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Abstract—Objective: Optoacoustic (photoacoustic) to- 

mography is aimed at reconstructing maps of the initial 
pressure rise induced by the absorption of light pulses in 
tissue. In practice, due to inaccurate assumptions in the 
forward model, noise, and other experimental factors, the 
images are often afflicted by artifacts, occasionally mani- 
fested as negative values. The aim of this work is to de- 
velop an inversion method which reduces the occurrence 
of negative values and improves the quantitative perfor- 
mance of optoacoustic imaging. Methods: We present a 
novel method for optoacoustic tomography based on an 
entropy maximization algorithm, which uses logarithmic 
regularization for attaining non-negative reconstructions. 
The reconstruction image quality is further improved using 
structural prior-based fluence correction. Results: We re- 
port the performance achieved by the entropy maximization 
scheme on numerical simulation, experimental phantoms, 
and in-vivo samples. Conclusion: The proposed algorithm 
demonstrates superior reconstruction performance by de- 
livering non-negative pixel values with no visible distor- 
tion of anatomical structures. Significance: Our method 
can enable quantitative optoacoustic imaging, and has the 
potential to improve preclinical and translational imaging 
applications. 

 

Keywords—Optical parameters, photoacoustic tomog- 
raphy, inverse problems, image reconstruction, regulariza- 
tion theory. 

I. INTRODUCTION 

Optoacoustic (OA) imaging detects broadband ultra- 

sound (pressure) waves generated within tissue in response 

to external illumination with light of transient energy, due to 

light absorption by tissue elements and thermo-elastic ex- 

pansion. Using forward models that describe sound propagation 

in tissue, ultrasound measurements from multiple positions sur- 

rounding the object imaged are mathematically reconstructed 

to resolve the spatial distribution of the initial pressure rise. 

The reconstructed pressure rise is proportional to the product 

H = µa φ, whereby µa is the optical absorption coefficient and 

φ is the light fluence [1]–[3]. The value H has only positive 

values in biological tissues since both absorption and light flu- 

ence are positive. However, the appearance of negative values 

is common in OA images due to different factors, such as the 

use of inaccurate forward models, inversion schemes, numerical 

errors, limited view detection geometry, transducer impulse re- 

sponse, unknown or unpredictable experimental effects or noise 

in the imaging system. The presence of negative values in the 

reconstruction does not have physical relevance. Importantly, 

when spectral techniques are employed, such as Multispectral 

Optoacoustic Tomography (MSOT) [4], [5], the presence of 

negative values make spectral quantification problematic. 

It is therefore important to treat the appearance of negative 

values in the OA tomography problem. Model based reconstruc- 

tion has been suggested as an alternative to back-projection 

algorithms to improve the accuracy of OA imaging, further 

incorporating transducer and laser characteristics into the in- 

version procedure [6]–[9]. In principle, accurate inversion can 

reduce the image artifacts, but errors persist due to different 

experimental challenges including limited-angle signal collec- 

tion, limited bandwidth detection, noise and other uncertainties, 

leading to incomplete data problems and results in the pres- 

ence of erroneous negative values [6], [10]–[12]. Consequently, 

methods to directly treat the problem of negative values have 

been considered [5], [13], [14]. Ding et al. [13] compared the 

utility of different minimization procedures using non-negative 

constraints, including steepest descent, conjugate gradient, and 

quasi-newton based inversion. Typical non-negative constraint 

schemes truncate the negative values within each step of the 
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gradient iteration, forcing a result containing only positive or 

zero values. This practice however may bias the solution and 

generate inaccuracies in the reconstruction. 

An alternative approach to address the problem of negative 

values is to use image content for image correction. Image fea- 

tures such as the total energy (smoothness), contrast, total varia- 

tion of an image can be generally employed as prior information 

to direct the inversion towards pre-determined outcomes, usu- 

ally based on the assumptions about the nature of the image. For 

where the instantaneous light power absorption density in W 

is indicated by H and Γ represents the medium-dependent di- 

mensionless Grueneisen parameter. In Eq. (1), the tissue density 

is represented by ρ while c indicates the speed of sound (SoS). 

For our experiments, a uniform SoS of 1520 m/sec was heuris- 

tically estimated using image autofocusing method [21]. The 

initial pressure rise at position r and time t is given as p(r, t). 

The solution for the wave equation can then be obtained using 

a Green’s function by assuming H(r, t) = Hr (r)δ(t), which 

example, ℓ2 - or ℓ1 -norm minimization of the total variation of 
an image minimizes the edges of the reconstructed image. Using 

results in [20], ∫ 
Γ   ∂ Hr (r′) ′ 

this notion, negative artifacts can then be eliminated by apply- 

ing an explicit non-negativity constraint along with ℓ2 -norm 

p(r, t) = 
4πc ∂t 

 
R =ct 

dr , (2) 
R 

minimization [13], [15]. Another image metric that has been 

considered for eliminating negative values is the entropy of an 

image [16], [17]. Entropy is the measure of randomness in an 

image. Randomness of the image implies that information from 

each subpixel is assumed to be independent of each other and 

can statistically take any value irrespective of its neighboring 

subpixel. This becomes very useful in limited data situations; 

wherein the principle of maximum entropy tries to eliminate all 

uncertainties within each subpixel (among the different pos- 

sible solutions) by imposing independent statistical structure on 

each pixel. Maximization of entropy (i.e., maximizing the 

term −xlog(x); whereby x is the vectorized image) is equal 

to minimizing the term x log(x) and is a method considered in 

Positron Emission Tomography (PET) and multi-modal imaging 

[16], [17] or astronomical imaging [18]. 

In this work, we examine the use of entropy as a prior in OA 

image inversion, in the context of nonlinear conjugate gradient 

minimization [19]. We hypothesize that the use of an entropy- 

based prior, which implements an implicit non-negativity 

constraint, can improve the accuracy of OA inversions over 

externally imposed non-negativity constraints. To prove this hy- 

pothesis, we first theoretically compare a conventional ℓ2 -norm 

minimization problem using a smoothness constraint to an 

entropy maximization problem. We show that images 

reconstructed by entropy maximization cannot take negative 

values. The reconstructed OA images were further improved by 

correcting for the fluence, the fluence was estimated using 

finite volume method after segmenting the imaging domain 

(phantom or mouse). Thereafter, we compare the perfor- mance 

of inversion (after fluence correction) using entropy 

maximization and conventional inversion with externally 

applied non-negativity constraint using numerical simulation, 

experimental phantoms and small animal imaging. We discuss 
the performance differences observed and the advantages and 

where R = ct represents the radius of the integration circle over 

a line element given as dr′. The above solution is subsequently 

discretized into the following matrix equation [22], 

b = Ax, (3) 

where b is the boundary pressure measurements, A is the in- 

terpolated model matrix and x is the unknown image to be 

reconstructed, representing the initial pressure rise distribution. 

The above formulation represents the forward model, i.e., given 

the initial pressure rise one can estimate the pressure at the 

boundary locations detected by the transducers. Thus, the acous- 

tic inverse problem involves reconstructing the initial pressure 

rise given the boundary pressure data. In the ℓ2 -norm formu- 

lation, the inverse problem is solved by minimizing a function 

given as, 

Ωℓ   = arg min(||Ax − b||2 + λ||Lx||2 ), (4) 
x 

where λ is the regularization parameter. The term ||Ax − b||2 

is called the residual term. The term ||Lx||2 is a ℓ2 -norm of the 

second order total-variation of the image x and L indicates the 

Laplacian operator. The value of the regularization parameter 

affects the resolution characteristics of the reconstructed image; 

higher the value of regularization the smoother the 

reconstructed image. 

 

B. Entropy Maximization and Non-negative Constraint 

An alternative method to the minimization problem of Eq. (4) 

(optoacoustic reconstruction), is maximization of the entropy of 

the image. To elaborate on this point, a statistical approach is 

considered, wherein we assume that the image to be recon- 

structed follows a Gaussian distribution with estimated mean 

and standard deviation values. The dimension of the image to be 

reconstructed is N × N , i.e., a vector of size NN (= N 2 ). Next, 

we assume that each pixel j  in this image will be foΣrmed by a 

limitations of using entropy maximization. group of subpixels indicated by mj (>= 1) and M = 
N N 
j =1 

 
II. MATERIALS AND METHODS 

A. Theoretical Background 

The propagation of the acoustic pressure wave generated due 

With these assumptions, let us consider the following experi- 

ment: wherein K particles are distributed over all subpixels and 

let Ki be the number of particles that fall in pixel i. Then the 

number of combinations to place K particles in NN pixels such 

that Kj particles are present in pixel j is given as, 

to the short-pulsed light absorption is governed by the following inhomogenous wave equation [20], 

mj . 
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∂H(r, t) 
= Γ 

 

 
, (1) Further we have m(Kj ) 

ways to put Kj particles into mj 

 

sub- 

∂t2 ρ ∂t pixels. Hence, the total number of combinations to create the 
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particle distribution V (K̃ ) is given as, 

V (K̃ ) = C(K̃ ).ΠN N m(K j ) 
, (6) 

is given in [25]. Herein we study how positive values are retained 

with entropy maximization scheme. 
In ℓ -norm minimization (Eq. (4)), the gradient update equa- 

j =1 j 2 

The total number of particles in the distribution is given as MK . 

Now making the assumption that each particle is equally likely 

i.e., uniform distribution. We get the probability of distribution 

of K̃  as, 

p(K̃ ) =  
V (K̃ ) 

, (7) 
MK 

Now using Stirling approximation i.e., K! ≈ KK e(−K ) , we can 

write, 

tion at iteration i is given as, 

xi = xi−1 − (AT (Axi−1 − b)) − λLT Lxi−1 , (15) 

The above update equation is obtained by taking the deriva- 
tive of the objective function in Eq. 4. Note that in the above 

equation all the quantities will always be in real space i.e., (A, 

xi−1 , xi, b ∈ IR), and can take any values due to the absence of 

any natural non-negativity barrier. Therefore, the ℓ2 -norm 

based minimization can generate negative values (which can be 
in IR) during the image reconstruction procedure. In case of 

log(p(K̃ )) = −K 
ΣN N  

zj log 

  
 zj   

m̂ j 

 

, (8) 
entropy maximization (Eq. (14)), the gradient updated equation 

at iteration i is given as, 

j =1 

K m  
 

x = x — AT (Ax — b) − λ  1 + log 
  

 xi−1 
,
 

where zj = j     and m̂j  = j   . The average value inside a pixel i i−1 i−1 mj −1 

xj will now be proportional to zj i.e., xj  = S.zj and m̃j  = S.m̂j 

such that, 

(16) 

The derivation pertaining to applying implicit positivity 

ΣN N 

 
j =1 

with xj  ≥ 0, m̂j  > 0. 

 
xj = 
ΣN N 

 
j =1 

 
m̂j  = S, (9) 

constraint using entropy maximization is discussed in the 

Appendix-I. 

Choice of regularization plays a key role in reconstructed im- 

age quality by defining over-smoothed or under-smoothed ap- 
proximations in case of ℓ2 -norm based reconstruction. In terms 

Now let the prior distribution of the image vector be consid- 

ered as pA (x), which is given as, 
of distance measure, ℓ2 -norm constraint can be considered as 

Euclidean distance between the prior and the expected image, 

 

log(pA (x)) = − 
K  ΣN N 

 

 

S 
j =1 

 

xj log 

  
 xj   

mj 

 

, (10) 

i.e., ||Lx||2 =< Lx, Lx >⇐⇒< Lx, Lxpr >[26]–[28], there- 

fore higher regularization will weigh the ℓ2 -norm constraint more 
and thus resulting in a smoother solution. Similarly en- 

which follows the relative entropy definition and is always non- 

negative (not defined for negative values). Our next assumption 

tropy maximization can be related to Kullback-Leiber dis- 

tanceΣ, as cross entroΣpy between prior and the expected image, 

is that the error vector or the noise is normally distributed with i.e., x log(x) = x log( x ), therefore higher regulariza- 
p r 

zero mean and standard deviation σ given as, 

−r 2 
       i   p(r ) = c.e 

tion will push the subpixels (i.e., xpr ) in pixel i of image vector 

x to uniform distribution [26]–[28]. Thus, low regularization in 
the entropy maximization scheme will result in minimizing the 

i 

which can be rewritten as, 
 

p(y|x) = c.e 

2 σ 2 , (11) 

 

 
||A x −b ||2 
  2  

2 σ 2 , (12) 

residual (i.e., noisy reconstruction), whereas choosing higher 

regularization will result in the initial pressure rise being close 

to a smooth distribution having intrinsically positive values. The 

operating range of the regularization parameter in the entropy 

Rewriting the overall expression using Bayes rule we get, maximization framework can be found using the L-curve type 

K  ΣN N 
log(p(x|y)) = − x xj 1 

log − ||Ax − b||2 , 

method, cross-validation based scheme [29], [30]. 

S 
j 

j =1 
mj 2σ2 

2 

(13) 

C. Choice of Regularization Parameter—L-Curve 
Method 
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Neglecting the terms independent of x. We can pose this as 

an entropy maximization problem which is non-linear convex 

maximization problem, and this can be solved by minimizing 

the function, 

Typically, the regularization parameter (λ) is chosen automat- 

ically using the L-curve method [23], [24]. The L-curve method 

is a popular method for automatically choosing the regulariza- 

tion parameter for a linear inverse problem and this scheme 

Ωmaxent = arg min 
x 

||Ax − b||2 + λ 
ΣN N 

xi log 
 xi  
mi 

was earlier used in diffuse optical tomography and OA tomog- 

, raphy. In the L-curve method, a graph is plotted between the 
residual (||Ax − b||2 ) and the reconstruction (||xλ||2 ) as func- 

i=1 2 2 

(14) 

where −x log( x ) indicates the relative entropy function of im- 

age x, typically m is assumed to be an arbitrary constant [18]. In 

this work m is assumed to be 1. Detailed mathematical analysis 

on the use of Eq. (14) for applying an implicit non-negativity 

constraint, stability, and convergence of entropy maximization 

tion of regularization parameter (λ). This essentially means that 

the reconstructed solution (xλ) is a function of regularization 

(λ). In an ideal case this curve will be of L-shape. The corner 

point of this L-shape represents the least distance from the ori- 

gin, indicating an ideal balance between residual and expected 

solution. For the case of entropy maximization the solution 
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norm will be replaced by entropy term i.e., (Σxλ log(xλ)). In 

this work, we use L-curve type approach to automatically es- 

timate the regularization parameter in both the L2-norm and 

entropy maximization schemes. 

 
D. ℓ2 -Norm With Smoothness and Non-Negativity 

Constraint 

Minimizing the function in Eq. (4) was performed using a 

conjugate gradient method (equivalent to iterative least squares 

QR (LSQR) method), which has a closed form solution as [31], 

x ≈ xℓ −lsqr = Vk (Bk 
T Bk + λSk T Sk )−1 β0 Bk T e1 , (17) 

where Bk , Sk , Vk , β0 , and e1 can be obtained in the Lanc- 

 
 

Algorithm 1: Entropy Maximization Algorithm. 
 

AIM: Estimation of x in Eq. (14) 

INPUT: Obtained boundary pressure data (b), Interpolated 

Model Matrix (A), Regularization Parameter (λ), Initial 

Guess (x0 ). 

OUTPUT: Reconstructed Initial Pressure Rise (x) 
Initialize: Iteration Number (iter = 0), Tolerance (tol = 

1e−8 ), ω = 0.5, Maximum Iterations (maxiter ) = 500 
 

1. Compute Gradient (g(x) = 2AT (Ax0 − b) + λ(1 + 

log(x0 )), Residue (r = Ax0 − b), p = −g, Φ0 = pT g, 
xprev = x0 , gprev = g, ∆x = xprev 

while iter < maxiter & ∆x < (tol × ||x||2 ) 

A b 1. Ap = A × p, γ = AT Ap , v = AT Ap , t = 1, u = 1 
zos diagonalization procedure with ( λL 

) and ( 0 ). Here k indi- 

cates the number of iterations during the joint bidiagonalization 

procedure. 

In the ℓ2 -norm formulation with non-negativity constraint, 

the following minimization is solved, 

Ωℓ −N N = arg min(||Ax − b||2 + λ||Lx||2 ) s.t. x > 0, 

p 

2. Improve step-length (α) to ensure descent direction 

traversal; while u > −ω × t 

1. Φ = Φ0 + 2αγ + λpT (1 + log( αp  )); (α is 

estimated using secant root finding method such that 

Φ(α) = 0). 
2. Update gradient: g = g + λ(1 + log(  αp  )) 

2 2 2 
x 

 

(18) + 2αv 
temp prev 

 

g T 

 

gt e m p −g T 

xp r e v 

 
gp r e v 

The above minimization is solved using the LSQR solver and 3. Update CG variables: β =   t e m p p r e v , 
0 

then the obtained solution containing negative values are thresh- 
olded to 0, as negative values do not have any physical rel- 

T 
temp 

4. u = −gT 
gtemp 

gtemp + βΦ 

evance (as optical absorption coefficient in biological tissue is end 
temp 

not negative). Eq. (17) is used to obtain the solution and then the 

negative values in the solution are thresholded. The regulariza- 

tion parameter was chosen using L-curve method (explained in 

Sec. II-C)[23]. 

 
E. Implementation Steps for Entropy Maximization 

Eq. (14) is minimized using a non-linear conjugate gradi- ent 

type method and the step-length for the conjugate gradient 

method is computed using a line search [32]. Minimization of 

the objective function in Eq. (14) with conjugate gradient re- 

quires computing the derivative and then move in independent 

perpendicular gradient direction. The derivative used in the con- 

jugate gradient scheme for the objective function in Eq. (14) is 

computed as, 

3. Update the solution: gprev = gtemp , ∆x = αp, xprev = 

xprev + ∆x 

4. Update cost, residue and gradient information: p = 

−gprev + βp, r = r + αAp , Φ0 = pT g 

end 

2. Final solution: x = xprev 
 

 

 
 

where p0 (r) is the initial pressure rise distribution and Φ(r) 
indicates the local light fluence density in mJ/cm2 . To ex- tract 

the absorption coefficient map, it is therefore critical to 

estimate the fluence in the medium imaged. Different schemes 

have been developed for estimating the fluence distribution and 

quantitatively recover optical absorption coefficient maps, in- 

 

∇Ωmaxent 

 

= 2AT (Ax − b) + λ 
 

1 + log 
 xi−1   

mi−1 

 

, 

(19) 

cluding model-based inversion schemes integrated with fluence 

compensation [33], wavelet frameworks [34], finite-element im- 

plementation of the delta-Eddington approximation to the radia- 

tive transfer equation [35], diffusion equation based regularized 

The minimization is presented in more details in the Algorithm-1 

section. The regularization parameter was chosen using an L- 

curve method (as a tradeoff between negative of entropy and 

residual). 

 
F. Fluence Correction 

The image reconstructed in Eq. (17) (LSQR) and with 

Algorithm-1 (Entropy Maximization) represents the absorbed 

energy distribution Hr (r) in tissue, which depends on the flu- ence 

distribution and the optical absorption coefficient µa (r) i.e., [20], 

x = p0 (r) = Hr (r) = µa (r)Φ(r), (20) 

t = g 



 

 

s 
′ s 

Newton method [36], or approximations with base spectra 

[37]. Herein we assumed for demonstration purposes a light 

propa- gation model based on the diffusion equation, further 

assuming that scattering dominates over absorption [38], 

which is a valid approximation for most biological tissues and 

NIR measure- ments, i.e., 

−∇.[D(r).∇Φ(r)] + µa (r)Φ(r) = S0 (r),

 (21

) 

where D(r) =         1         is the diffusion coefficient and µ
′ 
(r) 

(3(µa +µ  )) 

indicates the reduced scattering coefficient at position r. S0 (r) 

indicates the light source at the boundary of the imaging 

do- main. Eq. 21 is used for fluence estimation, and the 

diffusion 
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Fig. 1. Comparative evaluation of entropy maximization scheme with standard non-negative reconstruction using numerical simulations: (a) shows the 
absorption distribution of the used numerical breast phantom, (b) shows the fluence distribution in the imaging domain, and (c) indicates the initial 
pressure rise distribution of the numerical breast phantom. Reconstructed initial pressure rise image of numerical breast phantom using the 
(d) ℓ2 -norm based reconstruction, (e) ℓ2 -norm based reconstruction with thresholding, and (f) entropy maximization reconstruction. The negative values 
are plotted in a different colormap (d) for visualization; colormaps indicate quantitative values. 

 

equation is solved using the finite volume method (FVM). Opti- 

cal properties were based on the known phantom specifications 

or estimates of absorption and scattering coefficients of tissue 

from the literature [39]. Then, we obtained absorption coeffi- 

cient maps by normalizing the images with the corresponding 

calculated fluence distribution [40]. Since OA measurements of 

phantoms were performed in a water bath, we also employed the 

Beer-Lambert Law (OD = − log( I ) = −µa d) to model pho- 

ton propagation in water. The relative distances in phantom and 

water were assigned after segmentation of the OA images. The 

entire workflow of segmentation and fluence correction is in- 

tegrated with the proposed non-negative entropy maximization 

algorithm to render improved image quality. 

 

G. Imaging Instrumentation and Protocol(s) 

Experimental data was acquired using the MSOT scanner [41] 

(MSOT256-TF, iThera Medical GmbH, Munich, Germany). 

The boundary pressure readouts (time-series) were collected 

at 2,030 discrete time points at 40 Mega samples per second us- 

ing a 256-element cylindrically focused transducer, resulting in 

the number of measurements (M ) being 2030 × 256 = 519,680. 

The utilized piezocomposite transducer had a central frequency 

of 5 MHz with a radius of curvature of about 40 mm and an an- 

gular coverage of 270◦. Uniform illumination was achieved with 

a ring type of light delivery using laser fiber bundles. Numer- 
ical simulations were performed with the same configuration as 
MSOT256-TF system with a realistic breast phantom having 

spatially varying absorption coefficient (in cm−1 ) as shown in Fig. 

1(a). Next, we segmented the boundary of the breast re- gion in 
Fig. 1(a) and estimated the fluence distribution (shown in Fig. 
1(b)) by solving the hybrid model (Sec. II-F) with the 

absorption coefficient and reduced scattering coefficient set to 

0.2 cm−1 and 12 cm−1 respectively. The initial pressure rise (in 

kPa) was then estimated by multiplying the fluence distri- 
bution (Fig. 1(b)) with the spatially varying optical absorption 

(Fig. 1(a)), the initial pressure rise distribution (after scaling 

with acoustic parameters) is shown in Fig. 1(c). Note that we 

assumed point detector and did not model transducer charac- 

teristics in the simulations. The numerical breast phantom was 

created by using contrast enhanced magnetic resonance imag- 

ing [42]. Eq. 3 was used to model the acoustic propagation (on 

a 512 × 512 grid) and the pressure signals were collected at 

specific detector locations. The model matrix in Eq. 3 was built 

using interpolated model matrix method as explained in Ref. 

[22]. To avoid inverse crime, the simulated data was generated 

on an imaging grid of size 512 × 512, while the reconstruction 

was performed on a grid of size 256 × 256. The simulated data 
was added with additive white Gaussian noise, to result in a 

SNR of 32 dB in the simulated data. 

To verify the quantitative reconstruction capabilities of the 

proposed entropy maximization scheme, a star shaped (irregu- 

lar) phantom was created. The phantom constituted of a tissue 

mimicking (7% by volume of Intralipid and pre-computed vol- 

ume of diluted India ink added) agar core having the optical 

density of 0.25. Two tubular absorbers made up of India-ink 

with the absorption coefficient values of 2.5 OD (calibrations 

done with Ocean Optics USB 4000) were inserted in the phan- 

tom. The absorbers were placed at two different depths within 

the phantom (one at the center and the other at the edge of the 

imaging domain) to test the sensitivity of the proposed scheme 

in reconstructing the absorbers at different imaging distances 

from the sensing arrays. Under normal operating conditions, the 

fluence at the center of the imaging domain is significantly 

lower as compared to the boundary of the object imaged, ow- 

ing to the optical attenuation of the incident irradiation. Hence, 

performing fluence correction becomes indispensable to assign 

appropriated intensity to the absorber at the center of the imag- 

ing domain. 

The proposed methods were further validated on in-vivo 

mouse abdomen and brain datasets drawn from a standardized 

in-vivo murine whole body imaging database (10 mice/30 
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anatomical datasets) previously developed in Ref. [21]. The 
selected images were obtained at a laser wavelength of 760 nm 
and 800 nm, and the water (coupling medium) temperature was 

maintained at 34 ◦C for all experiments. Non-negativity based 

entropy maximization scheme was further validated using spec- 

tral measurements. Spectral measurements were acquired from 

a tumor bearing nude BALB-C mice with the laser wavelengths 

running from 680 nm to 900 nm at steps of 20 nm. All ani- 

mal experiments were conducted under supervision of trained 

technician in accordance with institutional guidelines, and with 

approval from the Government of Upper Bavaria. 

 
H. Figure of Merit 

To develop an objective approach to evaluate imaging perfor- 

mance of different reconstruction methods, we used line plots 

on the reconstructed image (from phantom and tissue measure- 

ments). We also performed quantification using sharpness met- ric, 

defined as, 
Σ 

dI 2 + dI 2 

SM  = dx dy  , (22) 
n 

The sharpness metric indicates the edges in the reconstructed 

image (I): the higher the value of SM , the sharper the recon- 

structed image. This figure of metric was used for evaluating 

the proposed method, as the non-negative constraint tend to 

introduce zeros in the reconstructed image. The number of non- 

negative values is also reported for comparing the different re- 

construction methods. Note that the number of negative pixels 

were calculated from the phantom or mice region (excluding the 

water region). 

Further root mean square error (RMSE) and peak signal 

to noise ratio (PSNR) was used to evaluate the performance 

of different reconstruction methods with numerical simulation. 

RMSE is given as, 
 Σ  

(xrecon − xtrue )2 

 

reconstructions containing negative values are indicated with a 

red colormap, hence the negative pixels in Fig. 1(d) are shown 

in red color. From the numerical simulations, it is apparent that 

the ℓ2 -norm based reconstruction produces negative values by just 

adding noise to the data and incorporating fluence effects, 

however these negative values do not appear after thresholding 

and using entropy maximization scheme as indicated by red 

arrows in Figs. 1(e) and 1(f). Furthermore ℓ2 -norm with thresh- 

olding results in a nosier reconstruction with limited structures 

compared to entropy maximization scheme as shown with red 

arrows in Figs. 1(e) and 1(f). The PSNR values for ℓ2 -norm, ℓ2 - 

norm with thresholding and entropy maximization reconstruc- 

tion are 29.9736 dB, 30.2616 dB and 30.3529 dB respectively. 

The RMSE values for ℓ2 -norm, ℓ2 -norm with thresholding and 

entropy maximization reconstructions are 0.0453, 0.0451, and 

0.0450 respectively. The number of reconstructed negative pix- 

els with ℓ2 -norm reconstruction with numerical breast phantom is 

4370. Note that the simulation studies did not model many ex- 

perimental parameters like impulse response of the transducer, 

physical dimension of the transducer, pitch of the detector, arti- 

facts arising due to reflections, and these parameters are known 

to influence the OA measurements in experimental scenarios. 

Further, we proceeded to study the performance of the pro- 

posed entropy maximization scheme with phantom and in-vivo 

datasets. 
Fig. 2 shows reconstructions of the star phantom, which re- 

veal the efficacy of the proposed method vis-a-vis traditional ℓ2 

-norm based reconstruction in generating positive values for both 

the initial pressure rise and absorption coefficient distri- bution. 

The reconstructed initial pressure rise and absorption coefficient 

distribution using the ℓ2 -norm based reconstruction is shown in 

Figs. 2(a) and 2(d) respectively. The reconstructed initial 

pressure rise and absorption coefficient distribution using the ℓ2 -

norm based reconstruction (with non-negative constraint) is 

indicated in Figs. 2(b) and 2(e) respectively. The reconstructed 

initial pressure rise and absorption coefficient distribution us- 

RMSE = 
     o o o , (23) 

NN ing the entropy maximization based approach is represented in 

is computed for comparing the performance of different algo- 

rithm. Here xtrue is the oth pixel of ground truth and xrecon is 

Figs. 2(c) and 2(f) respectively. The reconstructions containing 

negative values are indicated with a red colormap, hence the 

o o negative pixels in Figs. 2(a) and 2(d) are shown in red color. 
the oth pixel of reconstructed image. PSNR is defined as, 

 
max(xtrue ) 

 
 

The proposed entropy maximization method (Fig. 2(f)) can 

provide accurate image representation with the ability to recon- 

PSNR = 20 × log RMSE 
, (24) struct the absorber (having OD of 2.5) at the center and the edge 

The calculated sharpness metrices (for phantom and in vivo 

small animal images), and the RMSE/PSNR values (for sim- 

ulations) are given in Section III. 

 
III. RESULTS 

Fig. 1(c) shows the initial pressure distribution with the realis- 

tic numerical breast phantom used to evaluate the performance 

of different reconstruction methods. The reconstructed initial 

pressure rise distribution using the ℓ2 -norm based reconstruction 

is shown in Fig. 1(d). The solution pertaining to ℓ2 -norm based 

reconstruction (along with non-negative constraint) is indicated 

in Fig. 1(e). The reconstructed optoacoustic image using the 

entropy maximization approach is represented in Fig. 1(f). The 



 

 

of the imaging domain along with reconstructing a star shaped 

background (having OD of 0.25). The negative values 

obtained using LSQR inversion is shown as red color in Fig. 

2(a) and Fig. 2(d). The non-negative based ℓ2 -norm 

reconstruction is able to generate reconstruction results with 

positive values, but is not able to correctly reconstruct the 

internal volume of the star (tis- sue mimicking agar with 0.25 

OD) phantom which is accurately reconstructed using entropy 

maximization. Fig. 2(g) shows the photograph of the phantom 

used from front-view (FV) and top- view (TV). Fig. 2(h) 

indicates the line plot along the vertical red dashed line shown 

in Fig. 2(b). Fig. 2(i) indicates the line plot along the 

horizontal blue dashed line shown in Fig. 2(b). The sharpness 

metric and the number of non-negative values are shown in 

Table-I. The quantitative metric indicate that the 



 

 

 

 

 
 

Fig. 2. Comparative evaluation of entropy maximization scheme with standard non-negative reconstruction using phantom data. Reconstructed OA 
image of star phantom using the (a) ℓ2 -norm based reconstruction, (b) ℓ2 -norm based reconstruction with thresholding, and (c) entropy maximization 
based reconstruction. Absorption coefficient distribution after fluence correction using (d) ℓ2 -norm based reconstruction, (e) ℓ2 -norm based 
reconstruction with thresholding, and (f) entropy maximization based reconstruction; (g) shows the photograph of the phantom used; (h) line profile 
along the vertical red dashed line indicated in 2(b); (i) line profile along the horizontal blue dashed line indicated in 2(b). The negative values are 
plotted in different colormaps (a and d) for visualization; colormaps indicate quantitative values (in a.u.). 

 

TABLE I 
EVALUATION OF THE METHODS: NUMBER OF NON-NEGATIVE PIXELS AND 

SHARPNESS METRIC WITH THE ℓ2 -NORM WITH NON-NEGATIVITY 

CONSTRAINT AND PROPOSED MAXIMUM ENTROPY METHOD ON 

DIFFERENT DATASETS 

 
   

 
 

 

 

 

 
 

   
 

   

ℓ2 -NN: ℓ2 -norm Non-Negativity. 

MaxEn: Maximum Entropy. 

 

 

proposed method can provide accurate image representation. 

Fig. 2(f) and the line plots in Figs 2(h) and 2(i) demonstrate that 

the maximum entropy based scheme can deliver better contrast 

while maintaining the background intensity than the standard ℓ2 

-norm based reconstructions.The fluence correction 

was performed by using segmented (boundary) priors obtained 

automatically using deformable active contour models [43]. The 

results were corroborated with additional phantom (Agar block 

with 5% intralipid) scans which included India ink insertions 

of 3 different ODs in tissue relevant concentrations −0.15, 0.30 

and 0.45 OD at 800 nm measured using a spectrometer (VIS- 

NIR; Ocean Optics). The results demonstrate that the signal 

intensities change proportionately with the changing OD of the 

insertions, and the values are in agreement with other com- 

monly used inversion algorithm (i.e., Tikhonov). The reported 

signal intensities were obtained by taking the mean of the dif- 

ferent ROI’s indicated in Table-I of the supplementary. Addi- 

tionally, the proposed reconstruction scheme recovered higher 

(absolute) signal intensities while reducing negative values in 

reconstructed image (see supplementary Table I). 

Empirically selecting the regularization biases the reconstruc- 

tion results. Therefore an L-curve method was used to automat- 

ically choose the regularization parameter for Tikhonov method 

[23] and entropy maximization based scheme. Previous works 
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Fig. 3. L-curve method for automatically choosing the regularization parameter. (a) L-curve method for choosing the regularization parameter for 
Tikhonov based reconstruction. (b) L-curve type approach for choosing the regularization parameter in the proposed entropy maximization scheme. 

 

have used L-curve approach for automatically choosing the reg- 

ularization parameter in entropy maximization framework for 

estimating distance distributions of magnetic spin-pairs [30]. 

Fig. 3 indicates the L-curve criterion used to choose the regular- 

ization parameter (details regarding L-curve approach is given 

in Sec. II-C) as applied to star phantom OA data presented in 

Fig. 2. Similar approach was used for automatically selecting 

the regularization parameter with numerical simulations and in-

vivo data. Other methods like cross-validation can also be used 

for automatically choosing the regularization parameter in 

Tikhonov and entropy based framework [24], [29]. Further, we 

studied the effect of regularization parameter choice on re- 

construction image quality. Fig. S1 in supplementary shows 

maximum entropy reconstruction at different regularization pa- 

rameter values. It can be seen that at high regularization values, 

the solution leads to uniform distribution, however maximum 

entropy scheme seems to have a large operating range from 1 

to 10,000. 

The maximum entropy based scheme depends on the initial 

guess used in the non-linear conjugate gradient scheme. The 

maximum entropy constraint involves a non-linear logarithmic 

term, and the logarithm of a negative value is not defined, there- 

fore having a large positive value at the initial guess will always 

generates positive reconstruction distributions and thus plays 

an important role in intrinsically obtaining non-negative recon- 

struction. The same is elaborated in the Appendix-I. The recon- 

struction results corresponding to a backprojection-type initial 

guess (AT b containing negative values; AT indicates transpose 

of system matrix) is indicated in Fig. 4(a), the image shows the 

real part of the solution. The reconstruction results correspond- 

ing to the initial guess ( ||b||2     × ones(NN, 1)) is indicated in 
1 

Fig. 4(b). Fig. 4(a) clearly indicates that the negative values in 

the entropy maximization reconstructions arises because of ini- 

tial guess used in the non-linear conjugate gradient scheme i.e., 

( ||b||2  × ones(NN, 1)) gives non-negative results while AT b 
1 

results in negative values. Hence, in all the reconstructions the 

initial guess was chosen to be ( ||b||2     × ones(NN, 1)) and the 
1 

regularization parameter was chosen using the L-curve method. 

Note that reconstructions in Fig. 4 involve performing addi- 

tional fluence correction. The colormap in the case of mouse 

 

 
 

Fig. 4. Dependence of initial guess on positivity constraint with entropy 
maximization scheme. Reconstructed optoacoustic image of mouse 
brain (head scanned in-vivo) using two different initial guesses in en- 
tropy maximization algorithm. (a) AT b (-ve values exists at initial guess) 

generates negative values, and (b) ||b ||2   × ones(NN, 1) (only +ve value 
1 

exist at initial guess) yields non-negative image. The negative values are 
plotted in a different colormap in (a) for visualization, colorbars indicate 
the absorption coefficient (in a.u.). 

 
 

images are normalized to maximum and minimum values and 

the negative values are indicated in red color. 

Non-negative reconstruction generated with entropy 

maximization approach was further improved using fluence cor- 

rection method. Fig. 5(a) shows the performance of segmenta- 

tion approach in delineating the interface/boundary between the 

mice body (at the abdominal region) and water. The seg- 

mented boundary is used as a source term (after attenuation 

compensation using Beer-Lambert law in water) for modeling 

light propagation by solving the diffusion equation. Indeed, this 

boundary can be a good approximation for source term, as fiber 

bundle in the MSOT machine are arranged to provide uniform 

illumination on the sample. The fluence profile obtained after 

solving diffusion equation is shown in Fig. 5(b), the fluence was 

estimated with optical properties obtained from the literature 

[39]. Fig. 5(c) represents the initial pressure rise distribution 

reconstructed with entropy maximization approach. Fig. 5(d) 

shows the absorption coefficient distribution after normalizing 

the initial pressure distribution (Fig. 5(c)) with the estimated 

fluence profile (Fig. 5(b)). It can be clearly seen that signals 

from deeper regions on the mice gets highlighted more, similar 

approach was used for other regions of the mice. 



 

 

 

 

 
 

Fig. 5. Improved optoacoustic reconstruction with segmented priors 
based fluence correction. (a) Segmentation mask estimated using ac- 
tive contours method for separating water and mouse. (b) Fluence 
profile inside the mice region. (c) Initial pressure distribution (in a.u.) 
reconstructed using the entropy maximization approach. (d) Absorption 
coefficient distribution (in a.u.) after normalizing the initial pressure dis- 
tribution (5(c)) with fluence profile (5(b)). 

 
 

The reconstruction results (corresponding to absorption co- 

efficient distribution) pertaining to the mouse head and mouse 

abdominal regions using the standard and proposed method are 

shown in Fig. 6. The reconstruction results corresponding to 

ℓ2 -norm based scheme (solved using LSQR method) for the 

mouse head and abdominal region is indicated in Figs 6(a) and 

6(e) respectively, and the corresponding results for ℓ2 -norm based 

non-negative scheme (solved using LSQR method with 

thresholding) are given by Figs 6(b) and 6(f) respectively. The 

reconstruction results using the entropy maximization approach 

(Algorithm-1 with the integrated hybrid fluence correction) for 

the same anatomical regions is shown in Figs. 6(c) and 6(g) re- 

spectively. The experimental phantom and in-vivo reconstruc- 

tions were performed on a 200 × 200 pixel imaging domain 

which corresponds to a physical field of view of 20 mm × 
20 mm. The optical properties used for fluence estimation was 

assumed to be homogenous inside the tissue and taken from 

literature [39]. Figs 6(d) and 6(h) indicate the Fourier domain 

representation of the reconstructed images (i.e., Figs. 6(f) and 

6(g)) using L2-norm with thresholding and entropy maximiza- 

tion schemes respectively. We could clearly see that entropy 

maximization scheme (Fig. 6(h)) has more low frequency con- 

tent when compared to L2-norm with thersholding (Fig. 6(d)). 

Fig. 6(i) indicates the line plot along the red dashed line shown 

in Fig. 6(b) and Fig. 6(j) shows the line plot along the red dashed 

line indicated in Fig. 6(f). The sharpness metric and the number 

of non-negative values for these reconstructions are indicated 

in Table-I. These metrics show that the proposed method can 

provide accurate image reconstruction with lesser negative val- 

ues and increased sharpness. Negative values should not arise 

 

during standard OA data acquisition, hence the lesser the number 

of negative pixels more accurate is the reconstructions. However 

in some scenarios the presence of negative values might indi- 

cate accurate reconstruction like temperature dependent studies 

[44]. However, we are working with standard OA acquisition, 

and thus more positive values indicate accurate reconstruction. 

Again, the colormap is normalized to maximum and minimum 

values, while indicating the negative values in red color. 

Finally, we performed a study to check if entropy maximiza- 

tion scheme was able to accurately recover the spectral infor- 

mation. Fig. 7(a) shows the reconstruction results pertaining to 

a tumor bearing mice using L2-norm based scheme with thresh- 

olding at 680 nm wavelength. Fig. 7(b) shows the recovered 

mean spectral information using entropy maximization and L2- 

norm based reconstruction for the red square region shown in 

Fig. 7(a). Fig. 7(b) indicates that at wavelengths below 700 nm, 

we have appearance of negative values using L2-norm based re- 

construction. Moreover, in some parts of the image, like the one 

shown using orange arrow in Fig. 7(a), the entire recovered spec- 

tra turned out to be negative using L2-norm based reconstruction 

(however maximum entropy scheme was able to recover posi- 

tive spectral profile). Fig. 7(c) shows reconstructed mean spectra 

information using entropy maximization and L2-norm based re- 

construction from the green square region indicated in Fig. 7(a). 

As can be seen from Figs 7(b) and 7(c), the spectral recovery of 

maximum entropy scheme is similar to that of L2-norm based 

reconstruction, however the appearance of negative values in 

L2-norm based reconstruction will hinder unmixing results in 

terms of absolute quantification. 

 

IV. DISCUSSION 

The reconstruction results for the numerical simulations, 

phantom and in-vivo mouse scans indicate that the proposed 

entropy maximization scheme renders strictly positive image 

values that are also close to the a-priori known absorption val- 

ues in the phantom. Employing a segmented image prior can 

effectively reduce the aberrations in image contrast by suitably 

mapping the light propagation pathway in two optically diverse 

domains (background and tissue), and enhance the performance 

of (optical) fluence correction methods [43], as demonstrated 

in Figs 2(f) and 6(g). Moreover, when a global SoS is attribute 

to the entire imaging domain, small SoS variation causes aber- 

ration at the edge of the surfaces of the imaged object [45], 

the same two compartment model can be used to remove SoS 

mismatch. The figure of merits (Table-I), magnitude of Fourier 

spectrum from the reconstructed images, and the line plots in- 

dicate entropy maximization approach provides superior results 

in comparison with non-negativity constrained reconstructions. 

Importantly the proposed approach offers an opportunity for ex- 

ploring a family of differential type non-negative regularization 

methods (like entropy scheme). 

The entropy maximization scheme performed better with ex- 

perimental data (Figs 2 and 6) compared to numerical simulation 

(Fig. 1). This is because experimental OA measurements are 

heavily influenced by experimental factors like laser pulse 

width, transducer impulse response, pitch and size of the 



 

 

 

 

 
 

Fig. 6. Comparison of entropy maximization scheme with standard non-negative reconstruction at two different mice regions. Reconstructed 
optoacoustic images using the (a) ℓ2 -norm based reconstruction, (b) ℓ2 -norm based reconstruction with thresholding, and (c) entropy based reconstruction 
and fluence correction (using segmented prior) of murine head region; (d) represents the magnitude of Fourier domain signal for 6(f). Reconstructed 
optoacoustic images using the (e) ℓ2 -norm based reconstruction, (f) ℓ2 -norm based reconstruction with thresholding, and (g) entropy based reconstruction 
(using segmented prior) for the mouse abdominal region imaged in-vivo; (h) represents the magnitude of Fourier domain signal for 6(g); (i) line 
profile along the red dashed line indicated in 6(b); (j) line profile along the red dashed line indicated in 6(f). The negative values appearing in ℓ2 -norm 
based reconstruction scheme (a) and (e) are plotted in a different colormap (negative values marked in red) for visualization; colorbars indicate the 
initial pressure rise (in a.u.). An eight-week-old nude mice (CD-1 Nude, Charles River Laboratories, Germany) was imaged at wavelengths of 760 
nm (brain) and 800 nm (abdomen). The negative values (if present in the reconstructed image) are marked with a different colormap. 

 
 

 

 

Fig. 7. Comparison of entropy maximization scheme with standard L2-norm based reconstruction in terms of accurate spectral recovery. 
(a) Optoacoustic reconstruction using ℓ2 -norm based reconstruction with thresholding. (b) Mean spectra shown for the region shown using red block in 
(a). (c) Mean spectra shown for the region shown using green block in (a). An eight-week-old nude mice (CD-1 Nude, Charles River Laboratories, 
Germany) bearing a subcutaneous tumor was imaged at wavelengths of 680 nm to 900 nm in steps of 20 nm. 
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transducer, making the reconstruction problem with experimen- 

tal OA measurements more challenging. From Figs 2 and 6, it 

can be observed that the presence of negative pixels is higher in 

water region and in the center of imaging domain, where the ab- 

sorption/the fluence is low resulting in lower SNR in time-series 

OA measurements. Similarly, introduction of noise and fluence 

effects in simulation studies (Fig. 1) results in large number 

of negative values in regions where the initial pressure rise is 

close to 0 and also generating spurious negative values inside 

the numerical breast phantom. 

In recent studies, lot of emphasis has been placed on using ℓ1 

-norm based minimizations for performing OA tomographic 

image reconstruction in different frameworks [11], [15], [46]. 

We have performed ℓ1 -norm based reconstruction as explained 

in [47] and the results pertaining to non-negativity constraint 

in the ℓ1 -norm minimization is shown in Fig. S2. Fig. S2 also 

shows the performance comparison of ℓ1 -norm minimization with 

entropy maximization and Tikhonov reconstruction with 

printed phantom data. We observe that applying a ℓ1 -norm con- 

straint does not afflict the appearance of negative values and the 

reconstruction performance is similar to ℓ2 -norm based scheme 

in terms of reducing negative values. This also demonstrates 

the superiority of using entropy maximization to generate phys- 

ically relevant OA reconstructions devoid of negative values. 

We have not taken up further comparisons with ℓ1 -norm based 

approach, as our goal was to demonstrate the utility of entropy 

maximization approach to overcome appearance of pixels with 

negative values. 

Entropy maximization scheme was evaluated with biologi- 

cal datasets acquired from 270◦ detection angle wherein the 

acquired dataset consists of highly independent (incoherent) 
data. While recent developments involve building systems with 

handheld probes (90◦ three-dimensional acquisition, or 145◦ 
two-dimensional acquisition) with different data-collection ge- 

ometry. Performing accurate reconstructions with these clinical 

handheld systems tend to be difficult due to acquisition of lim- 

ited independent data. Evaluating the performance of the entropy 

 

In this work, we have shown that entropy maximization is 

able to accurately recover the spectral information compared 

to L2-norm based reconstruction (see Fig. 7). However, the 

ability to resolve intrinsic chromophores like oxyhemoglobin, 

deoxyhemoglobin, fat, and water by acquiring data at multiple 

wavelengths is a key benefit of multispectral OA imaging. The 

unmixing of chromophores is achieved by a solving system of 

linear equations (direct or non-negatively constrained), or by 

non-linear unmixing using an integrated fluence correction. All 

of these approaches use thresholding of negative values, making 

them suboptimal and error prone. On the other hand, entropy 

maximization can purge out the inaccuracies occurring from 

truncated pixel information, potentially improving the perfor- 

mance of unmixing and image analysis algorithms. Therefore, 

the future work will involve comparing the different combina- 

tion of reconstruction (acoustic inverse problem) and unmixing 

with different solvers like LSQR, non-negative LSQR and en- 

tropy maximization to bring out value among these schemes. 

 

V. CONCLUSION 

The proposed maximum entropy based OA image reconstruc- 

tion scheme demonstrates superior reconstruction performance 

with no visible distortion of anatomical structures associated 

with delivering of non-negative pixel values. Entropy maxi- 

mization reconstruction thus tends to be physically relevant and 

more accurate in resolving the structures (as demonstrated with 

numerical simulation, experimental phantoms and in-vivo case) 

in an imaged sample. The developed methodology has the po- 

tential to emerge as a suitable data processing tool for OA imag- 

ing, and specifically benefiting pre-clinical biomedical [50] and 

translational imaging [51]. 

 
APPENDIX A 

IMPLICIT NON-NEGATIVITY USING ENTROPY MAXIMIZATION 

The objective function in the entropy maximization scheme 

is given as, 

scheme with the limited independent data scenarios can enable 

utility of OA imaging in different clinical scenarios [48]. 
Ω = ||Ax − b||2 + λxT log 

  x   
 

 

m 
(25) 

The proposed method preserves the structural integrity (nu- The gradient of the above equation can be written as, 

merical breast phantom and star phantom) and the anatomical 

structures (mouse data), and was successful in correcting the ∂ Ω 
= AT  (Ax − b) + λ 

 
1 + log 

  x    
 

 

 
= 0 (26) 

effects of variations in optical fluence. As part of future work, ∂x m 

we aim to integrate the entropy maximization with more ac- 

curate light propagation modeling (such as Monte Carlo based 

schemes) to obtain better representation of the absorption coef- 

ficient with the reconstruction process accelerated by means of 

graphics processing units [49]. In this work, we demonstrated a 

non-negative image reconstruction method with improved im- 

age quality using fluence correction step at single acquisition 

wavelength. Translating the same to multi-wavelength scenario 

for estimation of quantitative tissue parameters is a fairly com- 

plex problem, since the optical properties used for fluence es- 

Now, we can consider the above minimization problem as min- 
imizing two models in the subspace, one is based on residual 

i.e., Res = ||Ax − b||2 and the other being relative entropy i.e., 

Ent = 
Σ 

x log 
   x  

  

. 
2 

the regularization parameter defines 

the proportion of residual and entropy term in this minimization 

problem. As in any optimization, the solution is always found 

using the search directions (these search directions are defined 

by the gradients). The update equation at ith gradient iteration 

will turn out to be, 
    

∂Ω 
timation varies nonlinearly with wavelength and is not known 
beforehand. Combining these problems will lead to generation 

xi = xi−1 − α ∂x    xi −1 

(27) 



 

 

of infinite possible ways to obtain accurate spatio-spectral rep- 

resentation, and such spectral analysis methods are beyond the 

scope of the current study. 

where α is the step length estimated using line search method 

and is always non-negative. As xi−1 → 0, ∇Ent → −∞ , the 

gradient update will be pushed to a very low value using entropy 



 

 

∂x  

 

constraint. Also note that as, xi−1 → 0, ∇Ent will reach −∞ 

faster, and the ∇Res → −AT b; importantly ∇Res cannot reach ∞ as fast as ∇Ent → −∞ to nullify the effect of entropy term, 

 
[17] J. Tang and A. Rahmim, “Anatomy assisted PET image reconstruction 

incorporating multi-resolution joint entropy,” Phys. Med. Biol., vol. 60, 
no. 1, 2014, Art. no. 3148. 

therefore the overall gradient will be negative i.e.,
 ∂ Ω 

 
 xi −1    

→
 

[18] J. Skilling and R. K. Bryan, “Maximum entropy image reconstruction - 
general algorithm,” Monthly Notice Roy. Astron. Soc., vol. 211, p. 111, 

−ve. In any gradient descent method, we traverse in the direc- 

tion perpendicular to the gradient, therefore the solution will be 
pushed away from zero to have high positive value, i.e., as 

xi−1 → 0, xi → +ve. Hence, using the entropy constraint will 

enable the solution to move away from zero and leading to posi- 

tive real numbers. Since, a natural barrier is created by including 

the entropy constraint into the optimization framework, this bar- 

rier will not allow the solution to take negative values and con- 

sequently positive OA reconstructions are generated. In order to 

converge to positive OA reconstructions, we need to start with a 

large positive initial guess i.e., when x0 → IR+ then ∇Res → 

AT Ax0 and ∇Ent → IR+ . Further, using a step-length control 

i.e., α = min (−∇Ω (xi−1 ))T ∇Ω (xi−1 − α∇Ω (xi−1 )) will 
ensure positive OA reconstructions, because the choice of α 

(estimated using secant method) would ensure positive solution 

in next iteration xi = xi−1 − α∇Ω (xi−1 ). 
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