
Radiotherapy and Oncology 178 (2023) 109425
Contents lists available at ScienceDirect

Radiotherapy and Oncology

journal homepage: www.thegreenjournal .com
Original Article
Development and external validation of an MRI-based neural network
for brain metastasis segmentation in the AURORA multicenter study
https://doi.org/10.1016/j.radonc.2022.11.014
0167-8140/� 2023 The Authors. Published by Elsevier B.V.

⇑ Corresponding author at: Klinik und Poliklinik für RadioOnkologie und
Strahlentherapie, Klinikum rechts der Isar, Technische Universität München
(TUM), Ismaninger Str. 22, 81675 München, Germany.

E-mail address: j.buchner@tum.de (J.A. Buchner).
1 Shared Authorships.
Josef A. Buchner a,1,⇑, Florian Kofler b,c,d,e,1, Lucas Etzel a,f, Michael Mayinger g, Sebastian M. Christ g,
Thomas B. Brunner h, Andrea Wittig i, Björn Menze b, Claus Zimmer c, Bernhard Meyer j,
Matthias Guckenberger g, Nicolaus Andratschke g, Rami A. El Shafie k,l,m, Jürgen Debus k,l, Susanne Rogers n,
Oliver Riesterer n, Katrin Schulze o, Horst J. Feldmann o, Oliver Blanck p, Constantinos Zamboglou q,r,s,
Konstantinos Ferentinos s, Robert Wolff t,u, Kerstin A. Eitz a,f,v, Stephanie E. Combs a,f,v, Denise Bernhardt a,f,
Benedikt Wiestler c,d,1, Jan C. Peeken a,f,v,1

aDepartment of Radiation Oncology, Klinikum rechts der Isar; bDepartment of Informatics; cDepartment of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar;
d TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich; eHelmholtz AI, Helmholtz Zentrum Munich; fDeutsches Konsortium für
Translationale Krebsforschung (DKTK), Partner Site Munich, Munich, Germany; gDepartment of Radiation Oncology, University Hospital of Zurich, University of Zurich, Zurich,
Switzerland; hDepartment of Radiation Oncology, University Hospital Magdeburg, Magdeburg; iDepartment of Radiotherapy and Radiation Oncology, University Hospital Jena,
Friedrich-Schiller University, Jena; jDepartment of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Munich; kDepartment of Radiation Oncology, Heidelberg
University Hospital; lHeidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg; mDepartment of Radiation Oncology, University
Medical Center Göttingen, Göttingen, Germany; nRadiation Oncology Center KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland; oDepartment of Radiation Oncology, General Hospital
Fulda, Fulda; pDepartment of Radiation Oncology, University Medical Center Schleswig Holstein, Kiel; qDepartment of Radiation Oncology, University of Freiburg - Medical Center;
rGerman Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany; sDepartment of Radiation Oncology, German Oncology Center, European University of Cyprus,
Limassol, Cyprus; t Saphir Radiosurgery Center Frankfurt and Northern Germany, Guestrow; uDepartment of Neurosurgery, University Hospital Frankfurt, Frankfurt; and v Institute of
Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Center Munich, Munich, Germany

a r t i c l e i n f o a b s t r a c t
Article history:
Received 29 September 2022
Received in revised form 17 November 2022
Accepted 18 November 2022
Available online 26 November 2022

Keywords:
Brain metastasis
Neural network
Stereotactic radiotherapy
MRI
External testing
Background: Stereotactic radiotherapy is a standard treatment option for patients with brain metastases.
The planning target volume is based on gross tumor volume (GTV) segmentation. The aim of this work is
to develop and validate a neural network for automatic GTV segmentation to accelerate clinical daily rou-
tine practice and minimize interobserver variability.
Methods: We analyzed MRIs (T1-weighted sequence ± contrast-enhancement, T2-weighted sequence,
and FLAIR sequence) from 348 patients with at least one brain metastasis from different cancer primaries
treated in six centers. To generate reference segmentations, all GTVs and the FLAIR hyperintense edema-
tous regions were segmented manually. A 3D-U-Net was trained on a cohort of 260 patients from two
centers to segment the GTV and the surrounding FLAIR hyperintense region. During training varying
degrees of data augmentation were applied. Model validation was performed using an independent inter-
national multicenter test cohort (n = 88) including four centers.
Results: Our proposed U-Net reached a mean overall Dice similarity coefficient (DSC) of 0.92 ± 0.08 and a
mean individual metastasis-wise DSC of 0.89 ± 0.11 in the external test cohort for GTV segmentation.
Data augmentation improved the segmentation performance significantly. Detection of brain metastases
was effective with a mean F1-Score of 0.93 ± 0.16. The model performance was stable independent of the
center (p = 0.3). There was no correlation between metastasis volume and DSC (Pearson correlation coef-
ficient 0.07).
Conclusion: Reliable automated segmentation of brain metastases with neural networks is possible and
may support radiotherapy planning by providing more objective GTV definitions.

� 2023 The Authors. Published by Elsevier B.V. Radiotherapy and Oncology 178 (2023) 109425
Brain metastases (BMs) are the most frequent type of brain
tumor affecting approximately 25% of patients with cancer as
shown in autopsy studies [1,2]. An effective treatment for patients
with a limited number of BMs is stereotactic radiotherapy (SRT)
[3,4]. In preparation and planning of the SRT, precise segmentation
of the BMs in magnetic resonance imaging (MRI) is of utmost
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importance [5]. Manual segmentation of BMs is a time-consuming
task in the daily clinical routine and prone to inter-observer vari-
ability [6]. Therefore, a tool for fast and reliable segmentation of
BMs is needed.

As a possible solution to this problem, the automatic analysis of
imaging data offers great potential and has been successfully
applied in primary brain tumors [7]. This can be attributed in part
to the development of new neural network architectures like the
3D U-Net [8]. Furthermore, the required computing power is
widely available nowadays and neural networks for image seg-
mentation can be run on recent consumer-grade hardware.

Recently, multiple authors have demonstrated that the quanti-
tative analyses of MRI studies of BMs as well as primary tumors
paired with machine learning prediction models (‘‘radiomics”)
may provide valuable information regarding prognosis, grade, or
histological properties [9–12]. To allow for radiomic analysis, seg-
mentation of the BMs as the volume of interest is necessary. An
automized segmentation approach provides the benefits of better
reproducibility independent of the operator.

Most published approaches focused on the detection, analysis,
and segmentation of the contrast-enhancing metastasis itself.
According to Priya et al. however, the most important radiomic fea-
tures for differentiating glioblastoma from BMs were extracted
from both the whole tumor segmentation and the edema segmen-
tation [13]. Another study by Cao et al. concluded that valuable
information is held within the peritumoral edema area [14]. There-
fore, the segmentation of peritumoral edema complementary to
the contrast-enhancing BM may be useful for further analysis of
radiomic features.

MRI is an important tool in the diagnosis of BMs. Unlike the inten-
sity values on computed tomography (CT) scans, which are made
comparable using the Hounsfield Scale, the intensities on MRIs are
non-standardized. They are, among other factors, dependent on the
manufacturer and model of the specific MRI scanner [15]. Because
of that, multicentric datasets created using different MRI scanners
are needed to train reproducible and generalizable models.

The goal of this project is to train a neural network on the exact
automatic segmentation of BMs as well as their surrounding
edema and subsequently validate the network using a multicentric
external test cohort. The automatically created segmentations
could then not only be used for radiation treatment planning, but
also as a basis for future radiomics models.
Materials and methods

AURORA study

The data was collected within A Multicenter Analysis of Stereo-
tactic Radiotherapy to the Resection Cavity of Brain Metastases (AUR-
ORA) retrospective trial by the ‘‘Radiosurgery and Stereotactic
Radiotherapy Working Group” of the German Society for Radiation
Oncology (DEGRO). The inclusion criteria were: known primary
tumor, resected BM, and SRT with a radiation dose of > 5 Gy per
fraction. Exclusion criteria were: any previous cranial radiation
therapy (RT), interval between surgery and RT > 100 days, and pre-
mature discontinuation of RT. Synchronous non-resected BMs
were allowed but had to be treated simultaneously with SRT.
Approval from the ethic committees was received at each institu-
tion (main approval at Technical University of Munich: 119/19 S-
SR). While the trial is focusing on the postoperative situation, we
only analyzed the preoperative imaging.
Data set

In total, we received imaging data from 453 patients from six
different centers (FD: General Hospital Fulda, FFM: Saphir Radio-
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chirurgie/University Hospital Frankfurt, HD: Heidelberg University
Hospital, KSA: Kantonsspital Aarau, TUM: Klinikum rechts der Isar
of the Technical University of Munich, USZ: University Hospital of
Zurich) in three different countries. All patients received surgical
resection of at least one BM. Pre-operative MRIs were analyzed.
For further analysis, four sequences were selected, which are
included in the currently recommended brain tumor MRI protocol
[16]. These include a T1-weighted sequence without (T1) and with
contrast enhancement (T1-CE), as well as a T2-weighted sequence
(T2) and a T2 fluid-attenuated inversion recovery (T2-FLAIR)
sequence. If the T1-CE sequence was missing, the patient was
excluded. This is because the missing information about contrast
enhancement cannot be reliably synthesized from the remaining
sequences. The patient was also excluded if more than one
sequence was missing. Of the 453 patients, 348 (77%) had the
required minimum number of 3 sequences in sufficient quality
available and were included.

MRI acquisition parameters are listed in Supplementary Table 1.
In total, 28 different MRI scanner models were used to acquire the
imaging data. The scanners are listed in Supplementary Table 2.

The patients were divided into a training cohort consisting of
260 patients from two centers and a multicentric external test
cohort consisting of 88 patients from the remaining four centers.
Data preprocessing

The data was preprocessed using BraTS-Toolkit [17] imple-
menting rigid registrations with niftyreg [18]. First, the MRI
sequences were rigidly co-registered and transformed into the
T1-CE space. To anonymize the patients, a brain mask was created
by skull stripping the T1-CE with HD-BET [19]. Subsequently, the
mask as well as all volumes in the T1-CE space were transformed
to BraTS space using the SRI-24 atlas [20] and the mask was
applied to all available sequences. The SRI-24 atlas was created
using 24 adult control subjects and therefore represents normal
brain anatomy. This yielded co-registered, skull-stripped
sequences in a 1-millimeter isotropic resolution in BraTS space.

In total, 140 missing sequences were synthesized using a gener-
ative adversarial network (GAN) [21], originally developed for syn-
thesizing missing sequences from glioma imaging. Therefore, the
existing three sequences were fed to the GAN to generate the
fourth missing sequence. In the training and test cohorts, one
sequence was missing in 127 (49%) and 13 (15%) patients, respec-
tively. The synthetic sequences successfully passed visual
inspection.
Annotation

We manually segmented two classes using the open-source
software 3D Slicer (Version 4.13.0, stable release, https://www.sli-
cer.org/) [22]. First, the metastasis itself comprising the contrast-
enhancing metastasis and necrosis, and second, the surrounding
T2-FLAIR hyperintense edematous region were segmented. The
images were annotated by a doctoral student (JAB) after undergo-
ing extensive training by an expert radiation oncologist (JCP). To
ensure a high segmentation quality, the segmentations of the test
cohort were additionally checked and manually adapted by a
board-certified trained radiation oncologist (JCP, 6 years of
experience).
Intra-observer and inter-observer reliability

For comparison with real-life results, we randomly selected ten
cases. For the computation of intra-observer reliability, these cases
were segmented a second time by JAB. In addition, to calculate
inter-observer reliability, a resident radiation oncologist (LE) seg-
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mented the same ten cases. Annotation similarity was assessed
using the Dice similarity coefficient (DSC).
Neural network training

A basic U-Net architecture inspired by Falk et al [23] imple-
mented via MONAI [24] was used for all training runs. This imple-
mentation represents a standard U-Net architecture with an
encoder and decoder connected by skip connections. However,
unlike the original U-Net suggested by Ronneberger [25], our
model features 3D convolutions.

The 3D network features four input channels, a dropout of 0.1
and employs mish as an activation function [26]. Apart from that,
we used the default parameters of the implementation [27]. We
selected the last checkpoint after 500 epochs of training with
AdamW optimizer using an initial learning rate of 10�3 [28].

We trained with a batch size of six on three random cuboid-
shaped samples with 192 � 192 � 32 dimensions per batch ele-
ment. The input images were normalized on a channel basis with
a percentile-based normalization applying to the 0.5 and the 99.5
percentile. This resulted in voxel intensities between 0.0 and 1.0.
Inspired by BraTS segmentation networks [29], the networks were
trained on two label channels. The first channel united both anno-
tations, meaning the enhancing metastasis plus necrosis, as well as
the edema. The second channel consisted only of the enhancing
metastasis plus necrosis label. To obtain binary segmentations,
the network outputs were thresholded at 0.5. The edema label
was computed by subtracting the second from the first output
channel. This way we ensured gapless segmentations.

An equally weighted SOFT DICE + Binary Cross Entropy (BCE)
loss also used by Isensee et al. served as loss function for our train-
ing runs [30].

We compared three different training conditions: none, basic,
and extensive, where we varied the amount of training augmenta-
tions. The basic condition implemented spatial flips, Gaussian
noise, and random affine transformations, while the none condition
omitted augmentation completely. In contrast, the extensive condi-
tion featured random elastic transformations and employed batch
generators [31] for standard imaging augmentations such as
gamma, brightness, contrast variations, and blurring. Furthermore,
Table 1
Cohort demographics:

Training-Cohort

Characteristic Overall, N = 260a TUM, N = 170a USZ, N = 90

Sex
F 127 (49%) 85 (50%) 42 (47%)
M 133 (51%) 85 (50%) 48 (53%)

Age at RT start 62 (53, 71) 62 (53, 71) 62 (54, 69)
Primary Diagnosis
NSCLC 94 (36%) 38 (22%) 56 (62%)
SCLC 1 (0.4%) 0 (0%) 1 (1.1%)
Melanoma 47 (18%) 24 (14%) 23 (26%)
RCC 11 (4.2%) 9 (5.3%) 2 (2.2%)
Breast 35 (13%) 34 (20%) 1 (1.1%)
GI 26 (10%) 26 (15%) 0 (0%)
Other 46 (18%) 39 (23%) 7 (7.8%)

Number of brain metastases 1.40 ± 0.72 1.33 ± 0.69 1.53 ± 0.77
Total brain tumor burden (ml) 11 (5, 21) 10 (5, 20) 12 (7, 23)

The median age in both cohorts was similar (p = 0.3). We differentiated between seven dif
(SCLC), melanoma, renal cell carcinoma (RCC), breast cancer, gastrointestinal cancer (GI
cohort. The number of BMs as well as the total brain tumor burden was similar in both
Abbreviations:
FD: General Hospital Fulda, FFM: Saphir Radiochirurgie/ University Hospital Frankfurt, H
der Isar Technical University Munich, USZ: University Hospital of Zurich.

a n (%); Median (IQR); Mean ± SD.
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MRI-specific imaging artifacts such as spikes, ghosting, motion, and
bias fields were simulated with TorchIO [32].

Additionally, for all three conditions, we explored the added
value of introducing test time augmentations (TTA), which
improved results in similar tasks, such as glioma segmentation
[33]. We integrated TTA in the form of spatial flips and subtle
Gaussian noise to create 13 variations of the original input data.

Our experiments were conducted on a workstation equipped
with an Intel 9940X CPU in combination with two NVIDIA RTX
8000 GPUs using CUDA version 11.3 in conjunction with Pytorch
version 1.11.0 and MONAI version 0.8.1. The final model can be
accessed under this link: https://github.com/neuronflow/AURORA.
Metrics

All volumetric segmentation metrics were computed with
pymia [34]. The connected component analysis for counting metas-
tases was implemented with connected-components-3d [35]. This
approach distinguishes instances of metastasis based on spatial
proximity. Consequently, neighboring voxels were counted as
coherent structures. To compute the individual metastasis detec-
tion metrics F1-score (F1), lesion sensitivity (LS), and lesion preci-
sion (LP) we use a proven pipeline from Pan et al [36]. A lesion was
determined as correctly detected if there was any overlap between
the manual segmentation and the output of our neural network. To
assess volumetric segmentation performance, the DSC, surface DSC
and Hausdorff distance are reported [37]. If not otherwise speci-
fied, the segmentation metrics were derived from all segmented
BMs. To determine the influence of metastasis size on the volumet-
ric DSC we calculated the Pearson correlation coefficient.
Results

Patient demographics and the number and size of BMs were
similar between both cohorts (Table 1). In both cohorts, around
one-quarter of patients had multiple metastases: In the training
cohort, 78 patients (30%) had up to five BMs. In the test cohort,
up to six BMs were found in 21 patients (24%). We segmented
364 and 121 BMs in the training and test cohort, respectively.
Test-Cohort

a Overall, N = 88a FD, N = 6a FFM, N = 13a HD, N = 44a KSA, N = 25a

48 (55%) 2 (33%) 8 (62%) 25 (57%) 13 (52%)
40 (45%) 4 (67%) 5 (38%) 19 (43%) 12 (48%)
62 (54, 67) 62 (57, 64) 59 (53, 66) 61 (54, 65) 63 (54, 70)

42 (48%) 4 (67%) 7 (54%) 19 (43%) 12 (48%)
1 (1.1%) 0 (0%) 0 (0%) 0 (0%) 1 (4.0%)
9 (10%) 1 (17%) 1 (7.7%) 2 (4.5%) 5 (20%)
6 (6.8%) 0 (0%) 1 (7.7%) 3 (6.8%) 2 (8.0%)
15 (17%) 0 (0%) 4 (31%) 9 (20%) 2 (8.0%)
7 (8.0%) 0 (0%) 0 (0%) 5 (11%) 2 (8.0%)
8 (9.1%) 1 (17%) 0 (0%) 6 (14%) 1 (4.0%)
1.38 ± 0.88 1.00 ± 0.00 2.00 ± 1.63 1.25 ± 0.61 1.36 ± 0.70
13 (5, 23) 32 (14, 47) 17 (8, 23) 9 (4, 15) 14 (6, 33)

ferent histologies: non-small cell lung carcinoma (NSCLC), small-cell lung carcinoma
), and others. All seven histologies were present in the training as well as the test
cohorts (p = 0.4 and 0.7, Pearson’s Chi-squared test and Wilcoxon rank sum test).

D: Heidelberg University Hospital, KSA: Kantonsspital Aarau, TUM: Klinikum rechts

https://github.com/neuronflow/AURORA
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There was a trend for a significantly different histology distribution
(p = 0.08, two-sided Fisher’s Exact test).

Fig. 1 shows an exemplary segmentation created by our neural
network.

Table 2, Figs. 2 and 3 and Supplementary Table 3 summarize the
results of our model evaluation. Regardless of the level of augmen-
tation, the use of TTA did not significantly impact the volumetric
segmentation or individual metastasis detection results as seen
in Supplementary Table 3. For further analysis of the influence of
augmentation during training, we only compared the networks
tested with TTA.
Fig. 1. Example for automatic segmentation by our proposed neural network: Exampl
full view as well as a zoomed in view of the T1-CE on the left and the T2-FLAIR on the ri
created by our proposed neural network.

Table 2
Volumetric and instance-based segmentation performance:

Augmentation Label DSC Surface-Dice

none metastasis 0.827 ± 0.231 0.817 ± 0.267
none edema 0.869 ± 0.176 0.871 ± 0.153
basic metastasis 0.916 ± 0.079 0.907 ± 0.150
basic edema 0.909 ± 0.094 0.913 ± 0.111
extensive metastasis 0.922 ± 0.073 0.922 ± 0.140
extensive edema 0.910 ± 0.083 0.913 ± 0.099

We report the mean and standard deviation of Dice similarity coefficient (DSC), Surfa
precision (LP) for variations of augmentation on each segmented label. The best overall
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Using any amount of augmentation during training significantly
improved the volumetric results: the mean DSC for the metastasis
label increased from 0.83 achieved by the model trained without
augmentation to 0.92, regardless of which level of augmentation
was used (p < 0.001, Wilcoxon rank sum test). There was no signif-
icant difference in DSC or Surface-Dice between the models trained
with basic and extensive augmentation (p > 0.9). The DSC for the
edema label increased similarly by using augmentation during
training. While the network without augmentation reached a mean
DSC of 0.87, the networks with augmentation both reached a mean
DSC of 0.91 for the edema label.
e of a patient with 2 metastases in total (only one is shown here, volume: 1.9 cm3). A
ght is shown. The segmentation of the metastasis in red and the edema in blue was

HD F1 LS LP

NA 0.878 ± 0.224 0.895 ± 0.232 0.938 ± 0.189
46.0 ± 40.0
11.8 ± 21.0 0.928 ± 0.161 0.980 ± 0.081 0.919 ± 0.211
17.7 ± 21.9
25.0 ± 33.1 0.863 ± 0.200 0.975 ± 0.097 0.827 ± 0.266
25.8 ± 27.7

ce-Dice, Hausdorff distance (HD), F1-Score (F1), lesion sensitivity (LS) and lesion
performance was seen in the model trained with basic augmentation.



Fig. 2. Performance and augmentation: Using any amount of augmentation during training significantly improved volumetric segmentation performance. There was no
significant difference in mean Dice similarity coefficient (DSC) between models trained with basic or extensive augmentation. The model trained with extensive
augmentation seemed to achieve a lower interquartile range.

Fig. 3. Performance across the four different centers of the test set: Our proposed model provided a stable performance regardless of the center as shown by the
consistently high Dice similarity coefficient (DSC) across all four locations included in our external test cohort. There was no statistically significant relationship between the
center and DSC (p = 0.3, Kruskal–Wallis test).

J.A. Buchner, F. Kofler, L. Etzel et al. Radiotherapy and Oncology 178 (2023) 109425
Analysis of the individual metastasis detection performance
showed that the basic model was able to outperform the extensive
model in mean lesion precision and mean F1-Score with signifi-
cantly better results of 0.92 and 0.93 compared to 0.83 and 0.86
(p = 0.007 and 0.013). Both models reached a mean lesion sensitiv-
ity of 0.98 (p > 0.9). The proposed model was able to generalize, as
indicated by consistently high performance across different centers
of our test set (see Fig. 3). Based on these metrics, we found that for
our test cohort, the model trained with basic augmentation and
tested with TTA performed the best.

Comparing the volumetric segmentations of our two raters
resulted in a mean intra-observer DSC of 0.95 and a mean inter-
observer DSC of 0.94.

In our test set, 13 patients had only three sequences present. In
nine cases, the T2 sequence and in four cases, the T2-FLAIR
sequence was missing. The mean volumetric DSC in patients with
one sequence missing was 0.89 compared to 0.92 in patients with
all four sequences present (p = 0.082).
5

To simulate an exemplary use in everyday clinical practice, we
manually measured the individual metastasis-wise DSC and size of
all segmented BMs (true positives) while leaving out false positive
lesions. In total, 115 of 121 BMs with a median size of 7.29 cm3

were found. The mean metastasis-wise DSC was 0.89. Fig. 4 shows
the relationship between metastasis size and DSC. The segmenta-
tion performance was independent of metastasis size with a Pear-
son correlation coefficient of 0.07.
Discussion

We developed a neural network-based segmentation algorithm
for BMs and their surrounding edema. The neural networks were
evaluated in a multicentric and international external test cohort
consisting of four centers. The model trained with basic augmenta-
tion and tested with TTA showed the best performance with a
mean volumetric DSC of 0.92 for the metastasis label and a mean



Fig. 4. Segmentation performance depending on the metastasis size:We report the individual metastasis-wise Dice similarity coefficient (DSC) and brain metastasis (BM)
size of the metastases segmented by our proposed model. The volumetric performance was independent of BM size with a Pearson correlation coefficient of 0.07. The
increased variation in small BMs can be attributed to the high proportion of edge voxels.

Automatic brain metastasis segmentation in the AURORA multicenter study
F1-Score of 0.93. The model is thus able to generalize well in a mul-
ticentric test cohort, an important prerequisite for clinical deploy-
ment. Also, the performance was independent of metastasis size.
We furthermore showed that synthesizing missing sequences with
a GAN has only a small, non-significant impact on segmentation
performance, further advocating the broad availability of our
model in clinical practice, where missing (or motion-corrupted)
sequences are common. The performance of our proposed model
was comparable to that achieved within the intra- and inter-
observer comparisons. Therefore, the quality of segmentation
was equivalent to that achieved in everyday clinical practice.

As the segmentation of a single BM takes less than a minute
using recent consumer-grade hardware, automated segmentation
of BMs with our proposed network can lead to a considerable
acceleration of processes in the clinical routine.

Furthermore, exact segmentation is not only needed for SRT of
small BMs, but can also be useful for subsequent automatic analy-
sis of metastases of all sizes using radiomics analysis. Through the
standardized segmentation process, the reproducibility of radiomic
features may be improved.

Multiple other publications have reported deep learning-based
algorithms for BM segmentation [38–44]. Most of them were
monocentric studies without external testing. They reported DSC
values between 0.55 and 0.85. To assess the true value of detection
and segmentation performance and to prove generalizability of the
proposed models external validation is necessary. So far, one
recent study by Pflüger and colleagues developed a BMs segmenta-
tion tool and externally validated it in a monocentric test cohort of
30 patients from a different hospital, which is, however, part of the
same university [45]. The test set was limited to patients with lung
cancer. Their algorithm achieved an overall (case-specific) median
DSC of 0.84, which is slightly inferior to our testing result (median
DSC 0.94, mean DSC 0.92). With an individual metastasis-wise DSC
of 0.79 however, the segmentation performance was even lower
compared with our testing results (median metastasis-wise DSC
0.94, mean metastasis-wise DSC 0.89). The authors demonstrated
a strong influence of volume on segmentation performance. Their
datasets had significantly smaller mean volumes with a mean vol-
ume of 1.24 cm3 (ours: 7.3 cm3). The large influence of a few voxels
on segmentation performance in small metastases may explain the
lower individual metastasis-wise DSC in the study by Pflüger et al.
6

[45] and the large differences between mean and median DSC val-
ues observed in our study. In terms of metastasis detection perfor-
mance, sensitivity (median 0.85) and precision (median 0.76) were
also lower compared with our results (median 1 and 1; mean 0.98
and 0.92, respectively). Our results remain in the range of the two
largest internally validated studies with 934 and 1652 patients,
which achieved mean volumetric DSCs between 0.81 and 0.84
and sensitivity values between 0.88 and 0.95 [46,47].

Whilst we focused on basic MRI sequences, other authors have
developed their models based on Black Blood sequences [48,49]
and achieved similar performance metrics, with a metastasis
detection sensitivity of 0.92 to 0.93 and a DSC of 0.82 in internal
validation. Others have focused on single oncological disease enti-
ties such as melanoma [50] or non-small-cell lung cancer [51].
They were not able to greatly improve the volumetric segmenta-
tion or metastasis detection metrics in internal validation (DSC:
0.72–0.75, metastasis detection sensitivity: 0.85–0.88) compared
with similar studies focusing on multiple entities.

There are several limitations to this work: As main inclusion cri-
teria of the multicentric patient cohort at least one metastasis was
surgically resected. As a consequence, the GTVs of the metastases
that were used for training were actually never used for treatment
planning. Therefore, our median metastasis volume of 7.3 cm3 was
relatively large compared to the volume used in other studies of
patients that received primary RT. We, thus, show a proof of con-
cept on the segmentation on large BMs. While symptomatic large
BMs are often surgically resected, asymptomatic large BMs can also
be treated via SRT and are well represented by the BM size range
included in the training cohort. In addition to the resected BMs,
additional small metastases were present in around 25% of
patients. Hence, our neural network showed a consistently high
performance with no correlation to metastasis size as seen in
Fig. 4. This may improve the transferability to BM that receive pri-
mary RT. The reference segmentations were all made by the same
person. For this reason, the neural network has adopted the per-
sonal segmentation style of this person. To still ensure more objec-
tive segmentations, the segmentations of the test cohort were
checked by a board-certified trained radiation oncologist. Another
issue that can complicate adoption in clinical practice is the need
for four MRI sequences in total. Sometimes not all of these
sequences were acquired in clinical routine or were corrupted by
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(motion) artifacts. While one missing sequence can be synthesized
with only a minor non-significant loss in performance (DSC of 0.89
compared to 0.92), patients with more than one missing sequence,
however, cannot be segmented with our intended and tested
workflow. Comparable studies often used one or two sequences
and were therefore less affected by such problems. However,
Pflüger et al. showed that a model trained with only T1-CE and
T2-FLAIR sequences performed slightly worse compared to the full
configuration [45].

Despite these limitations, we created a neural network capable
of exact automatic segmentation of brain metastases as well as the
surrounding edema, which reached promising results in a multi-
centric, international external test cohort with a diverse set of
MRI scanner types and cancer histologies. We published the net-
work on Github to leverage its broad application. This network
could be used as a basis for clinical gross tumor volume segmenta-
tions of brain metastases and also supports further computational
analysis of brain metastases such as radiomic feature extraction
[52].
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