells202	and	mucosal-	associated	invariant	T cells203 have been described  
in CHb, in association with clinical and/or therapeutic virus suppression.

•	Additional hepatic cells that participate in Hbv immune pathogenesis include liver sinusoidal endothelial cells, 
myeloid-	associated	T cells	and	platelets,	resulting	in	fibrogenesis.

AlT, alanine aminotransferase; CHb, chronic hepatitis b; HbeAg, hepatitis b e antigen; HbsAg, hepatitis b surface antigen; Hbv, 
hepatitis b virus; NK, natural killer.

www.nature.com/nrgastro

R o a d m a p

736 | November 2022 | volume 19 



0123456789();: 

detected at late stages and not when the tumour is still 
localized and treatment options are more effective142.

Currently, HCC surveillance relies on a limited armo-
ury of serum biomarkers and/or imaging of the affected 
liver. Cancer biomarkers are detected in the blood, urine 
or other body fluids and can indicate the presence of 
cancer or predict the risk of cancer development143. 
Ideally, biomarkers should enable early detection of 

cancer by screening healthy or high- risk populations, 
confirming the diagnosis or identifying a specific type 
of cancer, predicting prognosis, monitoring treatment 
response, and detecting early recurrence142.

The identification of biomarkers for the early detection 
of cancer requires the following steps131:
•	 Phase 1: Preclinical exploratory studies: to identify 

promising biomarker candidates.

Box 2 | Immunological serum markers to follow the natural history of HBV infection and outcome of antiviral therapy

Immunological markers to follow the natural history of HBV 
infection
IFNα, IL-8 and NK expression of TRAIL
Pathogenetic markers correlated with viral loads and flares of liver 
inflammation (AlT)196:

•	IFNα increased TrAIl expression in peripheral NK cells, which could 
induce apoptosis of hepatocytes expressing TrAIl- receptor.

•	Induction of TrAIl- receptor expression in Hbv- infected liver, whereas  
is	IL-8	shown	to	increase	TRAIL-	receptor	expression	in vitro.

Chemokines CXCL9–11 and IDO
markers associated with hepatocellular injury, immune recruitment and 
potential antiviral activity204:

•	CXCl9–11 levels correlated with AlT and IDo activity.

•	CXCL10	positively	correlated	with	increased	levels	of	ALT	and	T cell	
expression of PD1 (reFs.205,206) as well as hepatic inflammatory score  
but negatively with serum Hbv DNA and HbsAg207.

•	IDo is inducible in epithelial and plasmacytoid dendritic cells by IFNγ 
and/or TNF and has both regulatory and antiviral activities.

Metabolic markers (arginase and L- arginine)
Arginine depletion in the inflamed liver due to increased arginase as a 
potential	mechanism	for	the	global	defect	in	CD8	T cell	signalling	and	
function in CHb:

•	L-	Arginine	is	needed	for	T cell	metabolism	and	survival.

•	Increased serum arginase activity and reduced serum l- arginine levels 
were associated with increased AlT activity and flares in patients with 
AHb and CHb197,198.

•	Increased	arginase	suppressed	antiviral	T cell	function.

sPD1 and sPDL1
Soluble markers with a potential regulatory role in the PD1–PDl1 
pathway192,198:

•	binding of sPD1 to membrane- bound PDl1 on target tissues can block 
the regulatory interactions with PD1 expressed on activated immune 
cells or, alternatively, binding of sPDl1 to PD1- expressing immune cells 
can inhibit their interactions with membrane- bound PDl1 expressed by 
target tissues208.

•	Serum sPD1 levels were associated with persistently higher Hbv load 
and higher HCC risk209.

•	Serum sPD1 levels were greater in CHb than in controls and positively 
correlated with levels of AlT, AST, total bilirubin, Hbv DNA, AST to 
platelet ratio index ((AST/upper limit of the normal AST range) X  
100/platelet count), fibrosis score Fib4, hepatic inflammatory score  
and fibrosis but negatively correlated with platelet count210.

•	As a caveat, there are assay- related issues that need to be resolved 
before clinical application, with additional head- to- head comparisons 
of the different immune assays needed to resolve discrepant sPD1 and 
sPDl1 levels observed in different studies211.

Immunological serum markers to follow the outcome of antiviral 
therapy
CXCL10
•	Greater serum levels at baseline and at the time of Hbv DNA 

suppression in patients who achieved over 0.5 log decline in HbsAg  
on NuC therapy than those who did not212.

•	Decline in serum levels on antiviral therapy correlated with virological 
response to telbivudine treatment205.

•	Pre- treatment serum CXCl10 (also known as IP-10) levels were 
substantially greater in patients with CHb who achieved HbeAg 
clearance or HbsAg decline with peg- IFNα therapy207. Similarly,  
higher pre- treatment CXCl10 levels correlated with an increased 
probability of HbeAg loss after peg- IFNα therapy, with declines in  
Hbv DNA, HbeAg and HbsAg being steeper in individuals with  
CXCl10 levels >150 pg/ml. However, this correlation only held for  
Hbv infection without basal core promoter and/or precore  
mutants213.

•	multivariate logistic regression analysis showed serum CXCl10 level  
to be an independent predictor of HbeAg clearance and HbsAg 
decline207.

Cytokines and chemokines
•	Substantial increases in CXCl13 and Il-21 levels were detected  

in patients with CHb who attained HbsAg seroconversion but not  
in patients with CHb with persistent HbsAg, including those with 
flares214.

•	Substantial increases in CD163, TNF, Il-12p70, Il-1α, Il-1β, Il-6,  
Il-18, Il-10, Il-2, IFNλ2, IFNα, FAS ligand, CXCl9, CXCl10,  
CXCl13 and CCl4 in patients with liver damage after stopping 
therapy215.

•	CXCl9, CXCl10, CXCl11, CXCl13 and Il-21 levels were elevated  
at the peak of AHb; Il-21 elevation was observed only in patients  
with self- limiting infection but not among those with chronic  
evolution.

•	Despite the small sample size, CXCl13 and Il-21 might be markers  
of functional cure for both AHb and CHb214.

sPD1 
•	lower baseline sPD1 levels were associated with HbeAg clearance  

after 2 years of antiviral treatment in patients with HbeAg positive 
CHb216.

sCD14
•	sCD14, a co- receptor for lipopolysaccharides, is a biomarker in 

infectious and inflammatory diseases that is produced by liver 
monocytes, macrophages and human hepatocytes.

•	sCD14 levels were substantially higher in AHb than in patients with  
CHb or healthy individuals as controls in one study217.

•	sCD14 level increased substantially at 12 weeks post- treatment 
compared to baseline in patients with CHb receiving peg- IFNα,  
with the fold change being substantially higher in responders than  
in non- responders.

•	sCD14 levels correlated with markers of hepatic inflammation and 
fibrosis in patients infected with HCv or Hbv218.

AHb, acute hepatitis b; AlT, alanine aminotransferase; AST, aspartate 
aminotransferase; CHb, chronic hepatitis b; HbeAg, hepatitis b e antigen; 
HbsAg, hepatitis b surface antigen; Hbv, hepatitis b virus; HCC, hepatocellular 
carcinoma; HCv, hepatitis C virus; IDo, indoleamine 2,3 oxygenase;  
IFNα, interferon- α; IFNγ, interferon- γ; NK, natural killer; NuC, nucleos(t)ide 
analogue; Peg- IFNα, pegylated IFNα; sCD14, secreted CD14; sPD1, soluble PD1; 
sPDl1, soluble PDl1.
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•	 Phase 2: Clinical assay and validation: to detect the 
disease versus controls (for example, distinguish 
HCC from non- HCC).

•	 Phase 3: Retrospective longitudinal repository stud-
ies: to detect preclinical disease by retrospective 
analysis.

•	 Phase 4: Prospective screening studies: to deter-
mine the detection rate of the assay (sensitivity and 
specificity).

•	 Phase 5: Cancer control studies: to assess the effect 
of screening on reducing the disease burden in the 
target population.

Over the past several decades, AFP has been the most 
extensively studied and most commonly used HCC bio-
marker. It has been utilized for the assessment risk of HCC 
in patients with cirrhosis, as a screening tool for the early 
detection of HCC, and as a diagnostic and prognostic 
tool for HCC144. In addition to AFP, a number of novel 
biomarkers for HCC diagnosis and monitoring are in 
different phases of development. Serum biomarkers cur-
rently in phase 2 (clinical assay and validation) include 
osteopontin, midikine, dikkopf 1, glypican 3, α1 fuco-
sidase, Golgi protein 73 and squamous cell carcinoma 
antigen145–147. Serum biomarkers at more advanced stages 
of development include AFP (phase 5), Lens culinaris 
agglutinin fraction of AFP (AFP- L3) (phase 2/3) and 
des- γ- carboxy prothrombin (DCP) (phase 2/3)142. Genetic 
and cellular biomarkers (so- called liquid biopsy) under 
investigation include circulating tumour cells, circulating 
tumour DNA, microRNA and long non- coding RNA148.

AFP is the best characterized and most widely used 
serum biomarker for HCC surveillance. However, its 
effectiveness is limited as not all HCCs secrete AFP149. 
In addition, AFP serum levels can be elevated in patients 
with chronic hepatitis or cirrhosis. However, with the 
advent of highly effective NUCs for the treatment of 
CHB, elevated on- treatment AFP levels were shown in 
a large retrospective- prospective study to be a specific 
marker for HCC because falsely elevated AFP levels in 
1,531 patients receiving entecavir were minimized com-
pared to 424 patients that received no treatment, sug-
gesting that, in this group of patients, a lower AFP cut 
off value could be used150. Elevated on- treatment AFP is 
a specific tumour marker for HCC in patients with CHB 
receiving entecavir150. There is little debate that AFP 
should not be used alone in HCC surveillance, but it has 
been debated whether AFP should be included in HCC 
surveillance due to its suboptimal sensitivity (39–65%) 
and specificity (76–97%)151. However, most studies show 
a benefit of combining AFP with ultrasonography152. 
Various factors can influence the performance of AFP 
as an HCC biomarker, including patient demographics, 
aetiology of underlying liver disease, severity of liver 
disease (cirrhosis, chronic hepatitis, serum ALT val-
ues), antiviral therapy, and tumour stage and biology153. 
In turn, according to the size of the tumour, the sen-
sitivity of ultrasonography imaging for detecting HCC 
at an early stage is highly variable, ranging from 21% 
to 89% across studies included in a meta- analysis pub-
lished in 2018 (reF.152). It is largely operator dependent, 
based on the skill of the sonographer and influenced by 

patient characteristics, including obesity, liver nodu-
larity and presence of ascites154–156. A meta- analysis of  
32 studies comprising 13,367 patients collected worldwide  
showed that ultrasonography alone detected early- stage 
HCC with a sensitivity of 45% compared to 63% when 
ultrasonography was combined with AFP (P = 0.002)152. 
The improved sensitivity was associated with a decrease 
in specificity (84% versus 92%). However, the addition 
of AFP to ultrasonography significantly increased the 
sensitivity of early HCC detection, suggesting this might 
be the preferred surveillance strategy for patients with 
cirrhosis152. Other factors to consider are the value of 
single timepoint versus longitudinal analysis and tailor-
ing cut- offs according to liver disease aetiology, severity 
and antiviral therapy. The diagnostic value of AFP for 
detecting HCC was also improved when used in com-
bination with the level of serum protein induced by  
vitamin K absence or antagonist II (PIVKAII) in patients 
of European descent157 and Asian158 (South Korea) 
patients with cirrhosis.

Longitudinal determinations also improve AFP per-
formance as an HCC biomarker159. A phase III biomarker 
study evaluating AFP, AFP- L3, DCP and their combi-
nations for the early detection of HCC in prospectively 
collected longitudinal samples from 689 patients with 
cirrhosis or CHB160 showed that a combination of AFP 
and AFP- L3 at diagnosis differentiated early- stage HCC 
from cirrhosis better than each biomarker individually. 
Investigating the sensitivity and specificity of ultra-
sonography alone or in combination with biomarkers 
showed that adding AFP to ultrasonography increased 
the sensitivity to 88.6%, and adding AFP plus AFP- L3 to  
ultrasonography increased the sensitivity to 94.3%160.

In summary, although the addition of AFP to ultra-
sonography imaging markedly improved the early 
detection of HCC, results are still suboptimal and new 
biomarkers to predict early- onset HCC are required. 
Longitudinal determination of AFP increases the sen-
sitivity and specificity for HCC surveillance but optimal 
cut- offs for AFP and other biomarkers of HCC surveil-
lance in patients with suppressed HBV and minimal 
hepatic inflammation are unclear. Given the high degree 
of heterogeneity of HCC, the combination of AFP with 
other biomarkers and clinical parameters improves the 
sensitivity and specificity of surveillance for early HCC 
detection.

The road forward
To map a way forward, the clinical utility of both classic 
and emerging viral and immunological biomarkers of 
HBV infection, with respect to the course of infection, 
disease progression, and response to current and emerg-
ing treatments, was appraised in two- panel discussions. 
The panels discussed the latest advances, knowledge 
gaps, and key challenges and opportunities for improve-
ment were identified by addressing three key questions: 
do we have the appropriate biomarkers to measure HBV 
cccDNA, and are the emerging biomarkers relevant for 
measuring the mechanism of action of new drugs? What 
are the key biomarkers that require further research to 
have the strongest clinical effect? Finally, how urgent is 
the need for predictive immunological biomarkers for 
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inflammation or antiviral response? The strengths and 
weakness of current biomarkers for addressing each of 
these questions are presented in Table 2, with a Roadmap 
outlining the actions required to address unmet clinical 
needs presented in Table 3.

For patients with CHB undergoing, or ceasing cur-
rent NUC therapy, no single biomarker is currently 
clearly superior in predicting treatment response or 
relapse across all stages of CHB. There is global con-
sensus that achieving an HBV cure will require com-
bination therapies, targeting different steps of the 
HBV replication cycle, and stimulating host immune 
responses to neutralize HBV infection and/or safely 
eradicate HBV- infected cells26. In turn, approaches 
that affect viral and immunological targets will require 
a combination of viral and immunological biomarkers 

to monitor progress towards the new treatment end 
points.

For the immediate future, HBeAg, HBsAg and HBV 
DNA will remain the most important viral serum bio-
markers used in natural history and treatment end points 
because they are best validated to reflect outcomes. It is 
evident that biomarkers have different importance in 
various disease stages (HBeAg positive versus HBeAg 
negative), HBV genotypes and for different treatment 
modalities. On the other hand, HBV RNA and HBcrAg 
are expected to correlate with treatment response to 
current and new therapies but might not outperform 
HBsAg in predicting treatment outcome when each is 
taken in isolation. HBV RNA, HBcrAg and/or HBcAg 
tests need to be validated and standardized, and their 
sensitivity optimized. New biomarkers can help to 

Table 2 | Strengths, weaknesses and challenges of current and emerging HBV serum biomarkers

Biomarker Strength Weakness Challenges

Circulating 
HBV DNA

Gold standard measure of HBV replication Only an indirect measure of HBV 
activity in the liver; does not measure 
the frequency of HBV- infected cells  
in the liver; does not accurately 
reflect HBV cccDNA activity

Measuring the proportion of HBV- infected 
cells in the liver; improved sensitivity 
so that ‘undetectable’ serum HBV DNA 
means there is no virus in circulation: if the 
current PCR assay detects 10 copies/ml 
(10,000 copies/L), an increase in sensitivity 
of 50,000- fold would be needed to 
identify 1 circulating HBV DNA molecule; 
POC viral load assays are required for 
resource- limited settings

HBsAg Best marker for monitoring functional cure 
(HBsAg loss); levels predict likelihood of HBsAg 
loss or progression to liver cancer in some 
clinical settings

Unsuitable as a marker of immune  
restoration; cannot distinguish  
between HBsAg derived from  
integrated HBV DNA or cccDNA;  
studies on the association with  
likelihood of progression to  
liver cancer are restricted to HBV  
genotypes B and C; different  
geno types or subgenotypes might 
express different levels of HBsAg

Improved sensitivity to monitor HBsAg 
loss, although the clinical relevance 
of increased sensitivity is unclear; 
quantitative POC assays are required  
for resource- limited settings

HBeAg A surrogate for HBV DNA levels in the absence 
of viral load testing; HBeAg loss, typically 
with seroconversion to anti- HBe is a current 
treatment end point for antiviral therapy

Ineffective in HBeAg- negative CHB Qualitative POC assays are required for 
resource- limited settings as a surrogate for 
HBV viral load in patients who are HBeAg 
positive; although HBeAg loss might be 
less relevant in future as a treatment end 
point for functionally curative antivirals, 
it will likely still be relevant for treatment 
regimens that do not eliminate HBsAg 
expression from integrated sequences but 
might nonetheless induce HBeAg loss and 
a low HBV replication state

HBV RNA Indirect measure of cccDNA transcription; 
some association with likelihood of treatment 
response

Most assays cannot distinguish 
HBsAg or HBx RNA derived from 
cccDNA or integrated HBV DNAa; 
contribution of non- replicative RNAs 
(for example, spliced RNA) to the 
secreted RNA pool is unknown

Clinical relevance is still unclear; assays 
are required to distinguish between 
integrated and cccDNA- derived RNA  
and to determine the contribution  
of splice variants to the RNA pool

HBcrAg Accurately distinguishes between 
HBeAg- negative infection and active CHB, 
independent of HBV genotype91,174; cohort 
data show that HBcrAg could stratify HCC 
and/or cirrhosis risk in patients who are HBeAg 
negative in the indeterminate zone for antiviral 
treatment95

Confounded by the presence of 
HBeAg in patients who are HBeAg 
positive; highly specialized assay with 
limited availability

Clinical relevance is still unclear in high 
viral load settings; less relevant in patients 
who are HBeAg positive, in whom much  
of the HBcrAg is HBeAg

Anti- HBe, antibody against hepatitis B e antigen; cccDNA, covalently closed circular DNA; CHB, chronic hepatitis B; HCC, hepatocellular carcinoma;  
HBcrAg, hepatitis B core- related antigen; HBeAg, hepatitis B e antigen; HBsAg, hepatitis B surface antigen; HBV, hepatitis B virus; PCR, polymerase chain reaction; 
POC, point of care. aAbbott test has two targets enabling the discrimination of pgRNA only from all other RNA. There is no evidence of other RNA present in plasma,  
at least not in sufficient quantities to be detected by a sensitive PCR test. This might imply that RNA fragments derived from integrated HBV DNA fragments do not 
reach the plasma.
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dissect the mechanism of action of new drugs. Another 
possible benefit of these emerging biomarkers is their 
clinical usefulness in combination with conventional 
markers such as the demonstrated superiority of com-
bining pgRNA and HBsAg levels at the time of stopping 
NUC for the prediction of off- treatment viral relapse71.

It is also important that biomarkers are validated for 
all major HBV genotypes, which exhibit marked differ-
ences in HBV natural history, disease progression and 
treatment response to peg- IFNα therapy161. Until new 
immune- mediated therapies are developed, peg- IFNα 
is likely to have a place in combination treatment 

Table 3 | The road forward

Need Rationale Action

Increased sensitivity  
of biomarker assays

Measurement of HBV replication below the current 
limit of detection, particularly in patients who are 
treated; improved sensitivity will enable prediction 
of off- treatment remission and cure (sustained 
response), particularly as serum does not always 
reflect liver pathology

Diagnostic companies should be encouraged to develop highly 
sensitive HBV DNA assays; improved sensitivity will also assist in 
the detection of OBI

Extrapolation of assays to 
different patient cohorts

The clinical value of current and emerging 
biomarkers needs to be assessed in different patient 
cohorts, including their ability to define phases of 
HBV natural history

Patient cohorts should include different ethnic groups, HBV 
(sub)genotypes, higher representation of women, individuals 
with HIV co- infection, pregnant and lactating people, 
and children; although these markers can reflect cccDNA 
transcription in the liver, more understanding is required on  
the factors regulating their expression

Combination of assays It is unclear at present how best to combine 
biomarkers; there is no ‘silver bullet’ and 
determining how to integrate multiple markers  
and their kinetics presents major challenges

Combining HBcrAg, HBsAg and pgRNA levels predicts sustained 
response following treatment cessation in some settings; 
although these markers might reflect cccDNA transcription 
in the liver, more understanding is required on the factors 
regulating their expression; technical validation of different 
biomarkers for different treatment modalities in clinical trials is 
under way or planned; collaborations between multiple clinical 
trial sites is recommended to obtain sufficient statistical power; 
a viral biomarker composite score similar to the REACH- B175 
might assist clinical decision- making; biomarkers could be 
combined to generate the score and to predict outcomes such 
as which patients would benefit from stopping therapy

Development of 
core- specific biomarkers

As HBcrAg represents multiple antigens, with HBeAg 
predominating, a specific core antigen biomarker 
would be a useful surrogate marker of cccDNA 
activity as its level is not affected by the presence 
of basal core promoter and/or precore mutants or 
peripheral clearance (for example, HBcAg or HBeAg 
antibodies) being contained in virions

Development of a core- specific biomarker is under way

Correlation of expression 
of biomarkers in liver and 
plasma/serum

It is unclear how accurately HBV serum biomarkers 
reflect the liver

Further studies in animal models and humans are required to 
correlate circulating markers with the intrahepatic environment

Definition of disease 
progression and treatment 
response

Biomarkers of treatment response and disease 
progression are needed

A panel of biomarkers is needed to enable clinicians to identify 
patients who could cease therapy with a lower risk of relapse; 
biomarkers of HCC are needed, particularly those that can 
replace or complement ultrasonography for HCC detection; 
issues around access to these assays must be improved, 
particularly in resource- limited settings

Development of 
immunological markers

Immunological markers are not as well developed as 
virological markers

Currently available immunological markers largely measure 
liver inflammation whereas, ideally, these biomarkers should 
predict the activity of immune targeting drugs and, ultimately, 
off- treatment response; to date, measuring cytokines and 
chemokines in the periphery has been of limited value as they 
are only present at the time of inflammation

Further studies on FNA FNA (also known as needle biopsy) Understanding the contribution of the relatively few 
hepatocytes within the FNA and how this correlates with the 
‘gold standard’ liver biopsy from both an immunological and 
virological perspective; as FNAs are a very small representation 
of a large organ, with inherent risks in terms of sampling 
error, performing FNAs in large patient populations might 
be necessary; identifying suitable clinical trial sites with the 
necessary expertise for collection, processing and storage, and 
providing training for sites lacking expertise; ideal conditions 
for the storage of FNAs have not been defined

cccDNA, covalently closed circular DNA; FNA, fine- needle aspiration; HCC, hepatocellular carcinoma; HBcAg, hepatitis B core antgen; HBcrAg, hepatitis B 
core- related antigen; HBeAg, hepatitis B e antigen; HBsAg, hepatitis B surface antigen; HBV, hepatitis B virus; HIV, human immunodeficiency virus; OBI, occult 
hepatitis B virus infection; pgRNA, pre- genomic RNA.
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regimens, yet it is only effective in patients with HBV 
infection of genotypes A and B and least effective for 
genotypes C and D. Although HBV sequencing and 
genotyping are not currently routinely undertaken 
prior to treatment initiation, this might need to be con-
sidered if peg- IFNα is included in treatment combina-
tions. Although not routinely available in all settings, 
next- generation sequencing of complete HBV genomes 
prior to the initiation of antiviral therapy also shows 
promise as a biomarker of treatment response on NUCs, 
with the identification of basal core promoter mutations 
even at a low frequency associated with reduced likeli-
hood of functional cure162 and ALT flare163 on therapy. 
As new curative therapies for HBV are developed, the 
effect of HBV variants on treatment response warrants 
further investigation where access to next- generation  
sequencing technology is available.

Although a number of biomarkers have been 
described that can monitor the course of HBV infection, 
it is vital, when interpreting their kinetics and variations, 
to determine whether they are informing on target 
engagement of the therapeutic agent and/or are a reflec-
tion of intrahepatic replication and immune control. 
The emerging biomarkers will have an important role as 
exploratory markers for end points and mode- of- action 
studies. No one biomarker yet fits all novel antiviral 
modalities, and an integrative approach might be nec-
essary because the serological marker used is dependent 
on the mode of action of the antiviral drugs. More trans-
lational studies are required, and the relevance of these 
assays in the various phases of CHB natural history and  
in individuals of different ethnicities, age groups, sex  
and HBV genotypes is yet to be determined.

Currently, there are no serum or liver immunolog-
ical biomarkers that are superior to clinical and viro-
logical markers in following the natural history of CHB 

and in monitoring therapy and HBV- specific immune 
responses. Markers that reflect the liver compartment 
will become increasingly important as access to liver 
tissue and standard liver biopsy become more difficult, 
with fine- needle aspiration (also known as fine- needle 
biopsy) showing promise. Monitoring intrahepatic 
activity will become increasingly important as therapies 
targeting HBV cccDNA are developed. However, in the 
interim, consideration should also be given to identifying 
the most appropriate biomarkers for treatment response 
using finite therapies that might reduce HBV DNA to 
below the limit of quantification but where HBsAg 
remains detectable, currently defined as a ‘partial func-
tional cure’164. ‘Partial functional cure’ might represent 
an important interim step as we progress on the path to 
increased rates of functional cure with new finite ther-
apies. It is likely that pgRNA, HBcrAg and its HBcAg 
component as emerging biomarkers as well as additional 
yet- unidentified markers will have an important role; 
therefore, an HBcAg- specific biomarker would be a val-
uable additional tool to help de- convolute the multiple 
components of the current HBcrAg assay. Biomarkers of 
OBI are also required as are markers that will predict the 
likelihood of progression to HCC, enabling earlier inter-
ventions and more accurate risk assessment. Finally, all 
these resources need to be made available to all persons  
living with CHB in an equitable and fair manner, and parti-
cularly in resource- limited settings, where much of the 
burden of HBV worldwide lies, with a pressing need for 
POC biomarkers. In partnership with the HBV- affected 
community, academia, clinicians, the pharmaceutical and 
biotech industries, and organizations such as the HBV 
Forum and the Hepatitis B Foundation, ICE- HBV will 
work with all stakeholders to ensure this indeed occurs.
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