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Thereaction–diffusionmodel constitutesoneof themost influential
mathematical models to study distribution of morphogens in
tissues. Despite its widespread use, the effect of finite tissue size
on model-predicted spatio-temporal morphogen distributions
has not been completely elucidated. In this study, we analytically
investigated the spatio-temporal distributions of morphogens
predicted by a reaction–diffusion model in a finite one-
dimensional domain, as a proxy for a biological tissue, and
compared it with the solution of the infinite-domain model. We
explored the reduced parameter, the tissue length in units of a
characteristic reaction–diffusion length, and identified two
reaction–diffusion regimes separated by a crossover tissue size
estimated in approximately three characteristic reaction–diffusion
lengths. While above this crossover the infinite-domain model
constitutes a good approximation, it breaks below this crossover,
whereas the finite-domain model faithfully describes the entire
parameter space. We evaluated whether the infinite-domain
model renders accurate estimations of diffusion coefficients when
fitted to finite spatial profiles, a procedure typically followed in
fluorescence recovery after photobleaching (FRAP) experiments.
We found that the infinite-domain model overestimates diffusion
coefficients when the domain is smaller than the crossover tissue
size. Thus, the crossover tissue size may be instrumental in
selecting the suitable reaction–diffusion model to study tissue
morphogenesis.
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1. Introduction
In their transition towards maturity, tissues are crucially regulated by molecules known as morphogens,
whose precise spatio-temporal distribution triggers the downstream changes in protein expression
responsible for the exact differentiation patterns. Nevertheless, tissues are not only an inert scaffold
upon which morphogens spread, but are also fully responsible for the morphogen uptake or their
transformation by means of specific biochemical reactions. The problem of how a morphogen
propagates over a tissue while it is being eliminated was mathematically encoded in the exquisite
reaction–diffusion model by the great Alan Turing, who coined the ‘morphogen’ neologism to
illustrate its character of ‘form generator’ [1].

The reaction–diffusion model constitutes one of the most influential quantitative approaches within
developmental biology. From Turing’s aforementioned seminal article and the study from Gierer &
Meinhardt [2], a progressive wealth of reaction–diffusion models were developed, paving the way to
become an essential and pivotal concept to understand tissue morphogenesis [3–6]. The model was
extensively used to investigate distributions of morphogens in a variety of tissues and organisms such
as Drosophila melanogaster wing imaginal disc [7], chick limb [8] and the stripe pattern of Danio rerio
[9], among other examples.

Previous studies have analytically investigated this model assuming an infinite domain [10,11].
Although the model relied on the idea that the reaction–diffusion characteristic length of the
morphogen pattern was reasonably smaller than the domain, it is clear that biological tissues do not
entail infinite lengths. Other reports investigated the model assuming a finite domain by using
numerical [7,12] and analytical approaches [13–16]. To our knowledge, the role played by the size of
the domain in the spatio-temporal patterning predicted by this model has not yet been elucidated.

In this study, we present the analytical solution of a reaction–diffusion model describing de novo
formation of a morphogen and its spread within a finite domain, as a proxy for a tissue. We analytically
investigated the behaviour of the model, in terms of a reduced parameter, representing the tissue length
in units of the characteristic reaction–diffusion length. We fully characterized the finite-domain model in
terms of morphological aspects of the spatial distributions and the time to reach the steady state to
finally compare them with the corresponding predictions from the infinite-domain model. We found a
crossover tissue size above which both models coincide. Importantly, below this crossover size, the
finite-domain model becomes a better approximation. Finally, we recreated a fluorescence recovery after
photobleaching (FRAP) in silico experiment and found that the infinite-domain model renders a less
accurate estimation of the morphogen diffusion coefficient, for tissues smaller than the crossover length.
2. Results
2.1. The reaction–diffusion model in the infinite domain
Here we briefly summarize the well-known reaction–diffusion model assuming an infinite domain and
its analytic solution [10,11]. Within this model, it is assumed that the dynamics of the morphogen are
faster than the proliferation rate of the tissue cells and, as a consequence, advective effects can be
neglected. Otherwise, an advective term could be included in the model [17]. Since during the
developmental process tissues usually organize along with a particular axis [18,19], this model is
studied in a one-dimensional setting [10,11]. It is assumed that the morphogen concentration C1(x,t)
can diffuse with a diffusion coefficient D and is linearly degraded with a rate k:

@C1(x,t)
@t

¼ D
@2C1(x,t)

@x2
� kC1(x,t): ð2:1Þ

In the equation above, the first termD(∂2C1(x,t)/∂x2) is the ‘diffusive’ termwhile the second term− kC1(x, t)
represents the ‘reaction’ term, which in this case is linear and simulates a degradation or an uptake process.
It is considered that there is no morphogen at the beginning, that is, the initial condition is

C1(x,t ¼ 0) ¼ 0: ð2:2Þ

The only source of morphogen is a constant flux q located at the origin, represented by the first
boundary condition:

dC1

dx
(x ¼ 0, t) ¼ � q

D
: ð2:3Þ
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This reaction–diffusion model is also known as synthesis–diffusion–degradation [20], diffusion-decay
[16] or diffusion equation with linear degradation model [21], highlighting the role of the source as
well as the particular reaction term.

In this model, it can be assumed that the spatial domain is infinite and there is a Dirichlet boundary
condition at the tip of the tissue representing a sink absorbing the morphogen:

lim
x!1C1(x,t) ¼ 0: ð2:4Þ

Alternatively, a Neumann boundary condition can be assumed at the tip of the tissue:

lim
x!1

dC1

dx
(x,t) ¼ 0: ð2:40Þ

This model was extensively investigated by other authors, and the solution, regardless of the
boundary condition assumed at the tip, is [10,11,13]

C1(x,t) ¼ qffiffiffiffiffiffi
Dk

p e� x=
ffiffiffiffiffiffi
D=k

p
1� 1

2
erfc

ffiffiffiffi
kt

p
� x
2

ffiffiffiffiffiffi
Dt

p
� �

� 1
2
e2x=

ffiffiffiffiffiffi
D=k

p
erfc

ffiffiffiffi
kt

p
þ x
2

ffiffiffiffiffiffi
Dt

p
� �� �

: ð2:5Þ

where erfc(x) is the complementary error function.
Space and time variables can be rewritten in terms of the following dimensionless variables

1 ¼ x=
ffiffiffiffiffiffiffiffiffi
D=k

p
and τ = kt. Consequently, the morphogen flux at the tissue origin can be rewritten as

S ¼ q=
ffiffiffiffiffiffi
Dk

p
and the concentration as C(1,t) ¼ C1(1,t)=S. With this nondimensionalization, model

equations (equations (2.1–2.4)) take the form:

@C
@t

¼ @2C
@12

� C ð2:6Þ

and

C(1,t ¼ 0) ¼ 0: ð2:7Þ
Where the morphogen source at the tissue origin, in nondimensional units, ε = 0, is

dC
d1

(1 ¼ 0, t) ¼ �1: ð2:8Þ

And the morphogen sink and no flux boundary conditions at ε tending to infinite in the
nondimensionalized units are

lim
1!1C(1,t) ¼ 0 ð2:9Þ

and

lim
1!1

dC
d1

(1,t) ¼ 0: ð2:90Þ

Which leads to this solution:

C(1,t) ¼ e�1 1� 1
2
erfc

ffiffiffi
t

p � 1

2
ffiffiffi
t

p
� �

� 1
2
e 21 erfc

ffiffiffi
t

p þ 1

2
ffiffiffi
t

p
� �� �

: ð2:10Þ
2.2. The reaction–diffusion model in finite domains: an analytical solution
The previous model variant entails an infinite domain (equations (2.4), (2.40), (2.9) and (2.90)). Since
biological tissue sizes require a finite domain, we decided to replace the sink boundary condition
imposed by equation (2.4) with:

C1(x ¼ L,t) ¼ 0: ð2:11Þ
and the no flux boundary condition given by equation (2.40) with:

dC1

dx
(x ¼ L,t) ¼ 0: ð2:110Þ

where L is the length of the tissue.
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We defined the quantity, R ¼ L=
ffiffiffiffiffiffiffiffiffi
D=k

p
which is the only model parameter. This quantity represents

the tissue length L in units of the characteristic reaction–diffusion length λ, defined as l ¼ ffiffiffiffiffiffiffiffiffi
D=k

p
[21,22].

Thus, the sink boundary condition at ε =R for this model in nondimensionalized units is

C(1 ¼ R,t) ¼ 0: ð2:12Þ
while the no flux boundary condition at ε =R in nondimensionalized units is:

dC
d1

(1 ¼ R,t) ¼ 0: ð2:120Þ

These equations replace equation (2.9) and (2.90) in the §2.1, assuming the finitude of the tissue.
We found the analytical solution of the general model for finite tissues while assuming a sink

boundary condition at ε =R (equations (2.6–2.8) and (2.12)) in the nondimensionalized units to be as
follows (see electronic supplementary material for the demonstration):

C(1,t) ¼ e�1

1þ e�2R � e1

1þ e2R

� �
�
X1
j¼0

2
R
cos(( jþ 1=2)p1=R)

(( jþ 1=2)p=R)2 þ 1
e�[(( jþ1=2)p=R)2þ1]t: ð2:13Þ

While for the no flux boundary condition at ε =R (equations (2.6–2.8) and (2.120), the solution in
nondimensionalized units is as follows:

C(1,t) ¼ � e1

1� e2R
þ e�1

e�2R � 1

� �
� e�t

R
þ
X1
j¼1

� 2
R
cos( jp1=R)

( jp=R)2 þ 1
e�[( jp=R)2þ1]t: ð2:130Þ

This solution was previously obtained by Umulis [13].
Moreover, we also found the solution for the model assuming a fixed non-null concentration in ε = 0

and a null concentration in ε =R (see electronic supplementary material). Finally, we solved the finite-
domain model for different boundary conditions in two simple examples in two dimensions (see
electronic supplementary material).

To further corroborate the analytical solutions, we implemented the model numerically, by using a
finite differences scheme (see electronic supplementary material). Our results indicate that the
analytical solutions are in agreement with numerical simulations, both in one and two dimensions
(electronic supplementary material, figures S1 and S2).
2.3. Transient morphogen distributions are qualitatively different between the infinite-domain
model and the finite-domain model when they are of the order of the characteristic
length λ or smaller

We decided to compare the reaction–diffusion model assuming a finite tissue versus an infinite domain.
With the selected nondimensionalization, the latter does not have any free parameters. By contrast, the
finite model has only one free parameter, R, which represents the tissue size in units of the characteristic
length of the morphogen profile λ. By using our analytical solution for the model of finite tissues
(equation (2.13)), we explored the predicted morphogen spatial profiles at different tissue sizes (i.e.
varying R) and compared them with those calculated from the previously known solution assuming an
infinite domain (equation (2.10)), at three different time points (figure 1). We observed that the
morphogen concentrations predicted by the model assuming an infinite domain are higher or smaller
than those predicted by the model assuming a finite domain, depending on the boundary condition
assumed at ε =R (figure 1a,b). For large enough tissue lengths, morphogen profiles predicted by both
models are indistinguishable at each time point, as expected (figure 1c–f). Hence, the previously
reported model assuming an infinite domain is a reasonable description of the dynamics of morphogen
profiles for larger tissues. However, when addressing a tissue whose length is of the order of the
characteristic length λ or smaller, the model introduced in the present work is a more accurate description.

Moreover, we observed that large tissues lead to morphogen spatial distributions temporarily
separated when assuming a sink boundary condition at ε =R. By contrast, spatial distributions at
different time points are indistinguishable in shorter tissues, suggesting that they already approached
the steady state (figure 1a). This result would indicate that the larger the tissue, the longer the time
necessary to reach the morphogen spatial distribution at the steady state (see also sections 2.4 and
2.6). By contrast, assuming a no flux boundary condition at ε =R leads to morphogen spatial
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Figure 1. Morphogen spatial profiles predicted by the reaction–diffusion finite-domain model converge to the profile predicted by the
infinite-domain model, for large tissue lengths. Morphogen spatial profiles of the reaction–diffusion finite-domain model at three
nondimensionalized tissue sizes R = 0.1 (a,b), 1 (c,d) and 5 (e,f ) and at three different nondimensionalized times τ = 0.1, 1 and
10 (solid lines), assuming either a sink boundary condition (a,c and e) or a no flux boundary condition (b,d and f ) at the
nondimensionalized position ε = R. The profiles predicted by the model assuming an infinite domain are also shown at the same
times (dashed lines). C and ε represent the nondimensionalized morphogen concentration and position, respectively.
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distributions more temporally separated, suggesting that the time necessary to reach the steady state is
longer in small tissues (see sections 2.4 and 2.6).

2.4. Steady state morphogen spatial distributions
The morphogen spatial distribution assuming an infinite domain at the steady state (Cinfinite

ss (1)) is well
known [10,11] and with our nondimensionalization it is the following exponential spatial decay:

Cinfinite
ss (1) ¼ e� 1: ð2:14Þ

We calculated the steady state solution for our model of finite tissues, Cfinite
ss (1), assuming a sink boundary

condition at ε =R (electronic supplementary material):

Cfinite
ss (1) ¼ e�1

1þ e�2R � e1

1þ e2R

� �
: ð2:15Þ
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Figure 2. Steady state spatial profiles predicted by the reaction–diffusion finite-domain model converge to the profile predicted by
the infinite-domain model, for large tissue lengths. Morphogen spatial profiles of the reaction–diffusion model at steady state
assuming finite domains representing different nondimensionalized tissue lengths (R, colourbar) with a sink boundary condition
(a) or a no flux boundary condition (b) at the nondimensionalized position ε = R. The steady state profile from the model
assuming an infinite domain and the crossover tissue size Rc (defined in §2.5) are shown as dashed black and red lines, respectively.
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Increasing the tissue size in this model modifies the steady state profile, augmenting the maximum
concentration at the origin and leading to a transition from a linear to an exponential curve (figure 2a), in
agreement with the results observed at any time (figure 1a,c,e). Precisely, to estimate the limit when the
tissue size tends to zero, we calculated the Taylor series expansion of the steady state solution (equation
(2.15)) on R to the first order. As ε is constrained by R, we subsequently obtained the Taylor series
expansion for the resulting expression on ε to the first order:

lim
R!0

Cfinite
SS (1) ffi lim

1!0
[�sinh(1)þ R cosh(1)] ffi R� 1: ð2:16Þ

The limit when the tissue size tends to infinite was calculated:

lim
R!1

Cfinite
SS (1) ¼ e� 1 ¼ Cinfinite

ss (1): ð2:17Þ

The steady state morphogen distribution of the finite model converges to the exponential distribution
predicted by the infinite domain when the tissue length tends to infinity.

The model of finite tissues assuming no flux boundary condition at ε = R has the following steady
state solution:

Cfinite
ss (1) ¼ � e1

1� e2R
þ e�1

e�2R � 1

� �
: ð2:150Þ

With this boundary condition, the total amount of morphogen accumulated in the tissue at the steady
state (NSS) is conserved and consequently, independent of R (see electronic supplementary material):

Nss ¼
ðR
0
Cfinite
ss (1) d1 ¼ 1: ð2:18Þ

This result can be interpreted as follows. At the steady state, the morphogen net flux in the tissue
must be equal to zero. There is only one morphogen influx given by the source, located at the origin,
which is constant and equal to −1. Since the linear degradation term –C (see equation (2.6)) is the
only one responsible for morphogen depletion, the integral of this term over the entire tissue results
in the morphogen efflux equal to −Nss. Hence, the zero net flux requires that the influx balances out
the efflux implying that Nss = 1.

For small tissues, we calculated the first order of the Laurent series expansion of Cfinite
ss (1) in R = 0 and,

as ε is constrained by R, we got Cfinite
ss � 1=R for small values of ε. Hence, the smaller the tissue, the

higher the concentration averaged over the tissue. This explains why the steady concentration profiles
of the finite tissues model assuming no flux at ε =R are higher than the steady state profile of the
infinite-domain model, in contrast with the result obtained with the sink boundary condition
(figure 1b,d,f and figure 2). As expected, the steady state profile of the finite tissue model converges to
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the spatial distribution predicted with the infinite-domain model when the tissue size tends to infinite
(i.e. equation (2.17) holds for this boundary condition as well).

Furthermore, by comparing the steady state solution assuming a sink boundary condition at
ε =R (equation (2.15)) with its complete solution (equation (2.13)), we can re-write equation (2.13)
as follows:

C(1,t) ¼ Cfinite
ss (1)�

X1
j¼0

2
R
cos(( jþ 1=2)p1=R)

(( jþ 1=2)p=R)2 þ 1
e�[(( jþ1=2)p=R)2þ1]t: ð2:19Þ

Analogously, assuming no flux boundary condition at ε =R leads to

C(1,t) ¼ Cfinite
ss (1)� e�t

R
þ
X1
j¼1

2
R
cos( jp1=R)

( jp=R)2 þ 1
e�[( jp=R)2þ1]t

2
4

3
5: ð2:190Þ

The second term of equations (2.19) and (2.190) vanishes when the time τ tends to infinity. Therefore,
the morphogen concentration can be expressed as the steady state solution plus a term that describes a
transient contribution.
 Sci.9:211112
2.5. Geometrical characterization of the morphogen spatial distributions
The steady state profiles predicted by the model of finite tissues changed when increasing the tissue
size as shown in §2.4. In order to geometrically characterize the shape of the spatial profiles in the
steady state regime, we defined ε10 as the dimensionless spatial position ε in which the
morphogen concentration is 10% of the concentration at the origin. When using this definition in
the model assuming infinite domains, we obtain (see electronic supplementary material for details):

110 ¼ ln(10) ffi 2:3: ð2:20Þ
While for the model of finite tissues assuming a sink boundary condition at ε =R (see electronic
supplementary material for details):

110 ¼ R� arc sinh
sinh(R)

10

� �
: ð2:21Þ

Thus, in the limit of small tissues, ε10 shows a linear dependence with the tissue size. However, when
the tissue tends to infinity, ε10 becomes independent of the precise tissue size, reaching a plateau
(figure 3a). Additionally, when tissue size tends to infinity, in equation (2.21), ε10 recovers the value
from the infinite model calculated in equation (2.20).

We wonder whether it is possible to establish a cut-off size to distinguish both regimes. To answer
this question, we explore under what conditions the shape of the morphogen spatial distribution
depends on the tissue size. More precisely, we asked under what crossover tissue size Rc the
geometrical observable ε10 would transition from linearly depending on the tissue size to
becoming independent of it. To this end, we Taylor-expanded ε10 and arbitrarily looked for the
R =Rc upon which the second non-zero term of the series would be about 20% of the first linear
term (See electronic supplementary material for details). Our results show that the crossover tissue
size separating both regimes is about three times the characteristic length λ (Rc≈ 3). A similar
analysis with the model of finite tissues assuming a no flux boundary condition at ε =R renders a
similar crossover tissue of about three λ (figure 3b; electronic supplementary material).

The analysis of the dependency of ε10 with the tissue size can also be made before the morphogen
distribution achieves the steady state. Although we could not find an analytical expression for this
observable in the general case, we explored this dependency numerically (figure 4). For both
boundary conditions, we observed that ε10 changes in time until it reaches a plateau, which indicates
that the spatial profile stabilizes in the steady state. Moreover, for the sink boundary condition, the
time needed to reach the plateau monotonically increases with the tissue size until R∼Rc. By contrast,
for the no flux boundary condition, the opposite is true: the time needed to reach the plateau
monotonically decreases with the tissue size until R∼Rc. For larger tissue sizes, the time to reach the
plateau converges to the prediction of the model for infinite domains (figure 4a,b).



3.0

2.5

2.0

1.5

1.0

0.5

0
0 2 4 6

R
8

sink
no flux

infinite domain
Rc

10

e10

Figure 3. Crossover tissue size separating two reaction–diffusion model regimes. ε10, defined as the nondimensionalized spatial
position where the morphogen concentration is 10% of its value at the origin was calculated for the finite-domain model for
different nondimensionalized tissue sizes (R), assuming a sink boundary condition (upper dotted blue curve) or a no flux
boundary condition (lower continuous green curve) at the position ε = R. The finite-size model leads to ε10 values different
from those predicted by the infinite-domain model (horizontal discontinuous black curve) for tissue lengths smaller than the
crossover tissue length (Rc, vertical discontinuous red curve): the sink (no flux) boundary condition results in ε10 values smaller
(higher) than the value predicted by the infinite-domain model. By contrast, ε10 predicted by the finite-domain model is
indistinguishable from the prediction of the infinite-domain model, for tissues larger than the crossover tissue length.

2.0
2.5

2.0

1.5

1.0

0.5

0

5

4

3

2

sink no flux

1

1.0

0
0 2.0 4.0 0 1 2 3 4 5

3

4

5

R

t t

e10 e10R

infinite domain
Rc

infinite domain
Rc

(a) (b)

Figure 4. Kinetics of the geometrical factor ε10 calculated from the reaction–diffusion finite-domain model for different tissue sizes.
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2.6. Time to reach the steady state morphogen distribution
The results of §2.5 suggest that the larger the tissue, the longer (shorter) it takes the model to reach the
steady state when assuming a sink (no flux) boundary condition at e =R. To test this hypothesis, we took
advantage of a method developed by Berezhkovskii et al. [11] to quantify the mean time (μτ) it takes a
morphogen profile to reach its steady state. In their study, the authors defined a local relaxation
function as the ratio of the difference between the current and steady state values of the total amount
of morphogen accumulated in the tissue. They interpret the negative derivative of the relaxation
function as the probability density for the time of the local accumulation process from which they
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could calculate the mean time. They applied this method to the reaction–diffusion model assuming an
infinite domain and obtained (in our nondimensional units):

mt(1) ¼
1þ 1
2

: ð2:22Þ

That is, the mean time to reach the steady state is linear with the position within the infinite domain. We
applied the same method to our reaction–diffusion model of finite tissues assuming a sink boundary
condition at ε =R and obtained (see electronic supplementary material for details):

mt(1) ¼
X1
j¼0

2
R

cos(( jþ 1=2)p1=R)

[((( jþ 1=2)p=R))2 þ 1]
2

1
(e�1= 1þ e�2Rð Þ � e1= 1þ e2Rð Þ) : ð2:23Þ

While assuming a no flux boundary condition at ε =R renders (see electronic supplementary material
for details):

mt(1) ¼
1

�(e1= 1� e2Rð Þ þ e�1= e�2R � 1ð Þ)
1
R
þ
X1
j¼1

2
R

cos( jp1=R)

(( jp=R)2 þ 1)
2

2
4

3
5: ð2:230Þ

Thus, for our model, the mean time to reach the steady state not only depends on the position within
the tissue but also on the tissue size.

To formally compare the mean times calculated from both reaction–diffusion models, we also need to
estimate a measure of the error. Hence, we calculated the standard deviation of the time to reach the
steady state, στ (see electronic supplementary material for details). For the model assuming an infinite
domain, it reads:

st(1) ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ 2

p

2
: ð2:24Þ

Which coincides with the already reported result by Ellery et al. [15]. By contrast, for the reaction–
diffusion model for finite tissues assuming a sink boundary condition at ε =R, we obtain (see
electronic supplementary material for details):

st(1) ¼
X1
j¼0

4
R

cos(( jþ 1=2)p1=R)

[((( jþ 1=2)p=R))2 þ 1]
3

1
(e�1= 1þ e�2Rð Þ � e1= 1þ e2Rð Þ)

0
@

�
X1
j¼0

2
R

cos(( jþ 1=2)p1=R)

[((( jþ 1=2)p=R))2 þ 1]
2

1
(e�1= 1þ e�2Rð Þ � e1= 1þ e2Rð Þ

0
@

1
A
21
A

1=2

: ð2:25Þ

While assuming a no flux boundary condition at ε =R renders (see electronic supplementary material
for details):

st(1) ¼ 2
�(e1=1� e2RÞ þ e�1= e�2R � 1ð Þ)

1
R
þ
X1
j¼1

2
R

cos( jp1=R)

(( jp=R)2 þ 1)
3

2
4

3
5

0
@

� 1
�(e1= 1� e2Rð Þ þ e�1= e�2R � 1ð Þ)

1
R
þ
X1
j¼1

2
R

cos( jp1=R)

(( jp=R)2 þ 1)
2

2
4

3
5

0
@

1
A
21
A
1=2

: ð2:250Þ

As with the mean, the standard deviation of the time necessary to reach the steady state not only
depends on the positions along with the tissue but also on the tissue size. At the origin of the tissue
(ε = 0), both μτ and στ increase or decrease with R (depending on whether there is a sink or a no flux
boundary condition at ε = R) until they converge toward 1/2 and

ffiffiffi
2

p
=2, respectively, when R tends to

infinite (figure 5a). These are precisely the expected values from the model assuming infinite domains
evaluated at the tissue origin (equations (2.22) and (2.24)). Interestingly, the transition between the
domains in which μτ and στ depend on the tissue size and where they are independent of it coincides
with the crossover tissue size of about three λ determined in the previous section (compare figure 5a
with figure 3).

For tissues smaller than the crossover size, the mean time to achieve the steady state and its error in
each position strongly depend on tissue size (figure 5b). On the contrary, for tissue sizes higher than the
crossover tissue size, both magnitudes become independent of the size (figure 5c). Importantly, for
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tissues smaller than the crossover size, the steady state will be reached significantly faster or slower than
the prediction from the model assuming an infinite domain, depending on whether there is a sink or a no
flux boundary condition, respectively, at ε =R. For tissues larger than the crossover size, both models
agree in the time to achieve steady state (figure 5b,c).
2.7. Finite versus infinite domains in the reaction–diffusion model used in the fluorescence
recovery after photobleaching-based determination of diffusion parameters

Diffusion parameters of morphogens can be experimentally determined in tissues by using fluorescence
recovery after photobleaching (FRAP) experiments [23,24]. From this technique, the diffusion coefficient
D and degradation constant k are obtained indirectly by fitting to experimental concentration
measurements the analytical solution of the model assuming a finite domain [23,24] as well as an
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infinite domain [19,25]. Thus, we wondered whether the election of the model has an impact on a typical
FRAP scenario. To answer this question, we simulated a FRAP experiment with our finite-domain model
by using as an initial condition the steady state distribution and recreated the bleaching by multiplying
the steady state profile by an arbitrary factor b between positions d and d + h, following Kicheva et al. [19].
Of note, to model a FRAP experiment, a uniform distribution can be assumed before bleaching of the
diffusing substance [25]. As our model entails a morphogen gradient generated by a source while
undergoing diffusion and degradation, we focused our analysis on a non-uniform case. We next
evaluated the morphogen spatio-temporal distribution predicted by the finite-domain model,
assuming a sink and a no flux boundary condition at ε =R. As time passes, the morphogen gradient
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recovered the steady state profile (figure 6a,b). We calculated a typical recovery curve defined as the
spatial integral of the concentration between positions d and d + h, divided by the length of the
bleached zone h (figure 6c,d). We calculated the recovery curves with our finite-domain model
assuming either a sink or a no flux boundary condition at ε =R (see equations S.31 and S.32,
respectively, in the electronic supplementary material), and we compared them with the recovery
curves predicted by the one-dimensional infinite-domain model, previously calculated by Kicheva
et al. [19] (equation S.33 in the electronic supplementary material). Our results show that the recovery
curves predicted by tissues larger than Rc are indistinguishable from the curve predicted by the
infinite-domain model (figure 6c,d). By contrast, tissues smaller than Rc give rise to kinetics of
recovery that differ from those predicted by the infinite-domain model. While a sink boundary
condition at ε =R gives rise to kinetics faster than those predicted by the infinite-domain model, the
opposite occurs with the no flux boundary condition, in agreement with the results shown in the
previous section.

Next, we wondered whether the election of the model used in FRAP has an impact on the calculated D
and k values. To that end, as a proof of principle, we evaluated whether the infinite-domain model could
render an accurate estimation of the kinetic parameters D and k, when fitted to a recovery curve, in turn
generated with the finite domain model used as a proxy for an experimental recovery curve.

After rewriting the recovery curve equations (see equations S.31 and S.32, respectively, in the
electronic supplementary material) in the original coordinate x = λε and arbitrarily setting λ = 1, we
run simulations of the finite-domain model, for different values of L. Then, we performed a curve
fitting for each of the simulated recovery curves by using the expression corresponding to the infinite-
domain model as the fitting function and λ as the free parameter.

We obtained the predicted value of λ as a function of R = L (figure 6e,f ). For large values of R, the
predicted λ is approximately 1, which is in agreement with the value actually used to generate the
data. By contrast, for values of R smaller than Rc, the predicted value of λ deviates from 1, converging
to 0 or getting values orders of magnitude higher than 1, depending on the boundary condition at
ε =R. Altogether, these results indicate that both models can be used to infer the kinetic parameters D
and k from FRAP experiments, provided that tissue sizes are higher than Rc. On the contrary, for
tissues smaller than this crossover value, the model assuming finite domains is the best alternative.
3. Discussion
Reaction–diffusion models were conceived in the seminal article by Alan Turing to hypothesize under
what conditions heterogeneous patterns could emerge from a homogeneous one in tissue
morphogenesis [1]. After the concept of positional information was posed by Lewis Wolpert [26], as
illustrated by his well-known French Flag Problem ([27]; see also the review by Sharpe [28]), reaction–
diffusion models resurfaced to account for mechanisms capable of generating spatial gradients that
could serve as positional signals. Francis Crick was entertaining the hypothesis of reaction–diffusion
signals as probable morphogenetic driving forces [29]. Reaction–diffusion models were specifically
studied by Alfred Gierer and Hans Meinhardt to understand pattern formation in tissue development
and regeneration [2]. Thereafter, a plethora of reaction–diffusion models were developed and
proposed over the years to describe different morphogen gradients [30–33]. Some notable examples
are Bcd in the syncytial Drosophila embryo [34], Dpp in developing wing imaginal disc in Drosophila
[19], Fgf8 in the gastrulating Danio rerio embryo [35], among other examples. Despite the controversy
of whether reaction–diffusion models represent an effective or accurate description of tissue pattern
formation, these modelling frameworks became an essential construct to guide mathematical
approaches in development [5,36] and regeneration [37].

In this study, we investigated the spatio-temporal distribution of a morphogen with a minimal
reaction–diffusion model in a finite domain, as a proxy for a tissue. The solution of the model
assuming an infinite domain has been already reported [10,11]. A number of reaction–diffusion
models were previously considered to investigate morphogen gradients in finite domains, by means
of numerical simulations (see, for instance, [7,12], among other examples). A reaction–diffusion model
assuming finite domains was exactly solved assuming Neumann boundary conditions to investigate
the scaling of morphogens in tissues by Umulis [13] and robustness of pattern formation in
development [14], among other examples. A similar model was considered to investigate cell
migration and proliferation of a population of precursor cells on a uniformly growing tissue by
Simpson [38], based on the model of cell colonization in uniformly growing domains [39]. In his
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model, Simpson [38] explored a more general case of a growing domain, which can recapitulate the case
of a fixed domain by setting the growth speed to zero. Nevertheless, because the model focused on cells
instead of morphogens, it assumed a positive reaction term to account for cell proliferation and a non-
zero initial condition, in contrast with our negative reaction term and our zero initial condition.
Hence, imposing a zero initial condition in this previously reported model yields the null solution.

The analytical solution here reported could be instrumental in computational packages devoted to
multi-scale modelling, which involve a signalling scale coupled with a cellular scale. Although their
cellular layer could entail a cellular Potts model [40,41] in CompuCell3D [42] and MORPHEUS [43],
or a vertex model [44,45] in CHASTE [46], their signalling scale is typically modelled by a reaction–
diffusion scheme. Since in these packages a finite domain is the only possible choice, they use
numerical implementation. While our numerical results, based on a finite-difference algorithm, cannot
be distinguished from the analytical solution (electronic supplementary material, figures S1 and S2),
the last one is naturally more accurate and computationally more efficient (see electronic
supplementary material), which could prove useful for multi-scale modelling implementations in one,
two (see two examples of the two-dimensional finite-domain model in the electronic supplementary
material) or three dimensions. Likewise, this new solution could help to improve the calculation of
recovery curves in FRAP experiments, as for tissues below the crossover size Rc, the model assuming
finite domains is a better approximation.

Our results showed that the morphogen spatial distributions predicted by our model assuming finite
domains depend on the only relevant model parameter: the normalized tissue size R. By determining the
spatial position along with the tissue where the morphogen concentration is 10% of the source
concentration (ε10), we geometrically characterized the steady state spatial distribution. This
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characterization led us to find two regimes within the parameters space, separated by a crossover tissue
size Rc (figure 3 and figure 7c,d). For tissues longer than Rc, the distributions are exponential-like and
cannot be distinguished from those predicted from the model assuming an infinite domain (figures 2
and 7b). In this regime of the parameter space, the mean and standard deviation of the time to reach
the steady state (evaluated at the tissue origin) do not change much with the tissue size and
converged towards the corresponding values from the model assuming an infinite domain (figures 5
and 7f ). When comparing the morphogen concentrations predicted by both models, we found that the
difference between them is mostly negligible (figure 8a,b). Hence, the model assuming an infinite
domain can be considered a good approximation of the model assuming finite domains for tissue
sizes larger than Rc.

By contrast, for tissues smaller than Rc, the distributions are clearly separated from those predicted
with the model assuming an infinite domain (figures 2 and 7a). Furthermore, the time to reach the
steady state strongly depends on the tissue size in this regime and the particular boundary condition
at ε =R (figures 5 and 7e). In particular, the error of using the model assuming an infinite domain
increases when ε tends to R and the smaller the tissue the higher the error accumulated over the
entire tissue (figure 8a,b) (see electronic supplementary material for details). Thus, our results indicate
that to investigate tissues smaller than approximately three times the characteristic length λ, the model
assuming finite domains should be used.

In this study, we have analysed two different boundary conditions at the tip of the tissue simulated
with the finite-domain model. For tissues smaller than Rc, the choice of this boundary condition is
determinant for the amplitude of the morphogen spatial distribution and the time to achieve the
steady state. When assuming a sink boundary condition, we obtained concentration values below
those predicted by the infinite-domain model (figures 1a,c and 2a). Thus, this boundary condition
leads to a reduction in the time to reach the steady state, when compared to the infinite-domain
model (figure 5a). By contrast, a no flux boundary condition leads to concentrations higher than those
calculated when assuming an infinite domain (figure 1b,d and 2b), which comparatively increases the
time to approach the steady state (figure 5b).
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The crossover tissue size provides a straightforward criterion to decide when to use any of the two
models presented here. As an example, the characteristic length of Wg was estimated in 6 µm in the
Drosophila wing disc, where the tissue size was about 50 µm [19]. The resulting R∼ 8 >Rc indicates
that the model assuming an infinite domain is a reasonable approximation in this scenario. A similar
conclusion can be drawn when studying Dpp in the Drosophila haltere. For this morphogen, the
characteristic length and the tissue size can be estimated in approximately 10 and approximately
100 µm, respectively [7], which leads to R∼ 10 > Rc. By contrast, the last morphogen, Dpp, but in the
Drosophila wing disc has a characteristic length of 20 µm [19] which implies R∼ 2.5 <Rc. As a
consequence, the model assuming finite tissues is the most correct approximation to describe
morphogen propagation in this scenario. Something similar occurs with Fgf8 in the Danio rerio
embryo, whose characteristic length was estimated as 200 µm while the tissue size is about 200 µm
[35], from which a R∼ 1 <Rc can be calculated. By only looking at the previous examples, it is clear
that there is no correlation between the model selection and the morphogen under study, since the
same morphogen, Dpp dynamics is better explained with the model assuming finite domains in the
Drosophila wing disc while in the Drosophila the model assuming an infinite domain is actually
sufficient. The same lack of correlation can be observed between the model selection and the tissue of
interest. Indeed, in the same tissue, Drosophila imaginal disc, Wg could be described with the model
assuming an infinite domain while Dpp requires the most precise model of finite domains.

In conclusion, we found two reaction–diffusion regimes for large and small tissues, separated by a
crossover tissue size. While above this crossover the infinite-domain model constitutes a good
approximation, it breaks below this crossover, whereas the finite-domain model faithfully describes
the entire parameter space. Further studies will be needed to unveil the spatio-temporal distribution
of morphogens in tissues whose size is not fixed. Our finding of the delineated crossover tissue size
could be instrumental to select the proper reaction–diffusion model in future studies aimed to address
tissue morphogenesis and other relevant problems regarding pattern formation in biology and medicine.
3.1. Computational methods
In this article, the reaction–diffusion model assuming a finite domain and its comparison with the model
assuming an infinite domain was studied. The analytical derivation of the reaction–diffusion model
assuming a finite domain for different boundary conditions in one and two dimensions is presented
in §1 in electronic supplementary material. Comparison between analytical and numerical solutions in
one and two dimensions is described in the §2 in the electronic supplementary material. Steady state
calculations, the geometrical characterization of the spatial distribution profiles given by ε10 and the
estimation of the crossover tissue size Rc are shown in §3, 4 and 5 in the electronic supplementary
material, respectively. Mean time to reach the steady state together with its standard deviation are in
§6 of electronic supplementary material. Calculation of FRAP recovery curves from the one-
dimensional finite-domain model is in §7 of the electronic supplementary material. Details on the
error of assuming an infinite domain instead of a finite domain in the steady state solutions are in §8
in the electronic supplementary material. Finally, the efficiency of the analytical solution versus the
numerical simulations is analysed in §9 of the electronic supplementary material.

All model calculations were encoded in Python 3.7.3 and performed using NumPy [47] and SciPy [48]
while visualization was executed with matplotlib [49] and seaborn [50]. The source codes for all the
calculations and figures were implemented in supplementary notebooks using Jupyter Notebook
(http://jupyter.org/) and can be found at: http://doi.org/10.5281/zenodo.4421327 [51].

Data accessibility. As we wrote in the Computational Methods section, the source codes for all the calculations and figures
are implemented in supplementary notebooks using Jupyter Notebook (http://jupyter.org/) and can be found at:
http://doi.org/10.5281/zenodo.4421327 [51]. The supplementary information is provided as the electronic
supplementary material [52].
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