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Abstract 

Mixed forest stands tend to be more resistant to drought than species-specific stands partially due 1 

to complementarity in root ecology and physiology. We asked whether complementary differences 2 

in the drought resistance of soil microbiomes might contribute to this phenomenon. We 3 

experimented on the effects of reduced soil moisture on bacterial and fungal community 4 

composition in species-specific (single species) and mixed-species root zones of Norway spruce 5 

and European beech forests in a 5-year-old throughfall-exclusion experiment and across seasonal 6 

(spring-summer-fall) and latitudinal moisture gradients. Bacteria were most responsive to changes 7 

in soil moisture, especially members of Rhizobiales, while fungi were largely unaffected, including 8 

ectomycorrhizal fungi (EMF). Community resistance was higher in spruce relative to beech root 9 

zones, corresponding with the proportions of drought-favored (more in spruce) and drought-10 

sensitive bacterial taxa (more in beech). The spruce soil microbiome also exhibited greater 11 

resistance to seasonal changes between spring (wettest) and fall (driest). Mixed-species root zones 12 

contained a hybrid of beech- and spruce-associated microbiomes. Several bacterial populations 13 

exhibited either enhanced resistance or greater susceptibility to drought in mixed root zones. 14 

Overall, patterns in the relative abundances of soil bacteria closely tracked moisture in seasonal 15 

and latitudinal precipitation gradients and were more predictive of soil water content than other 16 

environmental variables. We conclude that complementary differences in the drought resistance 17 

of soil microbiomes can occur and the likeliest form of complementarity in mixed-root zones 18 

coincides with the enrichment of drought-tolerant bacteria associated with spruce and the 19 

sustenance of EMF by beech. 20 

Key words: plant–soil interactions, forest soil microbiome, drought resistance, precipitation 

gradient, beech-spruce forest, and root complementarity. 

  



1. Introduction 

Plant species diversity positively correlates with ecosystem productivity (Hooper and 21 

Vitousek, 1997; Liang et al., 2016; Tilman, 2001) and with increased resistance to extremes in 22 

water availability, at least in grasslands (Craven et al., 2016; Isbell et al., 2015). Forest ecosystems 23 

are vulnerable to the increasing frequency, intensity, and duration of drought caused by changing 24 

precipitation patterns (Dai, 2013; IPCC, 2018). However, it remains to be proven whether forests 25 

with higher plant diversity or functional richness are more resistant to drought than single species 26 

(‘species-specific’) plantations (García-Valdés et al., 2021). The general relationship between 27 

plant species diversity and productivity is, at least, partially due to the effects of biotic feedbacks 28 

between plants and soil microorganisms (Hendriks et al., 2013; Schnitzer et al., 2011). Yet, to date, 29 

research into diversity-productivity relationships in forests has been primarily focused on 30 

aboveground parameters, e.g. annual growth (Paquette and Messier, 2011; Pretzsch et al., 2020, 31 

2010). More recently, belowground parameters were found to differ between species-specific and 32 

mixed-species forest stands, including tree root lifespan dynamics (Zwetsloot et al., 2019) and root 33 

niche partitioning during drought (Altinalmazis-Kondylis et al., 2021; Zwetsloot and Bauerle, 34 

2021). These observations raise questions about the potential influence of other belowground 35 

biotic interactions on the drought resistance of mixed forest stands. 36 

Belowground interactions between root systems of European beech (henceforth ‘beech’) 37 

and Norway spruce (henceforth ‘spruce’), a common forest type in Central Europe, can differ 38 

between monoculture and mixed-species forests (Schmid and Kazda, 2002). Spruce and beech 39 

exhibit anatomical (tracheid vs. xylem vessel elements) and physiological (isohydric vs. 40 

anisohydric) differences that effect their hydrological processes and drought response (Lyr et al., 41 

1992; Pretzsch et al., 2013) and their root systems can interact in complementary ways that reduce 42 

competition and facilitate access to soil moisture. These effects are evident in the differences 43 



between species-specific and mixed root zones, where beech roots exhibit lower mortality than in 44 

monospecific root zones, due to decreased intraspecific competition (Zwetsloot et al., 2019), and 45 

where spruce roots maintain higher fine root mass during chronic drought (Zwetsloot and Bauerle, 46 

2021). This complementarity is due to several aspects of root ecophysiology, which include: (i) 47 

differences in rooting depth, with beech colonizing lower soil layers in mixed root zones (Bolte 48 

and Villanueva, 2006), and (ii) diverging responses in fine root growth during drought, where 49 

spruce become more dormant (cease growth and enhance suberization), while beech maintain a 50 

degree of root activity, producing new, albeit shorter lived, fine root mass (Nikolova et al., 2020; 51 

Rötzer et al., 2017). Beech and spruce also select for broadly different soil microbiomes (Bárta et 52 

al., 2017; Uroz et al., 2016). Complementarity in the function and drought-tolerance between their 53 

associated microbiomes might contribute to the altered plant drought responses where roots mix. 54 

Root-associated microbes support the nutritional needs of trees (Brzostek et al., 2013; 55 

Calvaruso et al., 2014; Gan et al., 2021; Nicolitch et al., 2016), and provide protection from 56 

phytopathogens (Lehr et al., 2008; Terhonen et al., 2016) and the effects of mild drought (Pena et 57 

al., 2013; Shi et al., 2002). Prior research has shown that the soil microbiome in mixed-species 58 

forests can have greater functional and metabolic diversity than species-specific forests (Beugnon 59 

et al., 2021; Prada-Salcedo et al., 2021). Thus, complementarity in the function and drought-60 

tolerance of soil microbiomes associated with beech and spruce might confer benefits during 61 

drought. Several observations indicate the potential unevenness in the susceptibility or tolerance 62 

of members of the beech- and spruce-associated microbiomes. The spruce soil microbiome is 63 

characterized by a higher relative abundance of Actinobacteria, Armatimonadetes, and 64 

Acidobacteria (and a higher denitrification potential) and greater proportion of ectomycorrhizal 65 

fungi (EMF) relative to saprotrophic fungi than the beech soil microbiome, which has higher 66 



proportions of Alphaproteobacteria, Planctomycetes, and Verrucomicrobia and different dominant 67 

EMF taxa (Scleroderma, Russula and Laccaria) than spruce (Boletus and Thelephora) (Bárta et 68 

al., 2017; Felsmann et al., 2015; Nacke et al., 2016; Uroz et al., 2016). Populations of 69 

Alphaproteobacteria and Planctomycetes (beech-associated) are generally more sensitive to 70 

drought, while Armatimonadetes and Actinobacteria (spruce-associated) are more tolerant 71 

(Bastida et al., 2017; Bouskill et al., 2013; Chodak et al., 2015; Curiel Yuste et al., 2014; Evans et 72 

al., 2014; Felsmann et al., 2015; Hartmann et al., 2017; Preece et al., 2019; Zeng et al., 2016; Zhou 73 

et al., 2018). EMF also differ in their drought tolerance with more sensitive (ex. within Laccaria 74 

and Lactarius) and more tolerant (ex. within Russula, Cenococcum, and Scleroderma) species 75 

among those that associate with beech and spruce (Coleman et al., 1989; Di Pietro et al., 2007; 76 

Ortega et al., 2004). Disparities in the drought tolerance or susceptibility of beech- and spruce-77 

associated microbiomes have yet to be experimentally tested. 78 

With our study, we investigated whether the effects of experimental and natural reductions 79 

in soil moisture on the structure of beech and spruce microbiomes differed in species-specific 80 

(single species) versus mixed-species root zones. Drought-affected bacteria and fungi were 81 

identified in a 5-year-old throughfall exclusion experiment and changes in these populations were 82 

profiled in seasonal and latitudinal gradients in soil moisture and precipitation, respectively (Figure 83 

1). The composition of bacterial and fungal communities and root-associated ‘rhizobacteria’ 84 

(rhizoplane and root endophytes) were determined with 16S rRNA gene and ITS region amplicon 85 

sequencing. We expected EMF and rhizobacterial populations to be most sensitive to reductions 86 

in soil moisture given the associated reduction in fine root mass (Zwetsloot and Bauerle, 2021). 87 

We hypothesized that the impact of reduced soil moisture would affect beech and spruce 88 

microbiomes differently, and that these responses would be further altered in soils where roots 89 



mixed. Specifically, our experiment tested the null hypothesis that the responses of beech- and 90 

spruce-associated bacteria and fungi would not differ in mixed-species root zones relative to 91 

species-specific zones. We then tested whether similar differences occurred in response to seasonal 92 

variation and latitudinal differences in soil moisture. Our experiment advances an understanding 93 

of the effects of drought and natural gradients in soil moisture on beech and spruce soil 94 

microbiomes and establishes the potential for complementation to occur where root systems mix. 95 

2. Methods 

2.1 Study overview and experimental design 96 

In 2013, a latitudinal precipitation gradient was established in Bavaria, Germany (Pretzsch 97 

et al., 2014). The gradient is composed of five forest sites containing 60 to 90-year-old Norway 98 

spruce (Picea abies [L.] Karst) and European beech (Fagus sylvatica L.) which are (from driest to 99 

wettest): Arnstein, Kelheim, Kranzberg, Wasserburg, and Traunstein (Figure 1A). All five sites 100 

are similar in mean annual temperature (MAT) and soil type (Cambisol and Luvisol), but differ in 101 

their mean annual precipitation (MAP; Table S1). Relative differences in total annual precipitation 102 

were consistent among sites during the duration of the experiment (Table S2). However, periods 103 

of drought occurred throughout Germany in summer in 2015 and 2018 (Schuldt et al., 2020). 104 

Individual sites consist of a species-specific spruce and beech root zone, as well as a mixed spruce 105 

and beech root zone with varying degrees of mixing (Table S3). A throughfall-exclusion 106 

experiment was established at the middle site of the precipitation gradient, (Kranzberg Forest Roof 107 

Experiment or ‘KROOF’; Figure 1B) and is composed of six drought plots, each with a species-108 

specific beech and spruce and mixed-species stand covered by a throughfall exclusion roof, and 109 

six corresponding uncovered reference plots, with corresponding stand compositions. At the time 110 

of the last sampling in 2018, seasonal throughfall had been excluded for five years, resulting in an 111 

overall reduction of ~70% soil moisture across time and significantly greater pre-dawn water stress 112 



for beech (x̄ = -0.66 ± 0.2 MPa water potential) and spruce (x̄ = -0.98 ± 0.3 MPa) compared to 113 

reference plots (Grams et al., 2021).  114 

2.2 Soil and root sampling 115 

Soils from each root zone were sampled during the fall of 2017 (November), and the spring 116 

(April), summer (July), and fall of 2018 (October) at all five sites and from the throughfall 117 

exclusion experiment. During each sampling, ten soil cores (1.6 cm in diameter and 30 cm long) 118 

were harvested from five plots (approximately 10 m2) randomly located within in each tree root 119 

zone and/or throughfall exclusion treatment plot. The Ol (litter layer) was manually removed, and 120 

each soil core was divided into upper (0-8 cm deep) and lower soil layers (9-30 cm) comprised of 121 

the Of + hAh and AIBv, respectively (KA5 classifications; Nickel et al., 2018). The upper and lower 122 

layers of ten cores were separately composited to yield 5 replicates per tree root zone per site 123 

and/or per throughfall exclusion treatment. Five grams of the upper and lower composite sample 124 

(excluding roots and soil particles > 2 mm) was weighed into Whirl-pak® bags in the field (Nasco 125 

Sampling, Madison, WI, USA), and transported on dry ice to the Technische Universität München 126 

(TUM) campus in Freising, where they were dried at 60 ºC to a constant weight. Oven drying was 127 

used to minimize the period in which cells are active and has negligible impact on bacterial and 128 

fungal community composition (Castaño et al., 2016; Tzeneva et al., 2009). Dried samples were 129 

shipped to Cornell University (Ithaca, NY, USA) and stored at room temperature until DNA was 130 

extracted within two months. Over short periods, changes in microbiome composition due to air 131 

drying and storage are minor (Clark and Hirsch, 2008; Lauber et al., 2010; Tzeneva et al., 2009). 132 

The remaining soil samples were stored at TUM at 4 ºC for additional analyses and to determine 133 

fine root biomass (mg) (≤ 1 mm diameter), also dried to 60 ºC to a constant weight. Prior to the 134 

onset of KROOF, in 2013, fine root samples were taken from upper and lower layers in species-135 

specific spruce and beech root zones for the purpose of identifying root-associated bacteria 136 



(‘rhizobacteria’) associated with each tree (n = 20), as opposed to ‘soil bacteria,’ which we use to 137 

refer to the amplicon data generated from whole soil cores. Roots were thoroughly cleaned in tap 138 

water, identified under a stereomicroscope and frozen until DNA was extracted. The bacterial 139 

populations identified via this method correspond to a combination of ‘rhizoplane’ and root 140 

endophyte populations. 141 

2.3 Analyses of soil properties 142 

The remaining soil from each sample was used to measure soil water content (SWC), pH, 143 

and soil organic matter (SOM). SWC was averaged from triplicate measurements using 3 g of 144 

fresh soil, which was calculated as the percentage mass lost after drying for 24 hours at 105℃. 145 

Soil pH was measured using a VWR Scientific Products model 2000 pH meter, in a 1:10 (w/v) 146 

dilution with distilled deionized water, after the sample was shaken for one minute and allowed to 147 

settle for 10 minutes. SOM was estimated using loss on ignition method, according to (Howard 148 

and Howard, 1990), by weighing 2 g of soil onto clay trays that were put in a muffle furnace where 149 

temperature was slowly increased by 10 ºC increments until a final temperature of 550 ºC was 150 

reached and maintained for 3 h.  151 

2.4 Analyses of soil bacterial and fungal communities and rhizobacteria 152 

DNA was extracted from 0.25 g of soil sample using the Qiagen PowerSoil kits 153 

(Germantown, Maryland, USA) according to the manufacturer’s protocol with a bead beating 154 

treatment of 3 min at 5.5 m·s-1 (Bio-spec, Bartellsville, OK, USA). DNA quantification and PCR 155 

amplification of bacterial (V4 region of 16S rRNA gene; 515f/806r) and fungal phylogenetic gene 156 

markers (ITS1; nBITS2f/58A2r) was performed as previously described (Sridhar et al., 2022). 157 

Duplicate PCR reactions per sample were pooled prior to Illumina MiSeq (2 x 250 bp; v2) 158 

sequencing, which was performed at Cornell Biotechnology Resource Center (Ithaca, NY) using 159 

dual-indexed bar-coded primers (Koechli et al., 2019; Kozich et al., 2013). Seventy-five ITS 160 



sequencing libraries from the Kranzberg throughfall-exclusion experiment were discarded due to 161 

poor sequencing quality. These were discarded at random without impacting the balance of our 162 

experimental design (Table S4). To identify rhizobacteria, DNA was extracted from 0.35-0.45 g 163 

of root using the PowerSoil kit as previously described (Nickel et al., 2018) and 16S rRNA 164 

amplicon libraries were prepared targeting rhizobacteria using the same methods (details in SI) 165 

except that the V3-V4 region was targeted using primers optimized for plant DNA-rich samples 166 

(335f/769r), as previously described (Dorn-In et al., 2015). All sample metadata is provided in 167 

Table S5, and raw sequencing data was archived with the European Nucleotide Archive under the 168 

BioProject accession: PRJEB36981 (data reference, see Wilhelm et al., 2022). 169 

Sequencing data was processed using QIIME2 (v. 2020.2; Bolyen et al., 2019) with a 170 

dependency on DADA2 (v. 1.10; Callahan et al., 2016) to assign sequences to operational 171 

taxonomic units (i.e., amplicon sequence variants). Taxonomic classification was performed using 172 

the QIIME2 ‘q2-feature-classifier’ trained on the Silva database (v. 132; Quast et al., 2013) and 173 

UNITE database (v. 7.2; Nilsson et al., 2019) for bacteria and fungi, respectively. OTUs found in 174 

the non-template controls and in low abundance were removed, namely those present in fewer than 175 

three samples, or at a total relative abundance < 0.01%. All counts were normalized by proportion 176 

of total reads and presented as counts per thousand reads. R package phyloseq (v. 1.34; McMurdie 177 

and Holmes, 2013) was used to characterize the communities and estimate diversity parameters on 178 

rarified libraries (nbact = 15,300 and nfungi = 2,544 reads per sample). Fungal taxonomic 179 

classifications were used to identify EMF, endophytic, and saprotrophic fungi using the FUNGuild 180 

database (v. 1; Nguyen et al., 2016). Samples from throughfall-exclusion plots were removed 181 

during all analyses of seasonal or latitudinal effects.  182 



2.5 Bioinformatic and statistical analyses 183 

The differential abundance of OTUs between reference and throughfall exclusion plots 184 

(i.e., ‘drought-affected’) were identified using the R software package indicspecies (v. 1.7.9; 185 

Cáceres and Legendre, 2009). Indicator species analysis was performed independently for soil 186 

layers, season, and forest type, then combined and de-duplicated. Non-significant indicator OTUs 187 

(padj < 0.05) and those with low indicator values (< 0.35) were excluded. Alpha-diversity was 188 

measured as species richness, Shannon diversity, and Pielou’s evenness. Beta-diversity was 189 

assessed using Bray-Curtis dissimilarity and differences in community composition were 190 

visualized using principal coordinates analysis and tested with PERMANOVA (nperm = 999) using 191 

‘adonis’ from the R package vegan (v. 2.5.7; Oksanen et al., 2015). Resistance (R) to change in 192 

microbiome composition due to throughfall exclusion was measured as the Bray-Curtis 193 

dissimilarity between reference and exclusion plots (D), such that R = 1 – D. A lower R value 194 

indicates a greater dissimilarity between reference and throughfall exclusion plots, indicating a 195 

greater drought effect (De Vries and Shade, 2013). R was calculated for the average of all 196 

permutations of replicates between reference and exclusion plots. The environmental and 197 

microbiome features that were most predictive of SWC were identified using random forest-based 198 

feature selection implemented in the R package Boruta (v. 7.0; Kursa and Rudnicki, 2010). 199 

Features included in model selection were environmental (soil layer, root zone, site, season, year) 200 

and microbiome (aggregated counts at the taxonomic rank of Order scaled with the ‘scale’ function 201 

in R). Subsequently, Pearson’s correlations between selected bacterial and fungal features and 202 

SWC were performed using ‘rcorr’ from the R package Hmisc (v. 4.5; Harrell and Dupont, 2015). 203 

Differences in the relative abundance of OTUs among tree root zones were tested with ANOVA 204 

(‘aov’ function in R). The main effects and interactions between throughfall exclusion, season, or 205 

tree root zone on the relative abundances of OTUs, were determined by fitting to fixed effects 206 



linear models (‘lm’ function). P-values were adjusted for multiple test correction according to the 207 

Benjamini and Hochberg false discovery rate. Only the most abundant OTUs (> 0.05% of sample 208 

reads) were included in statistical testing. Significant effects are denoted by asterisk: p < 0.05 (*), 209 

p < 0.01 (**), and p < 0.001 (***). All analyses can be reproduced with scripts included in the 210 

Supplementary Data package available through the Open Science Foundation (doi: 211 

10.17605/OSF.IO/DN9CH). 212 

3. Results 

Our initial analyses were performed to establish the drought susceptible and tolerant 213 

(section 3.1) and spruce- and beech-associated soil microbiome and rhizobacteria (section 3.2) 214 

prior to testing whether the response of these groups differed in species-specific versus mixed root 215 

zones (section 3.3). Additional analyses were performed to characterize the natural variation 216 

(seasonal and precipitation gradient) in drought-affected populations among tree root zones and 217 

soil layers (section 3.4). 218 

3.1.1 General effects of throughfall exclusion on soil properties and the soil microbiome  219 

Across the full 5-year experimental period, throughfall exclusion resulted in a 70% 220 

reduction in SWC, on average, during the growing season (Grams et al., 2021) and, at the time of 221 

our sampling, the throughfall exclusion plots had significantly lower SWC in upper (x̄ = -27.8%) 222 

and lower soil layers (x̄ = -22.4%) across all seasons (Figure S1). Upper layers had higher average 223 

SWC though the extent of moisture reduction was comparable in both layers (t = -3.9 vs. -3.2, 224 

respectively). Throughfall exclusion significantly decreased fine root mass, with a greater effect 225 

on upper layers (x̄ = -51.1%; t = -4.2; p < 0.001) compared to lower layer soils (x̄ = -29.8%; t = -226 

3.2; p < 0.001). Exclusion had minor effects on soil pH (+1% in upper layer; p = 0.03); and had 227 

mostly insignificant effects on SOM and DNA yield (Figure S1). Throughfall exclusion accounted 228 

for a relatively low proportion of variation in the beta-diversity of soil bacterial and fungal 229 



communities (Figure 2AB), which was primarily attributable to differences among soil layer and 230 

tree root zone. Communities from mixed root zones exhibited an intermediate similarity between 231 

species-specific root zones (Figure 2A). 232 

3.1.2 Drought-affected soil bacteria and fungi 233 

The differences in the relative abundance of OTUs between reference and throughfall 234 

excluded plots were used to identify ‘drought-favored’ or ‘drought-sensitive’ bacterial and fungal 235 

populations. The soil microbiome at Kranzberg was comprised of 10,357 bacterial and 3,282 236 

fungal OTUs. Of these, a total of 369 bacterial and 23 fungal OTUs were indicative of throughfall 237 

exclusion (Table S6). More OTUs were drought-sensitive (nbact = 194 and nfungi = 15) than drought-238 

favored (nbact = 175 and nfungi = 8). More drought-affected OTUs were observed in upper (n = 215) 239 

versus lower soil layers (n = 130), but OTUs did not differ in their likelihood of being drought-240 

affected based on their soil layer association (Fisher’s test; p = 0.8). 241 

Drought-favored fungi were primarily classified as Ascomycota (80%) and belonged to 242 

genera designated as saprotrophic (Pseudogymnoascus, Niesslia, and Ciliolarina). Two of the 243 

eight drought sensitive fungal OTUs were classified to genera of EMF (Inocybe and Lactarius). 244 

However, the overall relative abundance of EMF was largely unaffected by throughfall exclusion 245 

(Figure S2A). Fungal endophytes (genus Phialocephala) were significantly more abundant in 246 

throughfall-excluded upper soils (Figure S3A) and were relatively more abundant in spruce root 247 

zones (Figure S3B).  248 

Throughfall exclusion affected a phylogenetically diverse group of bacteria, but most of 249 

the affected OTUs were classified to Planctomycetes, Alphaproteobacteria and Actinobacteria 250 

(Figure S4; complete list in Table S6). Actinobacteria were near uniformly drought-favored 251 

(primarily classified as Pseudonocardiales, Solirubrobacterales, and Microccocales), while 252 

Planctomycetes were primarily drought-sensitive (Pirellulales, Gemmatales, and 253 



Planctomycetales), though certain clades of Planctomycetes also contained a high proportion of 254 

drought-favored taxa (Tepidisphaerales and Isosphaerales). Within Alphaproteobacteria, several 255 

orders were favored by throughfall exclusion, namely populations of Caulobacterales 256 

(Phenylobacterium), Elsterales, and Sphingomonadales (Sphingomonas) while others were 257 

sensitive, namely populations of Rhizobiales (Roseiarcus, Rhodoplanes, and Bradyrhizobium) and 258 

Reyranellales (Reyranella). Other major bacterial groups that were drought sensitive included: 259 

Deltaproteobacteria (Myxococcales), Verrucomicrobia (Pedosphaeraceae and 260 

Xiphinematobacteriaceae), and Dependentiae (Vermiphilaceae). 261 

3.2.1 Beech- and spruce-associated soil bacteria and fungi and rhizobacteria 262 

Soil microbiome composition significantly differed between beech and spruce root zones, 263 

though the most abundant bacterial and fungal OTUs (≥ 0.2% of total reads) were present in all 264 

root zones (97% of bacteria and 52% of fungi; Figure S5). The relative abundances of beech- and 265 

spruce-associated OTUs in mixed zones were characteristically intermediate between the relative 266 

abundance in the species-specific zones (Figure S6). The spruce-associated microbiome was 267 

dominated by several orders of Actinobacteria (Frankiales and Solirubrobacterales) and 268 

Acidobacteria (Acidobacteriales and Solibacterales; Figure 3A) and had a higher 269 

Ascomycota:Basidiomycota ratio compared to beech (Figure S7). The beech microbiome had a 270 

higher proportion of Proteobacteria (Alpha-, Gamma- and Delta-), Verrucomicrobia and 271 

Planctomyces and a higher proportion of EMF (Figure S2B). Beech-associated taxa were 272 

significantly more likely to be drought-sensitive than spruce-associated taxa (Fisher’s Exact, O.R. 273 

= 23.8; p < 0.001), with spruce-associated taxa tending to increase in relative abundance in 274 

throughfall excluded plots.  275 

Rhizobacterial populations associated with beech and spruce roots were identified using 276 

indicator analysis. Beech-associated rhizobacterial populations were enriched in 277 



Alphaproteobacteria from the family Xanthobacteraceae relative to spruce, which were enriched 278 

in Acidobacteriales (Acidipila, Granulicella and Occallatibacter) and Frankiales (Acidothermus; 279 

Figure 3B, complete list in Table S7). Bacterial species richness and evenness were significantly 280 

higher in beech than spruce root zones, while no differences were evident for fungi (Figure S8). 281 

3.2.2 Corresponding differences in plant and soil properties among root zones 282 

Trends in the soil microbiome corresponded primarily with differences in fine root mass 283 

and soil organic matter content in root zones. The upper soil layer in spruce root zones had a 284 

significantly higher percentages of soil organic matter (2-fold) and SWC than beech, except for at 285 

Arnstein, which received the lowest precipitation (Figure S9A). In contrast, the beech root zone 286 

had significantly higher fine root mass in both the upper (66%) and lower layers (60%) at all sites, 287 

while mixed zones had intermediate root mass. In all sites, fine root mass followed seasonal trends 288 

in SWC between spring and fall, increasing in wetter sites (Wasserburg and Traunstein) and 289 

declining in drier sites (Arnstein and Kranzberg), with the trend most pronounced in beech stands 290 

(Figure S9B). Soil pH was significantly more acidic in spruce (x̄ = 4.04) than beech (x̄ = 4.30), 291 

with intermediates values in mixed root zones (x̄ = 4.21). 292 

3.3.1 Contrasting the effects of soil moisture on microbiomes among root zones 293 

We tested for the generalized effects of soil moisture reduction on soil bacteria and fungi 294 

among root zones using the community resistance (R) metric. In our study, lower R values indicate 295 

a greater change in community composition resulting from reduced soil moisture (i.e., a lower 296 

resistance). On average, R values for bacterial communities differed by tree root zone, but not for 297 

fungal communities. Bacterial communities in the spruce root zones had higher R values than in 298 

the beech root zones, though this difference was only significant in the lower soil layer (Figure 299 

4A). Differences in R among root zones corresponded with the proportion of drought-favored 300 

(higher in spruce) and drought-sensitive bacterial OTUs (higher in beech; Figure 4B). The spruce 301 



soil microbiome also exhibited greater R values in relation to seasonal changes between spring 302 

(wettest) and fall (driest) at Kranzberg and, in this case, the mixed root zone also exhibited 303 

significantly higher R than species-specific beech (Figure S10A). These differences also 304 

corresponded to significant seasonal increases in drought-favored and drought-sensitive taxa 305 

(Figure S10B). R values for fungal communities were variable and did not significantly differ 306 

among tree root zones (Figure S11A). Yet, the relative abundance of drought-favored fungal OTUs 307 

was also significantly higher in spruce root zones (Figure S11B). 308 

3.3.2 Contrasting responses in the soil microbiome of species-specific and mixed root zones 309 

The effects of throughfall exclusion on several abundant beech- and spruce-associated 310 

bacteria were significantly altered in the mixed-species root zone. Several beech- and spruce-311 

associated OTUs that were affected by throughfall exclusion in species-specific root zones 312 

exhibited enhanced tolerance in mixed root zones (Figure 5AB; Table S8). Conversely, several 313 

OTUs that were unaffected by throughfall exclusion in species-specific root zones exhibited 314 

different responses in mixed-species root zones. These could be divided into beach-associated 315 

OTUs, that exhibited a greater susceptibility (Figure 5C), and spruce-associated OTUs, that 316 

exhibited a greater resistance, in mixed-species root zones (Figure 5D; Table S9). These trends 317 

were evident when profiling the same populations across seasonal differences in SWC at 318 

Kranzberg (lower panels in Figure 5C and 5D), and at other sites, though not uniformly (Figure 319 

S12). There were no significant interactions between root mixing and throughfall exclusion for 320 

soil fungi.  321 

3.4.1 Seasonal and latitudinal trends in drought-affected populations 322 

Complementary to the throughfall exclusion experiment, we profiled changes in the soil 323 

microbiome of species-specific and mixed-species root zones across seasonal and latitudinal 324 

gradients in soil moisture and precipitation, respectively (Figure 1A). A random forest, decision- 325 



tree-based feature selection was used to identify the environmental variables and microbial taxa 326 

that were most predictive of soil water content in these gradient (Table 1). Several bacterial orders 327 

were selected as predictors of SWC, and the abundance patterns of Rhizobiales outranked all other 328 

features in importance, including environmental parameters (Table 1). No fungal taxa were 329 

selected as predictors of SWC. The abundance patterns of the top microbiome-based predictors of 330 

SWC closely tracked seasonal and latitudinal differences in precipitation in upper (Figure 6) and 331 

lower soil layers (Figure S13) and were among the same groups impacted by throughfall exclusion. 332 

Among the OTUs identified as drought-affected in data from the throughfall exclusion experiment, 333 

the number that significantly differed among high and low precipitation sites in the latitudinal 334 

gradient was lowest in spring (n = 92), when SWC was highest, and progressively increased in 335 

summer (n = 133) and fall (n = 220).  336 

EMF did not exhibit a clear relationship to SWC as their relative abundance did not vary 337 

significantly by season or site position in the precipitation gradient. The exception was at Arnstein 338 

during the summer, when increased relative abundance of EMF coincided with some of the lowest 339 

SWC values measured (Figure S2B). The EMF taxa that increased in Arnstein during the summer 340 

included taxa from the genera: Amphinema, Clavulina, Otidea, Sebacina, Tricholoma, Inocybe, 341 

and Lactarius.  342 

3.4.2 Moisture related shifts in rhizobacterial abundance between soil layers 343 

Reductions in soil moisture can cause stratification of roots in spruce, to upper soil layers, 344 

and beech, to lower soil layers, according to observed root behavior (Bolte and Villanueva, 2006). 345 

We found that the relative abundance of spruce- and beech-associated rhizobacteria tended to 346 

differ between upper and lower soil layers correspondingly, particularly at Kranzberg (Figure 7). 347 

The enrichment of spruce-associated rhizobacteria in upper layer soils was even more pronounced 348 

during fall, when SWC was lowest, though this interaction was only significant at Kranzberg and 349 



Wasserburg (Figure 7). In contrast, beech-associated rhizobacteria were more prevalent in the 350 

lower soil layer, and no shift was seen due to throughfall exclusion or season. Additionally, at 351 

Kranzberg, the seasonal shift to the upper soil layer was most pronounced in mixed root zones 352 

(tinteract. = 8.1; p < 0.001) compared to species-specific spruce (t = 3.9) or beech root zones (t = 353 

3.6). No shifts in spruce- and beech-associated fungi were evident, though we did not obtain fungal 354 

sequence data from rhizoplane / endophyte samples. 355 

4. Discussion 

Our study reveals major differences in the response of Norway spruce and European beech 356 

soil microbiomes to changes in soil moisture and their interplay in mixed root zones. A 357 

significantly higher proportion of beech-associated taxa were sensitive to reductions in soil 358 

moisture compared to the more drought-tolerant populations associated with spruce. Furthermore, 359 

several populations of rhizobacteria and soil bacteria had increased resistance or susceptibility to 360 

drought in mixed-species root zones relative to species-specific. These findings lead us to reject 361 

the hypothesis that the response of microbial populations to changes in moisture would not differ 362 

in mixed-species root zones, allowing for the possibility that complementation can occur. Here, 363 

we discuss the possible reasons why drought may impact spruce- and beech-associated soil 364 

microbiomes differently, and the potential consequences of the phenomena observed in mixed-365 

species root zones. 366 

4.1 Explaining the contrasting effects of reduced soil moisture on beech and spruce microbiomes  367 

Taxa that were consistently impacted by experimental or natural reductions in soil moisture 368 

were broadly characteristic of the spruce and beech microbiomes described in prior research 369 

(Asplund et al., 2019; Bárta et al., 2017; Felsmann et al., 2015; Nacke et al., 2016; Uroz et al., 370 

2016). Several of these broad taxonomic groups were previously shown to be impacted by reduced 371 

throughfall in beech and spruce forest (Felsmann et al., 2015), and other forest types (Bastida et 372 



al., 2017; Bouskill et al., 2013). Our results demonstrate that soil bacterial communities in species-373 

specific spruce root zones have a higher resistance to the impacts of drought and to seasonal 374 

reductions in soil moisture than in beech root zones (Figure 4; Figure S10). This difference 375 

corresponded with a higher proportion of drought-tolerant bacteria in the spruce microbiome than 376 

in beech, and higher proportions of drought-sensitive bacteria in the beech microbiome. While this 377 

is the first time such broad differences in moisture sensitivity have been reported, prior research 378 

has shown that the mineral weathering activity of rhizobacteria isolated from beech was higher 379 

during wetter periods while the reverse was true for those isolate from spruce (Collignon et al., 380 

2011).  381 

Prevailing differences in soil conditions between spruce and beech stands likely help explain 382 

the disparity in drought tolerance and sensitivity in their respective soil microbiomes. 383 

Physiological differences in rooting depth result in consistently drier conditions in shallow soils in 384 

spruce stands relative to beach (Allen et al., 2019; Zwetsloot and Bauerle, 2021). Our findings 385 

indicate that this effect is large enough to select for higher proportion of drought stress-tolerant 386 

bacteria in spruce soils. Additionally, soil acidification was more pronounced in spruce root zones 387 

relative to beech (Figure S1), as indicated by the high relative abundance of acidophilic indicator 388 

taxa (Acetobacterales, Frankiales and Acidobacteriales), as previously shown (Sridhar et al., 389 

2022a). Our observations were consistent with current understanding about difference in soil 390 

development under beech and spruce stands caused by root and litter chemistry, nutrient leaching 391 

and uptake, and mineralization and nitrification rates (Cremer and Prietzel, 2017). Spruce roots 392 

and litter contain significantly higher concentrations of polyphenols than beech (Kuiters and 393 

Denneman, 1987; Zwetsloot and Bauerle, 2018), which are generally toxic to soil heterotrophs 394 

(Adamczyk et al., 2013; Chunmei et al., 2010; Inderjit et al., 2009; Metsämuuronen and Sirén, 395 



2019). The high acidity and polyphenol content of spruce soils create adverse growing conditions, 396 

which retard decomposition (Albers et al., 2004; Berger et al., 2004) and reduce soil respiration 397 

and biomass in spruce stands relative to mixed-species and beech stands (Borken et al., 2002; 398 

Borken and Beese, 2005; Lu and Scheu, 2021). These adverse conditions, along with consistently 399 

lower shallow soil moisture levels in spruce stands, may select for stress-tolerant populations, 400 

which may better endure water stress. This theory is supported by the overlapping physiological 401 

stress response to acidity, low osmolarity, and desiccation observed in model bacteria (Ait-402 

Ouazzou et al., 2012; Hengge-Aronis, 2002; Spector and Kenyon, 2012). It is also anecdotally 403 

supported by the enrichment of the thermophilic, acid-tolerant genus Acidothermus by throughfall 404 

exclusion in spruce and mixed root zones (Figure S14), which are characteristic of droughted and 405 

arid soils (Eppard et al., 1996; Lacerda-Júnior et al., 2019).  406 

The prevalence of drought-sensitive taxa in beech-specific soils could also reflect differences 407 

in the degree of rhizosphere activity between beech and spruce. Beech produce more fine root 408 

mass (Finér et al., 2007), apparent at all our sites (x̄ = 1.4 to 2.1-fold higher), and sustain more 409 

microbial biomass and higher soil respiration rates than spruce (Borken et al., 2002; Borken and 410 

Beese, 2005; Lu and Scheu, 2021). Thus, the apparent sensitivity of beech-associated taxa may 411 

reflect the inability of beech roots to sustain basal levels of microbial activity during drought. The 412 

potential diminished influence of beech on the soil microbiome during drought was evident in the 413 

decline of microbial populations indicative of higher trophic complexity, including members of 414 

the Vermiphilaceae, endosymbionts of amoeba (Delafont et al., 2015), and Candidatus 415 

Xiphinematobacter, symbionts of nematode (Rius et al., 2021; Vandekerckhove et al., 2000). 416 

While we cannot disentangle the relative contributions of roots versus litter to differences in the 417 

soil microbiomes between spruce and beech, root traits have a far greater importance in explaining 418 



the physicochemical properties of species-specific and mixed forest soils than litter traits (Cesarz 419 

et al., 2013; Gillespie et al., 2021). 420 

4.2 Effects of root mixing on the impacts of reduced soil moisture  421 

Most beech- and spruce-associated fungi or bacteria occurred at an intermediate relative 422 

abundance in mixed root zones. This result indicates that the influence of each tree follows a 423 

gradient and that taxa associated with either tree species can co-occur. These observations are 424 

consistent with prior reports of intermediate heterotrophic activity (Borken et al., 2002; Borken 425 

and Beese, 2005), microbial biomass (Lu and Scheu, 2021), litter decomposition rates (Albers et 426 

al., 2004), and mineral weathering (Cremer and Prietzel, 2017) in mixed root zones. Thus, the 427 

hybrid soil microbiome in mixed root soils reflects the combined, but weakened, influences of 428 

each tree.  429 

The resistance of several beech and spruce-associated bacteria to throughfall exclusion was 430 

enhanced in mixed root zones (Figure 5AB). These populations included members of 431 

Acidobacteria (Bryobacter and Occallatibacter, both spruce-associated rhizobacteria), which are 432 

reputed for their production of extracellular polymeric substances, which confer stress tolerance 433 

to cells and may influence soil moisture dynamics (Foesel et al., 2016; Kielak et al., 2016; 434 

Kulichevskaya et al., 2010). In contrast, several members of Xanthobacteraceae (Bradyrhizobium 435 

and Rhodoplanes) were more susceptible to throughfall exclusion in mixed root zones (Figure 5C). 436 

Xanthobacteraceae are known to increase in abundance in proximity to beech trunks (Nacke et al., 437 

2016), suggesting that their capacity to resist drought may depend on the density of beech roots or 438 

litter. Conversely, several spruce-associated taxa exhibited enhanced resistance to drought 439 

exclusively in mixed roots zones (Figure 5D), suggesting some populations may benefit from the 440 

reduced competition where drought-sensitive, beech-associated taxa are diminished. Our 441 

explanations for trends in mixed root zones remain to be tested, but these observations illustrate 442 



the range of interactions occurring where the influence of trees and, by extension, their 443 

microbiomes mix.  444 

4.3 Effects of reduced soil moisture on root-associated taxa  445 

The rhizosphere activity of spruce and beech varies by season and moisture availability, with 446 

the highest activity in spring (Calvaruso et al., 2014) and diminished photosynthate-derived 447 

microbial rhizosphere biomass during drought (Ruehr et al., 2009). We hypothesized that 448 

reductions in soil moisture would disproportionately impact root-associated taxa, like EMF, which 449 

are important contributors to nutrient acquisition by spruce and beech (Brzostek et al., 2013; 450 

Calvaruso et al., 2014; Collignon et al., 2011; Gan et al., 2021; Nicolitch et al., 2016). Contrary to 451 

expectations, we did not observe any compositional changes in soil EMF populations from 452 

throughfall exclusion, seasonal variation, or across the precipitation gradient. The lack of shift in 453 

EMF populations is not without precedent in spruce and beech forests (Gorfer et al., 2021; Nickel 454 

et al., 2018; Žifčáková et al., 2015). The apparent resiliency of EMF to changes in community 455 

composition may reflect their direct connection to live roots and a privileged access to root 456 

exudates relative to bacteria, consistent with the more severe impacts in bacterial populations we 457 

observed and reported elsewhere (de Vries et al., 2018; Fuchslueger et al., 2014). Access to 458 

exudates and shelter within the root might explain why endophyte populations (Phialocephala) 459 

were among the few fungi favored by throughfall exclusion (Figure S3).  460 

Rhizobacteria were among the most affected by throughfall exclusion and seasonal and 461 

latitudinal variation in soil moisture. Members of the Rhizobiales and Burkholderiaceae were 462 

greatly diminished by throughfall exclusion in both beech and spruce root zones (Figure 6; Figure 463 

S15). These drought-sensitive populations were dominated by members of Bradyrhizobium and 464 

Rhodoplanes (Xanthobacteraceae) and Caballeronia and Paraburkholderia (Burkholderiaceae) 465 

which are consistently associated with the rhizosphere of European beech and Norway spruce 466 



(Colin et al., 2017; Uroz et al., 2016) and are common root- and mycorrhizae-associated bacteria 467 

isolated from forest soils (Burke et al., 2008; Izumi et al., 2007, 2006; Kataoka et al., 2008; Tanaka 468 

and Nara, 2009; Uroz et al., 2012; Wilhelm et al., 2020). The apparent drought sensitivity of these 469 

rhizobacteria has implications for soil nutrient cycling and plant nutrition, given their involvement 470 

in priming decomposition (Wilhelm et al., 2021; Zwetsloot et al., 2020), phosphate solubilization 471 

in the beech and spruce rhizosphere (Lepleux et al., 2012; Nicolitch et al., 2016), and endophytic 472 

nitrogen fixation (Puri et al., 2020). 473 

5. Conclusions 

We conclude that any potential complementation of soil microbiome function during drought 474 

is likely to confer greater benefits to beech than spruce, given the higher proportion of drought-475 

favored spruce-associated taxa and their sustained resistance in mixed root zones. The enhanced 476 

drought tolerance of beech in mixed stands with spruce has been reported (Schäfer et al., 2017), 477 

though the benefits of mixing are more commonly reported to favor Norway spruce (del Río et al., 478 

2014; Ding et al., 2017; Rötzer et al., 2017). Thus, it remains to be seen what functions the 479 

complementation of soil microbiomes might have in the drought resistance of mixed beech-spruce 480 

forests. The impact of reduced soil moisture was greater on rhizobacteria than EMF populations, 481 

with a higher proportion of EMF occurring in the beech soil microbiome. Thus, the likeliest form 482 

of complementarity in mixed-root zones might correspond with the enrichment of drought-tolerant 483 

populations by spruce and the sustenance of EMF activity by beech. 484 

Forests and their soil microbiome are complex adaptive systems in which legacy and context 485 

shape biological responses to water limitation (Bouskill et al., 2013). Yet, the moisture sensitivity 486 

of major drought-affected populations, such as members of the Rhizobiales, were consistent across 487 

sites and season, providing evidence for the potential widespread occurrence of phenomena 488 

reported here. Future research is needed to understand the ecological and environmental drivers of 489 



differences across sites and to test the functional consequences of complementation between 490 

microbiomes of beech and spruce, and other abundant tree species, in mixed root zones. 491 
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Tables 

Table 1. The top environmental and soil microbiome predictors of soil water content were 952 

identified, and ranked, using Boruta random forest-based feature selection. The relative abundance 953 
pattern of aggregated counts of Rhizobiales was ranked as the best predictor of SWC, followed by 954 
soil layer and precipitation gradient site. Fungal and bacterial count data, aggregated by Order, 955 
were included in feature selection, but only bacteria had predictive value. Bacterial orders that had 956 
significant Pearson’s correlations with SWC content in both layers (r > | 0.2 | and padj < 0.05) and 957 

were among the top 20 most important features are displayed (full list in Table S10). The family 958 
Gimesiaceae is historically known as ‘Planctomycetaceae.’  959 



Figures 

Figure 1. A schematic overview of the experimental design used to examine the effects of natural 960 

and experimental variation in soil moisture on the soil microbiome of species-specific and mixed-961 
species stands of European beech and Norway spruce. In (A), samples were collected in spring, 962 
summer, and fall and at sites spread across a natural precipitation in Bavaria, Germany. In (B), at 963 
Kranzberg, the mid-point of the gradient, samples were taken from a five-year old throughfall 964 
exclusion experiment where rain-out roofs had been used to reduce soil moisture during the 965 

growing season. Each symbol accurately reflects the distribution of trees species (full details in 966 
Rötzer et al. 2017). In (C), at all sites, and in the throughfall exclusion plots at KROOF, samples 967 
were taken from species-specific or mixed-species tree root zones. Ten soil cores (30 cm deep) 968 
were randomly sampled from five to six plots for each tree root zone at each site and during every 969 
season and subdivided into upper and lower soil layers before being composited.  970 

Figure 2. The composition of soil bacterial and fungal communities at Kranzberg differed 971 
primarily by soil layer and tree root zone, as evident in (A) the grouping of samples by principal 972 

coordinates analysis and (B) the proportion of variance explained (R2) in a PERMANOVA 973 
analysis based on the Bray-Curtis dissimilarity in community composition.  974 

Figure 3. Beech and spruce root zones had marked differences in the taxonomic composition of 975 
soil bacteria and fungi and rhizobacteria. In (A), the bar plots provide a summary of the relative 976 
proportions of indicator OTUs for beech- and spruce-associated bacteria (n = 506) and fungi (n = 977 

63) according to the ratio of their aggregated relative abundance at rank Order. The subset of tree-978 
associated taxa affected by drought are labeled on the y-axis. In (B), the taxonomic profile or 979 

rhizobacteria associated with either beech or spruce according to indicator analysis using 16S 980 
rRNA gene amplicon data generated from root material. 981 

Figure 4. The resistance (R) of soil bacterial communities to the effects of throughfall exclusion 982 

in soil moisture was greatest in spruce root zones at Kranzberg. Differences in R among root zones 983 

(B) corresponded with the relative abundance of drought-favored and drought-sensitive 984 
populations. Pairwise differences in resistance among tree root zones sites were tested using 985 
TukeyHSD (padj < 0.05). In (B), the effects of throughfall exclusion (pexcl.) were significant for all 986 

groups. Any significant differences between tree root zone were denoted by bars with asterisk and 987 
interactions between throughfall treatment and tree root zone were denoted by asterisk. 988 

Figure 5. The responses of beech- and spruce-associated OTUs to throughfall exclusion were 989 

significantly altered in soil microbiome of mixed root zones at Kranzberg. In (A), the relative 990 
abundance of several drought-sensitive beech-associated OTUs (n = 10) were largely 991 
undiminished in mixed root zones. In (B), several drought-sensitive spruce-associated OTUs (n = 992 
5) had enhanced resistance to throughfall exclusion in mixed root zones. Several OTUs that were 993 
not significantly affected by throughfall exclusion in species-specific root zones showed, in (C), 994 

an increased susceptibility (n = 8) or, in (D), an increased resilience (n = 4) in mixed zones. These 995 
trends were consistent with trends in relative abundances between spring (wettest) and fall (driest 996 

season) at Kranzberg (lower panel of C and D). Individual OTU exhibited significant interactions 997 
between throughfall exclusion and tree root zone (Table S8 and Table S9) but were displayed in 998 
aggregate. Any significant differences between tree root zone were denoted by bars with asterisk 999 
and interactions between throughfall treatment (or season) and tree root zone were denoted by 1000 
asterisk. 1001 



Figure 6. The relative abundance of four major bacterial orders followed changes in soil water 1002 
content caused by throughfall exclusion plots, seasonal variation, and across the latitudinal 1003 

precipitation gradient. In (A), the soil water content in the upper soil layer was reduced by 1004 
throughfall exclusion (box plot), and across seasons (x-axis) and gradient sites (lines). In (B), the 1005 
relative abundances of the four bacterial Orders identified in feature selection as predictive of SWC 1006 
(Table 1). The same trends were evident in lower layer soils, though less pronounced (Figure S13). 1007 
Significant differences between mean SWC or relative abundance between seasons were denoted 1008 

by bars with asterisks. Significant interactions between season and site were denoted by colored 1009 
asterisks. Lettering denotes significant differences among sites according to TukeyHSD (padj < 1010 
0.05). 1011 

Figure 7. Shifts in the relative abundance of rhizobacteria in response to (A) throughfall exclusion 1012 
or (B) seasonal differences between spring and fall revealed the putative partitioning of roots 1013 

between soil layers. Spruce-associated rhizobacteria (upper panel) tended to occur at higher 1014 
proportions in the upper soil layer, while beech-associated rhizobacteria (lower panel) tended to 1015 

be more abundant in the lower layer. Significant differences between soil layer means were 1016 
denoted by bars with asterisk and interactions between throughfall treatment (or season) and soil 1017 

layer were denoted by asterisk. 1018 
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Highlights 

 Long-term reduction in moisture had little impact on mycorrhizal population structure 

 More drought-sensitive bacteria were present in beech relative to spruce root zones 

 Mixed-species root zones were a hybrid of beech- and spruce-associated microbiomes 

 Several bacterial populations were more resistant to drought in mixed root zones 

 Complementation in the drought resistance of tree-associated microbiomes can occur 
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Abstract 

Mixed forest stands tend to be more resistant to drought than species-specific stands partially due 1 

to complementarity in root ecology and physiology. We asked whether complementary differences 2 

in the drought resistance of soil microbiomes might contribute to this phenomenon. We 3 

experimented on the effects of reduced soil moisture on bacterial and fungal community 4 

composition in species-specific (single species) and mixed-species root zones of Norway spruce 5 

and European beech forests in a 5-year-old throughfall-exclusion experiment and across seasonal 6 

(spring-summer-fall) and latitudinal moisture gradients. Bacteria were most responsive to changes 7 

in soil moisture, especially members of Rhizobiales, while fungi were largely unaffected, including 8 

ectomycorrhizal fungi (EMF). Community resistance was higher in spruce relative to beech root 9 

zones, corresponding with the proportions of drought-favored (more in spruce) and drought-10 

sensitive bacterial taxa (more in beech). The spruce soil microbiome also exhibited greater 11 

resistance to seasonal changes between spring (wettest) and fall (driest). Mixed-species root zones 12 

contained a hybrid of beech- and spruce-associated microbiomes. Several bacterial populations 13 

exhibited either enhanced resistance or greater susceptibility to drought in mixed root zones. 14 

Overall, patterns in the relative abundances of soil bacteria closely tracked moisture in seasonal 15 

and latitudinal precipitation gradients and were more predictive of soil water content than other 16 

environmental variables. We conclude that complementary differences in the drought resistance 17 

of soil microbiomes can occur and the likeliest form of complementarity in mixed-root zones 18 

coincides with the enrichment of drought-tolerant bacteria associated with spruce and the 19 

sustenance of EMF by beech. 20 

Key words: plant–soil interactions, forest soil microbiome, drought resistance, precipitation 

gradient, beech-spruce forest, and root complementarity. 

  



1. Introduction 

Plant species diversity positively correlates with ecosystem productivity (Hooper and 21 

Vitousek, 1997; Liang et al., 2016; Tilman, 2001) and with increased resistance to extremes in 22 

water availability, at least in grasslands (Craven et al., 2016; Isbell et al., 2015). Forest ecosystems 23 

are vulnerable to the increasing frequency, intensity, and duration of drought caused by changing 24 

precipitation patterns (Dai, 2013; IPCC, 2018). However, it remains to be proven whether forests 25 

with higher plant diversity or functional richness are more resistant to drought than single species 26 

(‘species-specific’) plantations (García-Valdés et al., 2021). The general relationship between 27 

plant species diversity and productivity is, at least, partially due to the effects of biotic feedbacks 28 

between plants and soil microorganisms (Hendriks et al., 2013; Schnitzer et al., 2011). Yet, to date, 29 

research into diversity-productivity relationships in forests has been primarily focused on 30 

aboveground parameters, e.g. annual growth (Paquette and Messier, 2011; Pretzsch et al., 2020, 31 

2010). More recently, belowground parameters were found to differ between species-specific and 32 

mixed-species forest stands, including tree root lifespan dynamics (Zwetsloot et al., 2019) and root 33 

niche partitioning during drought (Altinalmazis-Kondylis et al., 2021; Zwetsloot and Bauerle, 34 

2021). These observations raise questions about the potential influence of other belowground 35 

biotic interactions on the drought resistance of mixed forest stands. 36 

Belowground interactions between root systems of European beech (henceforth ‘beech’) 37 

and Norway spruce (henceforth ‘spruce’), a common forest type in Central Europe, can differ 38 

between monoculture and mixed-species forests (Schmid and Kazda, 2002). Spruce and beech 39 

exhibit anatomical (tracheid vs. xylem vessel elements) and physiological (isohydric vs. 40 

anisohydric) differences that effect their hydrological processes and drought response (Lyr et al., 41 

1992; Pretzsch et al., 2013) and their root systems can interact in complementary ways that reduce 42 

competition and facilitate access to soil moisture. These effects are evident in the differences 43 



between species-specific and mixed root zones, where beech roots exhibit lower mortality than in 44 

monospecific root zones, due to decreased intraspecific competition (Zwetsloot et al., 2019), and 45 

where spruce roots maintain higher fine root mass during chronic drought (Zwetsloot and Bauerle, 46 

2021). This complementarity is due to several aspects of root ecophysiology, which include: (i) 47 

differences in rooting depth, with beech colonizing lower soil layers in mixed root zones (Bolte 48 

and Villanueva, 2006), and (ii) diverging responses in fine root growth during drought, where 49 

spruce become more dormant (cease growth and enhance suberization), while beech maintain a 50 

degree of root activity, producing new, albeit shorter lived, fine root mass (Nikolova et al., 2020; 51 

Rötzer et al., 2017). Beech and spruce also select for broadly different soil microbiomes (Bárta et 52 

al., 2017; Uroz et al., 2016). Complementarity in the function and drought-tolerance between their 53 

associated microbiomes might contribute to the altered plant drought responses where roots mix. 54 

Root-associated microbes support the nutritional needs of trees (Brzostek et al., 2013; 55 

Calvaruso et al., 2014; Gan et al., 2021; Nicolitch et al., 2016), and provide protection from 56 

phytopathogens (Lehr et al., 2008; Terhonen et al., 2016) and the effects of mild drought (Pena et 57 

al., 2013; Shi et al., 2002). Prior research has shown that the soil microbiome in mixed-species 58 

forests can have greater functional and metabolic diversity than species-specific forests (Beugnon 59 

et al., 2021; Prada-Salcedo et al., 2021). Thus, complementarity in the function and drought-60 

tolerance of soil microbiomes associated with beech and spruce might confer benefits during 61 

drought. Several observations indicate the potential unevenness in the susceptibility or tolerance 62 

of members of the beech- and spruce-associated microbiomes. The spruce soil microbiome is 63 

characterized by a higher relative abundance of Actinobacteria, Armatimonadetes, and 64 

Acidobacteria (and a higher denitrification potential) and greater proportion of ectomycorrhizal 65 

fungi (EMF) relative to saprotrophic fungi than the beech soil microbiome, which has higher 66 



proportions of Alphaproteobacteria, Planctomycetes, and Verrucomicrobia and different dominant 67 

EMF taxa (Scleroderma, Russula and Laccaria) than spruce (Boletus and Thelephora) (Bárta et 68 

al., 2017; Felsmann et al., 2015; Nacke et al., 2016; Uroz et al., 2016). Populations of 69 

Alphaproteobacteria and Planctomycetes (beech-associated) are generally more sensitive to 70 

drought, while Armatimonadetes and Actinobacteria (spruce-associated) are more tolerant 71 

(Bastida et al., 2017; Bouskill et al., 2013; Chodak et al., 2015; Curiel Yuste et al., 2014; Evans et 72 

al., 2014; Felsmann et al., 2015; Hartmann et al., 2017; Preece et al., 2019; Zeng et al., 2016; Zhou 73 

et al., 2018). EMF also differ in their drought tolerance with more sensitive (ex. within Laccaria 74 

and Lactarius) and more tolerant (ex. within Russula, Cenococcum, and Scleroderma) species 75 

among those that associate with beech and spruce (Coleman et al., 1989; Di Pietro et al., 2007; 76 

Ortega et al., 2004). Disparities in the drought tolerance or susceptibility of beech- and spruce-77 

associated microbiomes have yet to be experimentally tested. 78 

With our study, we investigated whether the effects of experimental and natural reductions 79 

in soil moisture on the structure of beech and spruce microbiomes differed in species-specific 80 

(single species) versus mixed-species root zones. Drought-affected bacteria and fungi were 81 

identified in a 5-year-old throughfall exclusion experiment and changes in these populations were 82 

profiled in seasonal and latitudinal gradients in soil moisture and precipitation, respectively (Figure 83 

1). The composition of bacterial and fungal communities and root-associated ‘rhizobacteria’ 84 

(rhizoplane and root endophytes) were determined with 16S rRNA gene and ITS region amplicon 85 

sequencing. We expected EMF and rhizobacterial populations to be most sensitive to reductions 86 

in soil moisture given the associated reduction in fine root mass (Zwetsloot and Bauerle, 2021). 87 

We hypothesized that the impact of reduced soil moisture would affect beech and spruce 88 

microbiomes differently, and that these responses would be further altered in soils where roots 89 



mixed. Specifically, our experiment tested the null hypothesis that the responses of beech- and 90 

spruce-associated bacteria and fungi would not differ in mixed-species root zones relative to 91 

species-specific zones. We then tested whether similar differences occurred in response to seasonal 92 

variation and latitudinal differences in soil moisture. Our experiment advances an understanding 93 

of the effects of drought and natural gradients in soil moisture on beech and spruce soil 94 

microbiomes and establishes the potential for complementation to occur where root systems mix. 95 

2. Methods 

2.1 Study overview and experimental design 96 

In 2013, a latitudinal precipitation gradient was established in Bavaria, Germany (Pretzsch 97 

et al., 2014). The gradient is composed of five forest sites containing 60 to 90-year-old Norway 98 

spruce (Picea abies [L.] Karst) and European beech (Fagus sylvatica L.) which are (from driest to 99 

wettest): Arnstein, Kelheim, Kranzberg, Wasserburg, and Traunstein (Figure 1A). All five sites 100 

are similar in mean annual temperature (MAT) and soil type (Cambisol and Luvisol), but differ in 101 

their mean annual precipitation (MAP; Table S1). Relative differences in total annual precipitation 102 

were consistent among sites during the duration of the experiment (Table S2). However, periods 103 

of drought occurred throughout Germany in summer in 2015 and 2018 (Schuldt et al., 2020). 104 

Individual sites consist of a species-specific spruce and beech root zone, as well as a mixed spruce 105 

and beech root zone with varying degrees of mixing (Table S3). A throughfall-exclusion 106 

experiment was established at the middle site of the precipitation gradient, (Kranzberg Forest Roof 107 

Experiment or ‘KROOF’; Figure 1B) and is composed of six drought plots, each with a species-108 

specific beech and spruce and mixed-species stand covered by a throughfall exclusion roof, and 109 

six corresponding uncovered reference plots, with corresponding stand compositions. At the time 110 

of the last sampling in 2018, seasonal throughfall had been excluded for five years, resulting in an 111 

overall reduction of ~70% soil moisture across time and significantly greater pre-dawn water stress 112 



for beech (x̄ = -0.66 ± 0.2 MPa water potential) and spruce (x̄ = -0.98 ± 0.3 MPa) compared to 113 

reference plots (Grams et al., 2021).  114 

2.2 Soil and root sampling 115 

Soils from each root zone were sampled during the fall of 2017 (November), and the spring 116 

(April), summer (July), and fall of 2018 (October) at all five sites and from the throughfall 117 

exclusion experiment. During each sampling, ten soil cores (1.6 cm in diameter and 30 cm long) 118 

were harvested from five plots (approximately 10 m2) randomly located within in each tree root 119 

zone and/or throughfall exclusion treatment plot. The Ol (litter layer) was manually removed, and 120 

each soil core was divided into upper (0-8 cm deep) and lower soil layers (9-30 cm) comprised of 121 

the Of + hAh and AIBv, respectively (KA5 classifications; Nickel et al., 2018). The upper and lower 122 

layers of ten cores were separately composited to yield 5 replicates per tree root zone per site 123 

and/or per throughfall exclusion treatment. Five grams of the upper and lower composite sample 124 

(excluding roots and soil particles > 2 mm) was weighed into Whirl-pak® bags in the field (Nasco 125 

Sampling, Madison, WI, USA), and transported on dry ice to the Technische Universität München 126 

(TUM) campus in Freising, where they were dried at 60 ºC to a constant weight. Oven drying was 127 

used to minimize the period in which cells are active and has negligible impact on bacterial and 128 

fungal community composition (Castaño et al., 2016; Tzeneva et al., 2009). Dried samples were 129 

shipped to Cornell University (Ithaca, NY, USA) and stored at room temperature until DNA was 130 

extracted within two months. Over short periods, changes in microbiome composition due to air 131 

drying and storage are minor (Clark and Hirsch, 2008; Lauber et al., 2010; Tzeneva et al., 2009). 132 

The remaining soil samples were stored at TUM at 4 ºC for additional analyses and to determine 133 

fine root biomass (mg) (≤ 1 mm diameter), also dried to 60 ºC to a constant weight. Prior to the 134 

onset of KROOF, in 2013, fine root samples were taken from upper and lower layers in species-135 

specific spruce and beech root zones for the purpose of identifying root-associated bacteria 136 



(‘rhizobacteria’) associated with each tree (n = 20), as opposed to ‘soil bacteria,’ which we use to 137 

refer to the amplicon data generated from whole soil cores. Roots were thoroughly cleaned in tap 138 

water, identified under a stereomicroscope and frozen until DNA was extracted. The bacterial 139 

populations identified via this method correspond to a combination of ‘rhizoplane’ and root 140 

endophyte populations. 141 

2.3 Analyses of soil properties 142 

The remaining soil from each sample was used to measure soil water content (SWC), pH, 143 

and soil organic matter (SOM). SWC was averaged from triplicate measurements using 3 g of 144 

fresh soil, which was calculated as the percentage mass lost after drying for 24 hours at 105℃. Soil 145 

pH was measured using a VWR Scientific Products model 2000 pH meter, in a 1:10 (w/v) dilution 146 

with distilled deionized water, after the sample was shaken for one minute and allowed to settle 147 

for 10 minutes. SOM was estimated using loss on ignition method, according to (Howard and 148 

Howard, 1990), by weighing 2 g of soil onto clay trays that were put in a muffle furnace where 149 

temperature was slowly increased by 10 ºC increments until a final temperature of 550 ºC was 150 

reached and maintained for 3 h.  151 

2.4 Analyses of soil bacterial and fungal communities and rhizobacteria 152 

DNA was extracted from 0.25 g of soil sample using the Qiagen PowerSoil kits 153 

(Germantown, Maryland, USA) according to the manufacturer’s protocol with a bead beating 154 

treatment of 3 min at 5.5 m·s-1 (Bio-spec, Bartellsville, OK, USA). DNA quantification and PCR 155 

amplification of bacterial (V4 region of 16S rRNA gene; 515f/806r) and fungal phylogenetic gene 156 

markers (ITS1; nBITS2f/58A2r) was performed as previously described (Sridhar et al., 2022). 157 

Duplicate PCR reactions per sample were pooled prior to Illumina MiSeq (2 x 250 bp; v2) 158 

sequencing, which was performed at Cornell Biotechnology Resource Center (Ithaca, NY) using 159 

dual-indexed bar-coded primers (Koechli et al., 2019; Kozich et al., 2013). Seventy-five ITS 160 



sequencing libraries from the Kranzberg throughfall-exclusion experiment were discarded due to 161 

poor sequencing quality. These were discarded at random without impacting the balance of our 162 

experimental design (Table S4). To identify rhizobacteria, DNA was extracted from 0.35-0.45 g 163 

of root using the PowerSoil kit as previously described (Nickel et al., 2018) and 16S rRNA 164 

amplicon libraries were prepared targeting rhizobacteria using the same methods (details in SI) 165 

except that the V3-V4 region was targeted using primers optimized for plant DNA-rich samples 166 

(335f/769r), as previously described (Dorn-In et al., 2015). All sample metadata is provided in 167 

Table S5, and raw sequencing data was archived with the European Nucleotide Archive under the 168 

BioProject accession: PRJEB36981 (data reference, see Wilhelm et al., 2022). 169 

Sequencing data was processed using QIIME2 (v. 2020.2; Bolyen et al., 2019) with a 170 

dependency on DADA2 (v. 1.10; Callahan et al., 2016) to assign sequences to operational 171 

taxonomic units (i.e., amplicon sequence variants). Taxonomic classification was performed using 172 

the QIIME2 ‘q2-feature-classifier’ trained on the Silva database (v. 132; Quast et al., 2013) and 173 

UNITE database (v. 7.2; Nilsson et al., 2019) for bacteria and fungi, respectively. OTUs found in 174 

the non-template controls and in low abundance were removed, namely those present in fewer than 175 

three samples, or at a total relative abundance < 0.01%. All counts were normalized by proportion 176 

of total reads and presented as counts per thousand reads. R package phyloseq (v. 1.34; McMurdie 177 

and Holmes, 2013) was used to characterize the communities and estimate diversity parameters on 178 

rarified libraries (nbact = 15,300 and nfungi = 2,544 reads per sample). Fungal taxonomic 179 

classifications were used to identify EMF, endophytic, and saprotrophic fungi using the FUNGuild 180 

database (v. 1; Nguyen et al., 2016). Samples from throughfall-exclusion plots were removed 181 

during all analyses of seasonal or latitudinal effects.  182 



2.5 Bioinformatic and statistical analyses 183 

The differential abundance of OTUs between reference and throughfall exclusion plots 184 

(i.e., ‘drought-affected’) were identified using the R software package indicspecies (v. 1.7.9; 185 

Cáceres and Legendre, 2009). Indicator species analysis was performed independently for soil 186 

layers, season, and forest type, then combined and de-duplicated. Non-significant indicator OTUs 187 

(padj < 0.05) and those with low indicator values (< 0.35) were excluded. Alpha-diversity was 188 

measured as species richness, Shannon diversity, and Pielou’s evenness. Beta-diversity was 189 

assessed using Bray-Curtis dissimilarity and differences in community composition were 190 

visualized using principal coordinates analysis and tested with PERMANOVA (nperm = 999) using 191 

‘adonis’ from the R package vegan (v. 2.5.7; Oksanen et al., 2015). Resistance (R) to change in 192 

microbiome composition due to throughfall exclusion was measured as the Bray-Curtis 193 

dissimilarity between reference and exclusion plots (D), such that R = 1 – D. A lower R value 194 

indicates a greater dissimilarity between reference and throughfall exclusion plots, indicating a 195 

greater drought effect (De Vries and Shade, 2013). R was calculated for the average of all 196 

permutations of replicates between reference and exclusion plots. The environmental and 197 

microbiome features that were most predictive of SWC were identified using random forest-based 198 

feature selection implemented in the R package Boruta (v. 7.0; Kursa and Rudnicki, 2010). 199 

Features included in model selection were environmental (soil layer, root zone, site, season, year) 200 

and microbiome (aggregated counts at the taxonomic rank of Order scaled with the ‘scale’ function 201 

in R). Subsequently, Pearson’s correlations between selected bacterial and fungal features and 202 

SWC were performed using ‘rcorr’ from the R package Hmisc (v. 4.5; Harrell and Dupont, 2015). 203 

Differences in the relative abundance of OTUs among tree root zones were tested with ANOVA 204 

(‘aov’ function in R). The main effects and interactions between throughfall exclusion, season, or 205 

tree root zone on the relative abundances of OTUs, were determined by fitting to fixed effects 206 



linear models (‘lm’ function). P-values were adjusted for multiple test correction according to the 207 

Benjamini and Hochberg false discovery rate. Only the most abundant OTUs (> 0.05% of sample 208 

reads) were included in statistical testing. Significant effects are denoted by asterisk: p < 0.05 (*), 209 

p < 0.01 (**), and p < 0.001 (***). All analyses can be reproduced with scripts included in the 210 

Supplementary Data package available through the Open Science Foundation (doi: 211 

10.17605/OSF.IO/DN9CH). 212 

3. Results 

Our initial analyses were performed to establish the drought susceptible and tolerant 213 

(section 3.1) and spruce- and beech-associated soil microbiome and rhizobacteria (section 3.2) 214 

prior to testing whether the response of these groups differed in species-specific versus mixed root 215 

zones (section 3.3). Additional analyses were performed to characterize the natural variation 216 

(seasonal and precipitation gradient) in drought-affected populations among tree root zones and 217 

soil layers (section 3.4). 218 

3.1.1 General effects of throughfall exclusion on soil properties and the soil microbiome  219 

Across the full 5-year experimental period, throughfall exclusion resulted in a 70% 220 

reduction in SWC, on average, during the growing season (Grams et al., 2021) and, at the time of 221 

our sampling, the throughfall exclusion plots had significantly lower SWC in upper (x̄ = -27.8%) 222 

and lower soil layers (x̄ = -22.4%) across all seasons (Figure S1). Upper layers had higher average 223 

SWC though the extent of moisture reduction was comparable in both layers (t = -3.9 vs. -3.2, 224 

respectively). Throughfall exclusion significantly decreased fine root mass, with a greater effect 225 

on upper layers (x̄ = -51.1%; t = -4.2; p < 0.001) compared to lower layer soils (x̄ = -29.8%; t = -226 

3.2; p < 0.001). Exclusion had minor effects on soil pH (+1% in upper layer; p = 0.03); and had 227 

mostly insignificant effects on SOM and DNA yield (Figure S1). Throughfall exclusion accounted 228 

for a relatively low proportion of variation in the beta-diversity of soil bacterial and fungal 229 



communities (Figure 2AB), which was primarily attributable to differences among soil layer and 230 

tree root zone. Communities from mixed root zones exhibited an intermediate similarity between 231 

species-specific root zones (Figure 2A). 232 

3.1.2 Drought-affected soil bacteria and fungi 233 

The differences in the relative abundance of OTUs between reference and throughfall 234 

excluded plots were used to identify ‘drought-favored’ or ‘drought-sensitive’ bacterial and fungal 235 

populations. The soil microbiome at Kranzberg was comprised of 10,357 bacterial and 3,282 236 

fungal OTUs. Of these, a total of 369 bacterial and 23 fungal OTUs were indicative of throughfall 237 

exclusion (Table S6). More OTUs were drought-sensitive (nbact = 194 and nfungi = 15) than drought-238 

favored (nbact = 175 and nfungi = 8). More drought-affected OTUs were observed in upper (n = 215) 239 

versus lower soil layers (n = 130), but OTUs did not differ in their likelihood of being drought-240 

affected based on their soil layer association (Fisher’s test; p = 0.8). 241 

Drought-favored fungi were primarily classified as Ascomycota (80%) and belonged to 242 

genera designated as saprotrophic (Pseudogymnoascus, Niesslia, and Ciliolarina). Two of the 243 

eight drought sensitive fungal OTUs were classified to genera of EMF (Inocybe and Lactarius). 244 

However, the overall relative abundance of EMF was largely unaffected by throughfall exclusion 245 

(Figure S2A). Fungal endophytes (genus Phialocephala) were significantly more abundant in 246 

throughfall-excluded upper soils (Figure S3A) and were relatively more abundant in spruce root 247 

zones (Figure S3B).  248 

Throughfall exclusion affected a phylogenetically diverse group of bacteria, but most of 249 

the affected OTUs were classified to Planctomycetes, Alphaproteobacteria and Actinobacteria 250 

(Figure S4; complete list in Table S6). Actinobacteria were near uniformly drought-favored 251 

(primarily classified as Pseudonocardiales, Solirubrobacterales, and Microccocales), while 252 

Planctomycetes were primarily drought-sensitive (Pirellulales, Gemmatales, and 253 



Planctomycetales), though certain clades of Planctomycetes also contained a high proportion of 254 

drought-favored taxa (Tepidisphaerales and Isosphaerales). Within Alphaproteobacteria, several 255 

orders were favored by throughfall exclusion, namely populations of Caulobacterales 256 

(Phenylobacterium), Elsterales, and Sphingomonadales (Sphingomonas) while others were 257 

sensitive, namely populations of Rhizobiales (Roseiarcus, Rhodoplanes, and Bradyrhizobium) and 258 

Reyranellales (Reyranella). Other major bacterial groups that were drought sensitive included: 259 

Deltaproteobacteria (Myxococcales), Verrucomicrobia (Pedosphaeraceae and 260 

Xiphinematobacteriaceae), and Dependentiae (Vermiphilaceae). 261 

3.2.1 Beech- and spruce-associated soil bacteria and fungi and rhizobacteria 262 

Soil microbiome composition significantly differed between beech and spruce root zones, 263 

though the most abundant bacterial and fungal OTUs (≥ 0.2% of total reads) were present in all 264 

root zones (97% of bacteria and 52% of fungi; Figure S5). The relative abundances of beech- and 265 

spruce-associated OTUs in mixed zones were characteristically intermediate between the relative 266 

abundance in the species-specific zones (Figure S6). The spruce-associated microbiome was 267 

dominated by several orders of Actinobacteria (Frankiales and Solirubrobacterales) and 268 

Acidobacteria (Acidobacteriales and Solibacterales; Figure 3A) and had a higher 269 

Ascomycota:Basidiomycota ratio compared to beech (Figure S7). The beech microbiome had a 270 

higher proportion of Proteobacteria (Alpha-, Gamma- and Delta-), Verrucomicrobia and 271 

Planctomyces and a higher proportion of EMF (Figure S2B). Beech-associated taxa were 272 

significantly more likely to be drought-sensitive than spruce-associated taxa (Fisher’s Exact, O.R. 273 

= 23.8; p < 0.001), with spruce-associated taxa tending to increase in relative abundance in 274 

throughfall excluded plots.  275 

Rhizobacterial populations associated with beech and spruce roots were identified using 276 

indicator analysis. Beech-associated rhizobacterial populations were enriched in 277 



Alphaproteobacteria from the family Xanthobacteraceae relative to spruce, which were enriched 278 

in Acidobacteriales (Acidipila, Granulicella and Occallatibacter) and Frankiales (Acidothermus; 279 

Figure 3B, complete list in Table S7). Bacterial species richness and evenness were significantly 280 

higher in beech than spruce root zones, while no differences were evident for fungi (Figure S8). 281 

3.2.2 Corresponding differences in plant and soil properties among root zones 282 

Trends in the soil microbiome corresponded primarily with differences in fine root mass 283 

and soil organic matter content in root zones. The upper soil layer in spruce root zones had a 284 

significantly higher percentages of soil organic matter (2-fold) and SWC than beech, except for at 285 

Arnstein, which received the lowest precipitation (Figure S9A). In contrast, the beech root zone 286 

had significantly higher fine root mass in both the upper (66%) and lower layers (60%) at all sites, 287 

while mixed zones had intermediate root mass. In all sites, fine root mass followed seasonal trends 288 

in SWC between spring and fall, increasing in wetter sites (Wasserburg and Traunstein) and 289 

declining in drier sites (Arnstein and Kranzberg), with the trend most pronounced in beech stands 290 

(Figure S9B). Soil pH was significantly more acidic in spruce (x̄ = 4.04) than beech (x̄ = 4.30), 291 

with intermediates values in mixed root zones (x̄ = 4.21). 292 

3.3.1 Contrasting the effects of soil moisture on microbiomes among root zones 293 

We tested for the generalized effects of soil moisture reduction on soil bacteria and fungi 294 

among root zones using the community resistance (R) metric. In our study, lower R values indicate 295 

a greater change in community composition resulting from reduced soil moisture (i.e., a lower 296 

resistance). On average, R values for bacterial communities differed by tree root zone, but not for 297 

fungal communities. Bacterial communities in the spruce root zones had higher R values than in 298 

the beech root zones, though this difference was only significant in the lower soil layer (Figure 299 

4A). Differences in R among root zones corresponded with the proportion of drought-favored 300 

(higher in spruce) and drought-sensitive bacterial OTUs (higher in beech; Figure 4B). The spruce 301 



soil microbiome also exhibited greater R values in relation to seasonal changes between spring 302 

(wettest) and fall (driest) at Kranzberg and, in this case, the mixed root zone also exhibited 303 

significantly higher R than species-specific beech (Figure S10A). These differences also 304 

corresponded to significant seasonal increases in drought-favored and drought-sensitive taxa 305 

(Figure S10B). R values for fungal communities were variable and did not significantly differ 306 

among tree root zones (Figure S11A). Yet, the relative abundance of drought-favored fungal OTUs 307 

was also significantly higher in spruce root zones (Figure S11B). 308 

3.3.2 Contrasting responses in the soil microbiome of species-specific and mixed root zones 309 

The effects of throughfall exclusion on several abundant beech- and spruce-associated 310 

bacteria were significantly altered in the mixed-species root zone. Several beech- and spruce-311 

associated OTUs that were affected by throughfall exclusion in species-specific root zones 312 

exhibited enhanced tolerance in mixed root zones (Figure 5AB; Table S8). Conversely, several 313 

OTUs that were unaffected by throughfall exclusion in species-specific root zones exhibited 314 

different responses in mixed-species root zones. These could be divided into beach-associated 315 

OTUs, that exhibited a greater susceptibility (Figure 5C), and spruce-associated OTUs, that 316 

exhibited a greater resistance, in mixed-species root zones (Figure 5D; Table S9). These trends 317 

were evident when profiling the same populations across seasonal differences in SWC at 318 

Kranzberg (lower panels in Figure 5C and 5D), and at other sites, though not uniformly (Figure 319 

S12). There were no significant interactions between root mixing and throughfall exclusion for 320 

soil fungi.  321 

3.4.1 Seasonal and latitudinal trends in drought-affected populations 322 

Complementary to the throughfall exclusion experiment, we profiled changes in the soil 323 

microbiome of species-specific and mixed-species root zones across seasonal and latitudinal 324 

gradients in soil moisture and precipitation, respectively (Figure 1A). A random forest, decision- 325 



tree-based feature selection was used to identify the environmental variables and microbial taxa 326 

that were most predictive of soil water content in these gradient (Table 1). Several bacterial orders 327 

were selected as predictors of SWC, and the abundance patterns of Rhizobiales outranked all other 328 

features in importance, including environmental parameters (Table 1). No fungal taxa were 329 

selected as predictors of SWC. The abundance patterns of the top microbiome-based predictors of 330 

SWC closely tracked seasonal and latitudinal differences in precipitation in upper (Figure 6) and 331 

lower soil layers (Figure S13) and were among the same groups impacted by throughfall exclusion. 332 

Among the OTUs identified as drought-affected in data from the throughfall exclusion experiment, 333 

the number that significantly differed among high and low precipitation sites in the latitudinal 334 

gradient was lowest in spring (n = 92), when SWC was highest, and progressively increased in 335 

summer (n = 133) and fall (n = 220).  336 

EMF did not exhibit a clear relationship to SWC as their relative abundance did not vary 337 

significantly by season or site position in the precipitation gradient. The exception was at Arnstein 338 

during the summer, when increased relative abundance of EMF coincided with some of the lowest 339 

SWC values measured (Figure S2B). The EMF taxa that increased in Arnstein during the summer 340 

included taxa from the genera: Amphinema, Clavulina, Otidea, Sebacina, Tricholoma, Inocybe, 341 

and Lactarius.  342 

3.4.2 Moisture related shifts in rhizobacterial abundance between soil layers 343 

Reductions in soil moisture can cause stratification of roots in spruce, to upper soil layers, 344 

and beech, to lower soil layers, according to observed root behavior (Bolte and Villanueva, 2006). 345 

We found that the relative abundance of spruce- and beech-associated rhizobacteria tended to 346 

differ between upper and lower soil layers correspondingly, particularly at Kranzberg (Figure 7). 347 

The enrichment of spruce-associated rhizobacteria in upper layer soils was even more pronounced 348 

during fall, when SWC was lowest, though this interaction was only significant at Kranzberg and 349 



Wasserburg (Figure 7). In contrast, beech-associated rhizobacteria were more prevalent in the 350 

lower soil layer, and no shift was seen due to throughfall exclusion or season. Additionally, at 351 

Kranzberg, the seasonal shift to the upper soil layer was most pronounced in mixed root zones 352 

(tinteract. = 8.1; p < 0.001) compared to species-specific spruce (t = 3.9) or beech root zones (t = 353 

3.6). No shifts in spruce- and beech-associated fungi were evident, though we did not obtain fungal 354 

sequence data from rhizoplane / endophyte samples. 355 

4. Discussion 

Our study reveals major differences in the response of Norway spruce and European beech 356 

soil microbiomes to changes in soil moisture and their interplay in mixed root zones. A 357 

significantly higher proportion of beech-associated taxa were sensitive to reductions in soil 358 

moisture compared to the more drought-tolerant populations associated with spruce. Furthermore, 359 

several populations of rhizobacteria and soil bacteria had increased resistance or susceptibility to 360 

drought in mixed-species root zones relative to species-specific. These findings lead us to reject 361 

the hypothesis that the response of microbial populations to changes in moisture would not differ 362 

in mixed-species root zones, allowing for the possibility that complementation can occur. Here, 363 

we discuss the possible reasons why drought may impact spruce- and beech-associated soil 364 

microbiomes differently, and the potential consequences of the phenomena observed in mixed-365 

species root zones. 366 

4.1 Explaining the contrasting effects of reduced soil moisture on beech and spruce microbiomes  367 

Taxa that were consistently impacted by experimental or natural reductions in soil moisture 368 

were broadly characteristic of the spruce and beech microbiomes described in prior research 369 

(Asplund et al., 2019; Bárta et al., 2017; Felsmann et al., 2015; Nacke et al., 2016; Uroz et al., 370 

2016). Several of these broad taxonomic groups were previously shown to be impacted by reduced 371 

throughfall in beech and spruce forest (Felsmann et al., 2015), and other forest types (Bastida et 372 



al., 2017; Bouskill et al., 2013). Our results demonstrate that soil bacterial communities in species-373 

specific spruce root zones have a higher resistance to the impacts of drought and to seasonal 374 

reductions in soil moisture than in beech root zones (Figure 4; Figure S10). This difference 375 

corresponded with a higher proportion of drought-tolerant bacteria in the spruce microbiome than 376 

in beech, and higher proportions of drought-sensitive bacteria in the beech microbiome. While this 377 

is the first time such broad differences in moisture sensitivity have been reported, prior research 378 

has shown that the mineral weathering activity of rhizobacteria isolated from beech was higher 379 

during wetter periods while the reverse was true for those isolate from spruce (Collignon et al., 380 

2011).  381 

Prevailing differences in soil conditions between spruce and beech stands likely help explain 382 

the disparity in drought tolerance and sensitivity in their respective soil microbiomes. 383 

Physiological differences in rooting depth result in consistently drier conditions in shallow soils in 384 

spruce stands relative to beach (Allen et al., 2019; Zwetsloot and Bauerle, 2021). Our findings 385 

indicate that this effect is large enough to select for higher proportion of drought stress-tolerant 386 

bacteria in spruce soils. Additionally, soil acidification was more pronounced in spruce root zones 387 

relative to beech (Figure S1), as indicated by the high relative abundance of acidophilic indicator 388 

taxa (Acetobacterales, Frankiales and Acidobacteriales), as previously shown (Sridhar et al., 389 

2022a). Our observations were consistent with current understanding about difference in soil 390 

development under beech and spruce stands caused by root and litter chemistry, nutrient leaching 391 

and uptake, and mineralization and nitrification rates (Cremer and Prietzel, 2017). Spruce roots 392 

and litter contain significantly higher concentrations of polyphenols than beech (Kuiters and 393 

Denneman, 1987; Zwetsloot and Bauerle, 2018), which are generally toxic to soil heterotrophs 394 

(Adamczyk et al., 2013; Chunmei et al., 2010; Inderjit et al., 2009; Metsämuuronen and Sirén, 395 



2019). The high acidity and polyphenol content of spruce soils create adverse growing conditions, 396 

which retard decomposition (Albers et al., 2004; Berger et al., 2004) and reduce soil respiration 397 

and biomass in spruce stands relative to mixed-species and beech stands (Borken et al., 2002; 398 

Borken and Beese, 2005; Lu and Scheu, 2021). These adverse conditions, along with consistently 399 

lower shallow soil moisture levels in spruce stands, may select for stress-tolerant populations, 400 

which may better endure water stress. This theory is supported by the overlapping physiological 401 

stress response to acidity, low osmolarity, and desiccation observed in model bacteria (Ait-402 

Ouazzou et al., 2012; Hengge-Aronis, 2002; Spector and Kenyon, 2012). It is also anecdotally 403 

supported by the enrichment of the thermophilic, acid-tolerant genus Acidothermus by throughfall 404 

exclusion in spruce and mixed root zones (Figure S14), which are characteristic of droughted and 405 

arid soils (Eppard et al., 1996; Lacerda-Júnior et al., 2019).  406 

The prevalence of drought-sensitive taxa in beech-specific soils could also reflect differences 407 

in the degree of rhizosphere activity between beech and spruce. Beech produce more fine root 408 

mass (Finér et al., 2007), apparent at all our sites (x̄ = 1.4 to 2.1-fold higher), and sustain more 409 

microbial biomass and higher soil respiration rates than spruce (Borken et al., 2002; Borken and 410 

Beese, 2005; Lu and Scheu, 2021). Thus, the apparent sensitivity of beech-associated taxa may 411 

reflect the inability of beech roots to sustain basal levels of microbial activity during drought. The 412 

potential diminished influence of beech on the soil microbiome during drought was evident in the 413 

decline of microbial populations indicative of higher trophic complexity, including members of 414 

the Vermiphilaceae, endosymbionts of amoeba (Delafont et al., 2015), and Candidatus 415 

Xiphinematobacter, symbionts of nematode (Rius et al., 2021; Vandekerckhove et al., 2000). 416 

While we cannot disentangle the relative contributions of roots versus litter to differences in the 417 

soil microbiomes between spruce and beech, root traits have a far greater importance in explaining 418 



the physicochemical properties of species-specific and mixed forest soils than litter traits (Cesarz 419 

et al., 2013; Gillespie et al., 2021). 420 

4.2 Effects of root mixing on the impacts of reduced soil moisture  421 

Most beech- and spruce-associated fungi or bacteria occurred at an intermediate relative 422 

abundance in mixed root zones. This result indicates that the influence of each tree follows a 423 

gradient and that taxa associated with either tree species can co-occur. These observations are 424 

consistent with prior reports of intermediate heterotrophic activity (Borken et al., 2002; Borken 425 

and Beese, 2005), microbial biomass (Lu and Scheu, 2021), litter decomposition rates (Albers et 426 

al., 2004), and mineral weathering (Cremer and Prietzel, 2017) in mixed root zones. Thus, the 427 

hybrid soil microbiome in mixed root soils reflects the combined, but weakened, influences of 428 

each tree.  429 

The resistance of several beech and spruce-associated bacteria to throughfall exclusion was 430 

enhanced in mixed root zones (Figure 5AB). These populations included members of 431 

Acidobacteria (Bryobacter and Occallatibacter, both spruce-associated rhizobacteria), which are 432 

reputed for their production of extracellular polymeric substances, which confer stress tolerance 433 

to cells and may influence soil moisture dynamics (Foesel et al., 2016; Kielak et al., 2016; 434 

Kulichevskaya et al., 2010). In contrast, several members of Xanthobacteraceae (Bradyrhizobium 435 

and Rhodoplanes) were more susceptible to throughfall exclusion in mixed root zones (Figure 5C). 436 

Xanthobacteraceae are known to increase in abundance in proximity to beech trunks (Nacke et al., 437 

2016), suggesting that their capacity to resist drought may depend on the density of beech roots or 438 

litter. Conversely, several spruce-associated taxa exhibited enhanced resistance to drought 439 

exclusively in mixed roots zones (Figure 5D), suggesting some populations may benefit from the 440 

reduced competition where drought-sensitive, beech-associated taxa are diminished. Our 441 

explanations for trends in mixed root zones remain to be tested, but these observations illustrate 442 



the range of interactions occurring where the influence of trees and, by extension, their 443 

microbiomes mix.  444 

4.3 Effects of reduced soil moisture on root-associated taxa  445 

The rhizosphere activity of spruce and beech varies by season and moisture availability, with 446 

the highest activity in spring (Calvaruso et al., 2014) and diminished photosynthate-derived 447 

microbial rhizosphere biomass during drought (Ruehr et al., 2009). We hypothesized that 448 

reductions in soil moisture would disproportionately impact root-associated taxa, like EMF, which 449 

are important contributors to nutrient acquisition by spruce and beech (Brzostek et al., 2013; 450 

Calvaruso et al., 2014; Collignon et al., 2011; Gan et al., 2021; Nicolitch et al., 2016). Contrary to 451 

expectations, we did not observe any compositional changes in soil EMF populations from 452 

throughfall exclusion, seasonal variation, or across the precipitation gradient. The lack of shift in 453 

EMF populations is not without precedent in spruce and beech forests (Gorfer et al., 2021; Nickel 454 

et al., 2018; Žifčáková et al., 2015). The apparent resiliency of EMF to changes in community 455 

composition may reflect their direct connection to live roots and a privileged access to root 456 

exudates relative to bacteria, consistent with the more severe impacts in bacterial populations we 457 

observed and reported elsewhere (de Vries et al., 2018; Fuchslueger et al., 2014). Access to 458 

exudates and shelter within the root might explain why endophyte populations (Phialocephala) 459 

were among the few fungi favored by throughfall exclusion (Figure S3).  460 

Rhizobacteria were among the most affected by throughfall exclusion and seasonal and 461 

latitudinal variation in soil moisture. Members of the Rhizobiales and Burkholderiaceae were 462 

greatly diminished by throughfall exclusion in both beech and spruce root zones (Figure 6; Figure 463 

S15). These drought-sensitive populations were dominated by members of Bradyrhizobium and 464 

Rhodoplanes (Xanthobacteraceae) and Caballeronia and Paraburkholderia (Burkholderiaceae) 465 

which are consistently associated with the rhizosphere of European beech and Norway spruce 466 



(Colin et al., 2017; Uroz et al., 2016) and are common root- and mycorrhizae-associated bacteria 467 

isolated from forest soils (Burke et al., 2008; Izumi et al., 2007, 2006; Kataoka et al., 2008; Tanaka 468 

and Nara, 2009; Uroz et al., 2012; Wilhelm et al., 2020). The apparent drought sensitivity of these 469 

rhizobacteria has implications for soil nutrient cycling and plant nutrition, given their involvement 470 

in priming decomposition (Wilhelm et al., 2021; Zwetsloot et al., 2020), phosphate solubilization 471 

in the beech and spruce rhizosphere (Lepleux et al., 2012; Nicolitch et al., 2016), and endophytic 472 

nitrogen fixation (Puri et al., 2020). 473 

5. Conclusions 

We conclude that any potential complementation of soil microbiome function during drought 474 

is likely to confer greater benefits to beech than spruce, given the higher proportion of drought-475 

favored spruce-associated taxa and their sustained resistance in mixed root zones. The enhanced 476 

drought tolerance of beech in mixed stands with spruce has been reported (Schäfer et al., 2017), 477 

though the benefits of mixing are more commonly reported to favor Norway spruce (del Río et al., 478 

2014; Ding et al., 2017; Rötzer et al., 2017). Thus, it remains to be seen what functions the 479 

complementation of soil microbiomes might have in the drought resistance of mixed beech-spruce 480 

forests. The impact of reduced soil moisture was greater on rhizobacteria than EMF populations, 481 

with a higher proportion of EMF occurring in the beech soil microbiome. Thus, the likeliest form 482 

of complementarity in mixed-root zones might correspond with the enrichment of drought-tolerant 483 

populations by spruce and the sustenance of EMF activity by beech. 484 

Forests and their soil microbiome are complex adaptive systems in which legacy and context 485 

shape biological responses to water limitation (Bouskill et al., 2013). Yet, the moisture sensitivity 486 

of major drought-affected populations, such as members of the Rhizobiales, were consistent across 487 

sites and season, providing evidence for the potential widespread occurrence of phenomena 488 

reported here. Future research is needed to understand the ecological and environmental drivers of 489 



differences across sites and to test the functional consequences of complementation between 490 

microbiomes of beech and spruce, and other abundant tree species, in mixed root zones. 491 
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Tables 

Table 1. The top environmental and soil microbiome predictors of soil water content were 953 
identified, and ranked, using Boruta random forest-based feature selection. The relative abundance 954 
pattern of aggregated counts of Rhizobiales was ranked as the best predictor of SWC, followed by 955 

soil layer and precipitation gradient site. Fungal and bacterial count data, aggregated by Order, 956 
were included in feature selection, but only bacteria had predictive value. Bacterial orders that had 957 
significant Pearson’s correlations with SWC content in both layers (r > | 0.2 | and padj < 0.05) and 958 
were among the top 20 most important features are displayed (full list in Table S10). The family 959 
Gimesiaceae is historically known as ‘Planctomycetaceae.’  960 



Figures 

Figure 1. A schematic overview of the experimental design used to examine the effects of natural 961 
and experimental variation in soil moisture on the soil microbiome of species-specific and mixed-962 
species stands of European beech and Norway spruce. In (A), samples were collected in spring, 963 

summer, and fall and at sites spread across a natural precipitation in Bavaria, Germany. In (B), at 964 
Kranzberg, the mid-point of the gradient, samples were taken from a five-year old throughfall 965 
exclusion experiment where rain-out roofs had been used to reduce soil moisture during the 966 
growing season. Each symbol accurately reflects the distribution of trees species (full details in 967 
Rötzer et al. 2017). In (C), at all sites, and in the throughfall exclusion plots at KROOF, samples 968 

were taken from species-specific or mixed-species tree root zones. Ten soil cores (30 cm deep) 969 
were randomly sampled from five to six plots for each tree root zone at each site and during every 970 
season and subdivided into upper and lower soil layers before being composited.  971 

Figure 2. The composition of soil bacterial and fungal communities at Kranzberg differed 972 
primarily by soil layer and tree root zone, as evident in (A) the grouping of samples by principal 973 
coordinates analysis and (B) the proportion of variance explained (R2) in a PERMANOVA 974 

analysis based on the Bray-Curtis dissimilarity in community composition.  975 

Figure 3. Beech and spruce root zones had marked differences in the taxonomic composition of 976 

soil bacteria and fungi and rhizobacteria. In (A), the bar plots provide a summary of the relative 977 
proportions of indicator OTUs for beech- and spruce-associated bacteria (n = 506) and fungi (n = 978 
63) according to the ratio of their aggregated relative abundance at rank Order. The subset of tree-979 

associated taxa affected by drought are labeled on the y-axis. In (B), the taxonomic profile or 980 
rhizobacteria associated with either beech or spruce according to indicator analysis using 16S 981 

rRNA gene amplicon data generated from root material. 982 

Figure 4. The resistance (R) of soil bacterial communities to the effects of throughfall exclusion 983 

in soil moisture was greatest in spruce root zones at Kranzberg. Differences in R among root zones 984 
(B) corresponded with the relative abundance of drought-favored and drought-sensitive 985 

populations. Pairwise differences in resistance among tree root zones sites were tested using 986 
TukeyHSD (padj < 0.05). In (B), the effects of throughfall exclusion (pexcl.) were significant for all 987 
groups. Any significant differences between tree root zone were denoted by bars with asterisk and 988 

interactions between throughfall treatment and tree root zone were denoted by asterisk. 989 

Figure 5. The responses of beech- and spruce-associated OTUs to throughfall exclusion were 990 
significantly altered in soil microbiome of mixed root zones at Kranzberg. In (A), the relative 991 
abundance of several drought-sensitive beech-associated OTUs (n = 10) were largely 992 

undiminished in mixed root zones. In (B), several drought-sensitive spruce-associated OTUs (n = 993 
5) had enhanced resistance to throughfall exclusion in mixed root zones. Several OTUs that were 994 

not significantly affected by throughfall exclusion in species-specific root zones showed, in (C), 995 
an increased susceptibility (n = 8) or, in (D), an increased resilience (n = 4) in mixed zones. These 996 
trends were consistent with trends in relative abundances between spring (wettest) and fall (driest 997 
season) at Kranzberg (lower panel of C and D). Individual OTU exhibited significant interactions 998 
between throughfall exclusion and tree root zone (Table S8 and Table S9) but were displayed in 999 

aggregate. Any significant differences between tree root zone were denoted by bars with asterisk 1000 
and interactions between throughfall treatment (or season) and tree root zone were denoted by 1001 
asterisk. 1002 



Figure 6. The relative abundance of four major bacterial orders followed changes in soil water 1003 

content caused by throughfall exclusion plots, seasonal variation, and across the latitudinal 1004 
precipitation gradient. In (A), the soil water content in the upper soil layer was reduced by 1005 
throughfall exclusion (box plot), and across seasons (x-axis) and gradient sites (lines). In (B), the 1006 

relative abundances of the four bacterial Orders identified in feature selection as predictive of SWC 1007 
(Table 1). The same trends were evident in lower layer soils, though less pronounced (Figure S13). 1008 
Significant differences between mean SWC or relative abundance between seasons were denoted 1009 
by bars with asterisks. Significant interactions between season and site were denoted by colored 1010 
asterisks. Lettering denotes significant differences among sites according to TukeyHSD (padj < 1011 

0.05). 1012 

Figure 7. Shifts in the relative abundance of rhizobacteria in response to (A) throughfall exclusion 1013 
or (B) seasonal differences between spring and fall revealed the putative partitioning of roots 1014 

between soil layers. Spruce-associated rhizobacteria (upper panel) tended to occur at higher 1015 
proportions in the upper soil layer, while beech-associated rhizobacteria (lower panel) tended to 1016 
be more abundant in the lower layer. Significant differences between soil layer means were 1017 

denoted by bars with asterisk and interactions between throughfall treatment (or season) and soil 1018 
layer were denoted by asterisk. 1019 
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Signatures of root partitioning in rhizobacteria between soil layers
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