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Dear Editor(s), 

On behalf of all authors, I hereby submit the manuscript entitled “Improved daily estimates of relative humidity at high 

resolution across Germany: a Random Forest approach” for consideration of publication in Environmental Research as 

an original research article.  

Many disciplines of environmental science stand in need of highly-resolved spatiotemporal datasets of meteorological 

parameters such as of relative humidity. For instance, a main challenge in the field of environmental epidemiology is the 

occurring error in exposure assessment of participants of cohort studies, as the commonly used weather station 

observations are incapable to fully capture the spatiotemporal variability of most meteorological exposures, including 

relative humidity. However, there is a lack of readily available methods for modeling relative humidity in high-resolution 

country-wide. To contribute to the existing knowledge and tackle this issue for subsequent health-environment analyses 

in Germany, we aimed to extend and improve the country’s spatiotemporal coverage of relative humidity data by using 

the random forest methodology and go beyond the conventional interpolation of meteorological observations, also 

incorporating several spatiotemporal predictors from multiple sources, e.g., remote sensing.  

Thus, we generated a high resolution relative humidity dataset in the complex geo-climate terrain of Germany and the 

random forest model achieved high predictive accuracy and low errors. Particular strengths of our work is the applied 

cross-validation scheme which allowed us to simulate the prediction step of our model as well as the conducted external 

validation of our model predictions with data from an independent and dense network of weather stations. Most 

importantly, we introduced a reliable, straightforward and also generalizable approach for estimating relative humidity in 

different spatial settings, which would be of high interest for researchers in various fields of environmental science.  

We believe this manuscript is appropriate for publication in Environmental Research due to its research focus and novelty. 

In addition, this work fits greatly in Environmental Research in continuation of our recently published paper on the 
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German-wide and highly-resolved air temperature models (Nikolaou et al., 2022), with the estimated mean air 

temperature to serve as a very important predictor for our relative humidity model as well. Best of our knowledge, this is 

the first highly-resolved relative humidity dataset of high performance, also externally validated and generated for more 

than two decades in a country level. This manuscript may be of particular interest to the journal’s audience as it addresses 

a very important challenge in the field of environmental epidemiology.  

This work is original. All of the authors have read and approved the paper and it has not been published previously nor 

is it being considered by any other peer-reviewed journal. Our study does not include human subjects. We have no 

conflicts of interest to disclose. 

Please address all correspondence concerning this manuscript to: nikolaos.nikolaou@helmholtz-muenchen.de   

Thank you a lot for your consideration.  

Yours Sincerely, 

Nikolaos Nikolaou 

Institute of Epidemiology,  

Helmholtz Zentrum München - German Research Center for Environmental Health, 

Ingolstädter Landstr. 1,  

D-85764 Neuherberg,  

Germany 
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Highlights  

 We estimated daily 1 × 1 km near-surface relative humidity (RH) in Germany, 2000-2021 

 The random forest model achieved good performance (R2 = 0.80, RMSE = 5.42 %) 

 Validation with external data confirmed the model’s high accuracy and low errors 

 We propose an RH modeling process generalizable to other study domains / countries 

 We provide reliable and highly-resolved RH data for epidemiological studies 

Highlights



1 
 

Improved daily estimates of relative humidity at high resolution across Germany: a Random 1 

Forest approach  2 

Nikolaos Nikolaou1,2*, Laurens M. Bouwer3, Marco Dallavalle1,2, Mahyar Valizadeh1, Massimo Stafoggia4, 3 

Annette Peters1,2, Kathrin Wolf1§, Alexandra Schneider1§ 4 

1Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental 5 

Health, Neuherberg, Germany 6 

2Institute for Medical Information Processing, Biometry, and Epidemiology, Pettenkofer School of Public 7 

Health, LMU Munich, Munich, Germany 8 

3Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon, Hamburg, Germany 9 

4Department of Epidemiology, Lazio Regional Health Service – ASL Roma 1, Rome, Italy  10 

*Corresponding author 11 

Address: Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany 12 

Phone: +49 176 377 488 68  13 

E-mail: nikolaos.nikolaou@helmholtz-muenchen.de  14 

§Shared last authorship  15 

Manuscript File Click here to view linked References

mailto:nikolaos.nikolaou@helmholtz-muenchen.de
https://www.editorialmanager.com/envres/viewRCResults.aspx?pdf=1&docID=62089&rev=0&fileID=1277834&msid=9c624f58-193e-4513-ba1a-b03021962843
https://www.editorialmanager.com/envres/viewRCResults.aspx?pdf=1&docID=62089&rev=0&fileID=1277834&msid=9c624f58-193e-4513-ba1a-b03021962843


2 
 

Abstract 16 

The lack of readily available methods for estimating high-resolution near-surface relative humidity (RH) 17 

and the incapability of weather stations to fully capture the spatiotemporal variability can lead to 18 

exposure misclassification in studies of environmental epidemiology. We therefore aimed to predict 19 

German-wide 1 × 1 km daily mean RH during 2000-2021. RH observations, modelled air temperature, 20 

precipitation and wind speed as well as remote sensing information on topographic elevation, vegetation, 21 

and the true color band composite were incorporated in a Random Forest (RF) model, in addition to date 22 

for capturing the temporal variations of the response-explanatory variables relationship. The model 23 

achieved high accuracy (R2 = 0.80) and low errors (Root Mean Square Error (RMSE) of 5.42 %), calculated 24 

via ten-fold cross-validation. A comparison of our RH predictions with measurements from a dense 25 

monitoring network in the city of Augsburg, South Germany confirmed the good performance (R2 ≥ 0.84, 26 

RMSE ≤ 5.91 %). The model displayed high German-wide RH (21y-average of 79.05 %) and high spatial 27 

variability across the country, exceeding 15 % on yearly averages. Our findings indicate that the proposed 28 

RF model is suitable for estimating RH for a whole country in high-resolution and provide a reliable RH 29 

dataset for epidemiological analyses and other environmental research purposes. 30 

Keywords: relative humidity; spatiotemporal modeling; machine learning; external validation; exposure 31 

assessment; environmental epidemiology  32 
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1 Introduction 39 

Relative humidity (RH) refers to the water vapor content of air and quantifies how far the atmosphere is 40 

from its saturation point. RH is a key parameter for many fields such as agriculture (Zhang et al., 2015), 41 

hydrology (Forootan, 2019) and climatology (Sherwood et al., 2010) as it contributes among others to the 42 

soil moisture, the hydrological cycle and the weather and climate conditions. Thus, RH plays an important 43 

role in plant and animal life (Xiong et al., 2017) as well as in human comfort and well-being (Davis et al., 44 

2016; Yang et al., 2018).  45 

RH has mostly been used as a confounder or effect modifier in studies focusing on air temperature (Tair) 46 

(Armstrong, 2006; Zeng et al., 2017), or as part of an index, e.g., apparent temperature (Analitis et al., 47 

2008). Nevertheless, there is evidence that RH is potentially an independent risk factor for mortality (Ou 48 

et al., 2014) and morbidity (Luo et al., 2020). In epidemiology, RH data are usually retrieved from weather 49 

monitors. But their locations are irregularly distributed over space, usually in rural areas, and their number 50 

is limited. Hence, weather stations are inadequate to fully represent the spatiotemporal RH variations in 51 

complex geo-climatic urban and rural landscapes, and by using their observations, error is introduced in 52 

the exposure assessment of study participants leading to estimates biased towards the null (Zeger et al., 53 

2000). Climate reanalysis data could be an alternative source for environmental health research (Mistry 54 

et al., 2022), but the resolution is usually coarser than 9 km and the data fail to capture the city-level 55 

exposure variability effectively. We therefore suggest to extend the methods and datasets in order to 56 

improve the predictions of RH exposure for people participating in epidemiological studies, such as 57 

prospective cohorts with data on the residential addresses of the participants.  58 

There is a clear methodological gap in RH modeling, especially for high spatiotemporally-resolved RH 59 

predictions and for timespans up to multiple years. Li et al. (2014) mapped RH every 3 hours at 1 km by 60 

using a two-step interpolation procedure of re-analysis data based on a partial thin-plate spline (TPS) and 61 
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simple kriging (Root Mean Square Error (RMSE) = 11.06 %). The traditional interpolation techniques have 62 

limited efficiency when mapping meteorological exposures in spatially highly heterogeneous areas, and 63 

are characterized by neighboring effects on exposures predictions, without being capable of capturing 64 

small-scale and intra-city variations. Li and Zha (2018) used a Random Forest (RF) model and satellite data, 65 

to estimate RH during the summer of 2009 (R2 = 0.70, RMSE = 7.4 %). Spatiotemporal predictors which 66 

could explain a large amount of the remaining RH variance, e.g., Tair, were not included. Longer periods 67 

and more predictors need to be tested to capture the full annual and inter-annual RH variability. For China, 68 

the RF model had better results than TPS and kriging, but improvements are needed for better RH 69 

variability representation, higher prediction accuracy and further temporal extension to the annual level.  70 

Remote sensing data are progressively used in environmental exposures modeling (Rosenfeld et al., 2017; 71 

Yao et al., 2022) being publicly available in high spatiotemporal resolution. There is also a growing body 72 

of machine learning (ML) methods applied in the field (Jin et al., 2022; Silibello et al., 2021; Stafoggia et 73 

al., 2019). The RF algorithm, which consists of a multitude of decision trees, copes greatly with big data, 74 

with potentially correlated predictors and their non-linearity, and with overfitting. In addition, RF can be 75 

applied without the burden of complex hyperparameters tuning and is also robust against outliers.  76 

The specific objectives of this study were (a) to estimate highly spatiotemporal resolved RH for Germany 77 

based on Tair and other observation, remote sensing and modelled data by using a RF model, (b) to 78 

evaluate the model’s performance and (c) to produce a reliable German-wide RH dataset for subsequent 79 

epidemiological analyses and various research purposes. Thereby, we aimed to extend the current 80 

literature and provide a generalizable method for other countries to produce highly resolved RH datasets. 81 

2 Materials and Methods 82 

 Study domain 83 
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Germany extends in an area of 357,021 km2, having a strongly diverse landscape and a high elevation 84 

range (-3.54 to 2,962 m). In the south-eastern regions, the climate is classified as warm summer humid 85 

continental, while in north-western regions it is characterized as temperate oceanic (Beck et al., 2018b). 86 

We divided Germany’s land area into 366,536 grid cells of 1 × 1 km resolution, following the European 87 

INSPIRE (Infrastructure for Spatial Information in the European Community) standard for gridded datasets 88 

and using the Lambert Azimuthal Equal-Area (LAEA) projection, EPSG: 3035 (©GeoBasis-DE/BKG (2021)).  89 

 Input data 90 

Large amounts of input data were incorporated in the RF modeling process. We used meteorological 91 

observations, remote sensing and spatiotemporally resolved modelled data, all retrieved from 2000 to 92 

2021 across the study area. 93 

2.2.1 RH data 94 

We used daily mean RH observations (DWD, 2022) from 406 weather stations of the German 95 

Meteorological Service (DWD) (Figure S1). The RH data has been quality controlled by the DWD and all 96 

the needed information such as station location as well as relocations was included in their metadata files.  97 

2.2.2 Tair data 98 

In our previous work (Nikolaou et al., 2022), we estimated daily mean Tair in high-resolution (1 × 1 km) 99 

across Germany using a regression-based method incorporating two linear mixed models. In brief, we 100 

predicted Tair by calibrating the strong relationship between the weather stations’ Tair observations and 101 

the satellite-based land surface temperature (LST) also adjusting for various spatial predictors. We also 102 

applied a TPS interpolation in Tair data in order to achieve a full German-wide coverage. Extensive 103 

validation showed high performance (R2 ≥ 0.96) and low errors (RMSE ≤ 1.41 oC). 104 

2.2.3 Elevation data 105 
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We downloaded elevation data at 30-arc-second spatial resolution, provided by the U.S. Geological 106 

Survey's Earth Resources Observation Systems (EROS) Data Center (Gesch et al., 1999). We aggregated 107 

these data to a 1 × 1 km grid, including the land borders and the shorelines in the North and Baltic Seas 108 

to match our intended spatial resolution (Figure S2). 109 

2.2.4 Greenness data 110 

The normalized difference vegetation Index (NDVI) is a proxy of vegetation greenness on the Earth 111 

surface, quantifying the vegetation cover and quality over space. We retrieved NDVI data of 1 × 1 km from 112 

the TERRA MODIS product MOD13A3v006 (Didan, 2015). These are monthly data, which is sufficient, as 113 

vegetation does not change considerably during a month. 114 

2.2.5 True color band composite data 115 

The visible red, green and blue light bands demonstrate how we see Earth’s surface from space. We 116 

retrieved the daily true color band composite, i.e. the surface spectral reflectance for the red (band 1), 117 

blue (band 3) and green (band 4) bands at 500 m spatial resolution from the TERRA MODIS product 118 

MOD09GAv006, corrected for atmospheric conditions (Vermote, 2015). We aggregated the data to a 1 × 119 

1 km grid, to suit the output’s spatial resolution.  120 

2.2.6 Precipitation data 121 

We used daily precipitation data of 1 × 1 km developed by the REGNIE (Regionalisierte 122 

Niederschlagshöhen) method which are publicly available from the DWD Climate Data Center (DWD, 123 

2022). REGNIE is based on the interpolated DWD weather station precipitation measurements, using a 124 

combination of multiple linear regressions and Inverse Distance Weighting (IDW), with orographic 125 

conditions considered (Rauthe et al., 2013). 126 

2.2.7 Wind speed data 127 
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We retrieved daily mean wind speed (DWD, 2022) of the same 406 weather stations as for the RH data 128 

(Figure S1). We interpolated this dataset to 1 × 1 km spatial resolution using TPS, since studies have 129 

suggested that TPS outperformed other interpolation methods such as kriging or IDW for mapping climate 130 

variables (Wu et al., 2013; Wu et al., 2015).   131 

 Modeling 132 

We trained the RF model, trying to evaluate its efficiency in reproducing the observed RH values measured 133 

by the weather stations, i.e. the ground-based truth. We used 500 trees and 8 randomly sampled variables 134 

as candidates at every split (num.trees = 500, mtry = 8), training the model for each year separately to 135 

capture annual variations. The daily observed mean RH (%) at the DWD stations was the response variable. 136 

The predictors were our previously modelled daily mean Tair (Celsius), the daily red, green and blue bands 137 

(dimensionless), the daily mean precipitation height (mm) and the daily mean wind speed (m∙s-2) as well 138 

as elevation (meters) and monthly NDVI (dimensionless). We also included the day of the year (1 to 139 

365|366) in order to capture daily variations in the response-predictor variables relationship.  140 

2.3.1 Model performance 141 

Ten-fold cross-validation (CV) was used to assess the model performance by randomly dividing the set of 142 

the DWD weather monitors to a training and a testing set (90:10) ten times. Each time, the model was re-143 

fitted using the training set and then the RH was predicted in the respective testing set. Our aim was to 144 

estimate a full time series of RH in locations without weather stations and therefore in grid cells where 145 

the RF model was not previously trained, and consequently to simulate the prediction step of the 146 

modeling procedure. Regressing the observed mean RH vs. the predicted mean RH by the RF model’s 147 

testing set, we calculated the corresponding R2 and RMSE each of the ten times and then we took their 148 

average to represent each year’s CV-R2 and CV-RMSE.  149 
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In the prediction step, we applied the RF model to all grid cells and days combinations without available 150 

RH measurements of DWD weather stations in order to obtain a complete RH dataset for entire Germany. 151 

2.3.2 Validation with external data 152 

An additional validation was conducted by comparing our daily mean RH predictions with measurements 153 

of an independent dense monitoring network during 2015-2019. The network included RH measurements 154 

of 4 minutes temporal resolution from 82 HOBO-Logger devices (ONSET, Type Pro v2), which were located 155 

in the city of Augsburg and in two adjacent counties (Augsburg county and Aichach-Friedberg) (Figure S3). 156 

Detailed information for the monitoring network and the measurements’ quality assurance can be found 157 

in the corresponding paper (Beck et al., 2018a). For our comparison, we aggregated the 4-min RH values 158 

to daily means and then 7-day averages. We generated the corresponding R2 and RMSE as derived from 159 

linearly regressing the predicted RH from the model against the observed RH from the HOBO-Logger 160 

monitors. 161 

The majority of the HOBO-Logger stations were located in the city center of Augsburg or close to it, where 162 

no DWD measurements were available in the training step of the RF model (closest stations were approx. 163 

10 and 18 km apart from the city center, see Figure S3). Thus, we investigated the performance of the 164 

model in an area without prior information but of great epidemiological interest since highly populated 165 

implicating that more people are exposed here. 166 

 Descriptive analyses and case study 167 

Descriptive statistics [mean, standard deviation (SD), minimum (min), first quartile (Q1), median, third 168 

quartile (Q3) and maximum (max)] were calculated from our German-wide RH predictions and from the 169 

DWD observations. We also investigated the spatiotemporal RH patterns over the last 2 decades, overall 170 

and by season.  171 
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To demonstrate the improvement in our exposure assessment, we compared the spatial distributions of 172 

the daily mean RH predictions from the RF model and the daily mean RH measurements from the DWD 173 

stations in an urban location for the two last decades. The city of Regensburg covers an area of 80.76 km² 174 

with about 150,000 inhabitants, and, as one of the study sites of the German National Cohort (NAKO) 175 

(German National Cohort (GNC) Consortium, 2014), has also an epidemiological research interest. 176 

We performed our analysis in R, v. 4.2.2 (R Core Team, 2022). The RF model was developed with the R 177 

package “ranger” (Wright and Ziegler, 2017).  178 

3 Results 179 

Figure S4 shows the Spearman correlation coefficients for the models’ variables. Briefly, RH was found to 180 

be highly and positively associated with the true color band composite (r ≈ 0.5) while there was a strong 181 

negative correlation with Tair (r ≈ -0.5). In Figure S5, we demonstrate the variable importance plot findings. 182 

Date played a very important role. We also observed that Tair and the blue band were the most important 183 

spatiotemporal predictors of the RF model for estimating RH. They were followed by precipitation, wind 184 

speed and elevation and then NDVI, green and red band. The order of the predictors was slightly different 185 

through the years, but there were main trends as described.  186 

 Model performance 187 

The model achieved high accuracy [22-year average R2 = 0.80 (range: 0.75 - 0.86)] and small errors [22-188 

year average RMSE = 5.42 % (range: 4.72 % - 6.60 %), Table 1]. We observed an increase of the model 189 

performance (increase of R2 and decrease of RMSE), together with an increase of the total number of 190 

available weather station data over the years. Autumn months (September-November) had the lowest 191 

RMSE = 4.97 % (range: 4.11 % - 6.16 %) while spring months (March-May) had the highest RMSE = 5.76 % 192 

(range: 4.99 % - 6.78 %) (Figure 1). We also observed that predictions belonging to the lower 10 % of the 193 



11 
 

dataset gave higher errors (RMSE = 8.36 %, range: 7.30 % - 9.71 %) compared to the predictions of the 194 

upper 10 % of the dataset (RMSE = 5.74 %, range: 4.81 % - 7.14 %) (Figure 1).  195 

 Validation with external data 196 

We found a strong correspondence between our RH model predictions and the external HOBO-Logger 197 

network measurements with a 5-year average R2 of 0.84 (range: 0.80 - 0.87) and a 5-year average RMSE 198 

of 5.91 % (range: 5.40 % - 6.90 %) for the daily average RH exposure (Table 2). For the 7-day average RH 199 

exposure, as expected, the accuracy was even higher (R2 = 0.86, range: 0.83 - 0.91) and the errors lower 200 

(RMSE = 4.82 %, range: 4.17 % - 5.92 %). Density scatterplots confirmed the good correlation (Figure S6). 201 

 Case study - Regensburg 202 

In Figure 2, we display the average spatial RH patterns for the region of Regensburg for the period 2000-203 

2021. The city area showed up to 4 % lower RH values than the surrounding rather rural county area. 204 

However, the variability of the daily values which will be also considered in subsequent epidemiological 205 

analysis is much larger than the 22-year average - e.g., up to 14 % (randomly selected example day in 206 

Figure S7). Yet, the rural region was characterized by variations even in neighbouring tiles. The average 207 

RH exposure in Regensburg measured by the available DWD weather station of the region was far below 208 

the Q1 of the RH predictions of the RF model for the region (Figure 3).  209 

 Spatiotemporal RH patterns 210 

Table 3 shows descriptive statistics of measured and modelled RH across Germany for 2000-2021. 211 

Germany was characterized by high RH values with Q1 of both DWD stations’ and model’s RH distribution 212 

to be 71 % and 71.98 %, respectively. The observed and predicted 22-year average RH derived by the DWD 213 

stations and the RF model were 79.05 % (SD = 12.38 %) and 79.05 % (SD = 10.44 %), respectively. 214 
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Figure 4 displays the 22-year averaged predicted RH output map of Germany (plot 1) which indicates 215 

spatial RH patterns, including urbanization, mountainous regions, rivers, forests and coastlines. 216 

Metropolitan areas such as those of Berlin, Hamburg and Munich and the extended and other dense urban 217 

cores (e.g., from Karlsruhe to Frankfurt) had much lower RH values compared to the neighbouring rural 218 

settings. In Figure S8, we zoomed in the Augsburg region, which consists of the city center and two 219 

adjacent counties, to give an example of the high spatial difference between a city center and its 220 

neighbouring but less urbanized areas. Additionally, dense mountainous regions such as the Alps and Harz, 221 

coastlines as the North Sea coast and rivers as Elbe in a large part of it, had the highest RH values country-222 

wide (Figure 4). Also, the temporal RH variability in Germany is presented for 2001-2021, by exhibiting 223 

the differences between the predicted RH yearly averages and the 21-year average (Figure 4, plot 2). We 224 

excluded the year 2000 because the model predictions are only available from late February of that year 225 

due to the missing Tair values until then. There were some fluctuations over the years but without 226 

indication of an increasing or decreasing trend. The most humid years were 2001 (81.31 %), 2014 (81.25 227 

%) and 2013 (80.99 %) while the most arid were 2003 (75.38 %), 2020 (75.58 %) and 2018 (75.60 %), which 228 

are known hot and dry years from the recent climatological record. 229 

Mapping the 22-year average RH by season (Figure S9) identified winter and fall as the most humid 230 

seasons. High spatial RH variability was also observed within each season.  231 

4 Discussion 232 

In this paper, we introduced an approach for spatial and temporal modeling of RH using RF, a popular ML 233 

method for prediction tasks. The approach goes beyond the conventional interpolation of meteorological 234 

observations, and uses several other data sources. We produced a reliable spatiotemporally-resolved RH 235 

dataset at 1 × 1 km spatial resolution across Germany for the period 2000-2021. The RF model achieved 236 

good performance with high predictive accuracy and low errors, validated with both internal data using 237 
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cross-validation (R2 = 0.80, RMSE = 5.42 %), and with independent observational data (0.84 ≤ R2 ≤ 0.86, 238 

4.82 % ≤ RMSE ≤ 5.91 %). A case study for the city of Regensburg shows that our dataset is capable of 239 

capturing the full range of spatial variability of RH compared to the standard use of meteorological 240 

observations. These DWD station observations could not represent the high RH values of the peripheral 241 

areas in Regensburg, but also not the very low RH values of the city center. This clearly demonstrates the 242 

added value of our approach and how the use of additional data sources supplementing the conventional 243 

use of meteorological observations improved the RH prediction. It is especially important to capture the 244 

RH spatial variability for assessing differences in human’s individual exposure in epidemiological studies. 245 

We also presented an analysis of the spatiotemporal RH patterns in Germany during 2000-2021. 246 

The RH-health relevance has not been clarified adequately (Bind et al., 2014). RH adverse effects on 247 

human health could be partially explained by its interplay with the excessive heat stress and the body 248 

dehydration, as described in Davis et al. (2016). During extended and excessive heat events such as 249 

heatwaves, the human body struggles against heat-driven physiological responses and a key mechanism 250 

for its temperature regulation is evaporation. However, when RH is high and therefore air contains a lot 251 

of moisture, it is difficult for the sweat to be relieved and thus cooling becomes insufficient. Hence, the 252 

body core temperature increases while this increase is associated with a variety of detrimental health 253 

effects (Schneider et al., 2017). Additionally, low RH can affect the human skin sensitivity to mechanical 254 

stress (Engebretsen et al., 2016). RH is also associated with the transition of vector-borne diseases e.g., 255 

from mosquitos and ticks (Davis et al., 2016) as well as with the development and stability of 256 

microorganisms in aerosols, facilitating airborne diseases (Božič et al., 2021). 257 

So far there is a literature gap in the investigation of the RH exposure’s direct effects on human health 258 

and the accompanying underlying mechanisms. Further and more detailed research is needed. Hence, it 259 

is critically important for epidemiologists to have access to high-resolution and reliable RH datasets. 260 
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Most epidemiological studies retrieve the participants’ exposure information, in this case RH, from 261 

available meteorological stations that do not capture the full variability of RH, especially at the city scale. 262 

In the Regensburg area, an epidemiological study would usually assign RH measurements from the station 263 

most closely located to each participant’s residential address, but fails to account for the spatial variability 264 

of RH that is actually occurring. Therefore, some measurement error would be introduced and the 265 

variability would be lost. Focusing on the city area, participants who live there would be assigned with a 266 

higher RH value than their actual one. At the same time, those living outside the city center would be 267 

assigned with RH values that are too low. This clearly demonstrates the urgent need for high 268 

spatiotemporal RH datasets for health studies for less biased exposure estimates.  269 

Compared to other studies that use interpolation techniques such as TPS or kriging, our RF model is 270 

capable of reducing errors by half. Li et al. (2014) introduced a two-step procedure to map RH every 3 271 

hours at 1 km resolution over China during 1958-2010. They fitted a partial TPS interpolation to reanalysis 272 

data, location and elevation as predictors, to estimate a trend surface, and then a simple kriging was 273 

applied to the residuals for trend surface correction. They reported a RMSE of 11.06 % whereas our model 274 

showed a RMSE of 5.42 %. More recently, Li and Zha (2018) also used an RF model, combining station and 275 

satellite data, to estimate RH during the hot summer of 2009 over China. Elevation and vegetation were 276 

found to be the most important predictors for RH. Comparing our model with their work, it seems that 277 

our additional inclusion of Tair, date information, precipitation and wind speed data in the modeling 278 

process, significantly improved the model’s performance. Li and Zha (2018) reported a R2 = 0.70 and RMSE 279 

= 7.4 %, whereas our model could improve the R2 to 0.80 and lower the errors to RMSE = 5.42 %. In 280 

addition, our RF model allowed us to model RH for entire years and not only for one season.  281 

This study was also subject to limitations. The external validation set was not representative of the whole 282 

Germany. The HOBO-Logger monitoring network was placed in Augsburg, South Germany. However, we 283 



15 
 

used the Augsburg’s greater region which consists of a dense city center and two adjacent rural settings 284 

and therefore the validation area was characterized by high spatial RH variability. Additionally, we were 285 

already able to measure the model’s predictive accuracy country-wide due to our monitor-based split in 286 

the applied CV scheme (2.3.1 Model performance). The 1 × 1 km spatial resolution could be too coarse 287 

for some studies, especially for local and small-scale analyses. However, as we demonstrated in the case 288 

study of the city of Regensburg, the RF model of 1 × 1 km provided a valid representation of the RH 289 

spatiotemporal variation at the city scale. For future analyses, we could consider downscaling methods 290 

especially for cities (Hough et al., 2020).  291 

5      Conclusion 292 

We showed how observation, remote sensing and modelled data can be combined under a RF modeling 293 

process to reliably estimate RH in high temporal and spatial resolution across a country. Our product 294 

contributes substantially to reduce exposure errors for subsequent epidemiological studies, by better 295 

representing the spatiotemporal RH variability. We provide a reliable RH dataset for Germany and a well-296 

founded and generalizable approach for RH prediction for other study domains and countries.  297 
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Table legends 410 

Table 1. Prediction accuracy for the RF model: 10-fold CV results for the daily mean RH predictions over 411 

Germany during 2000-2021.  412 

Table 2. Accuracy results from the validation with external data using the HOBO-Logger daily mean RH 413 

observations and 7-day averages over the Augsburg region during 2015-2019.  414 

Table 3. Observed and predicted mean RH (%) over Germany during 2000-2021. 415 

Figure legends 416 

Figure 1. Seasonal RMSE and RMSE to extremes for the model’s RH predictions in Germany during 2000-417 

2021. 418 

Figure 2. Spatial pattern of the averaged predicted RH in Regensburg during 2000-2021. 419 

Figure 3. Distribution of predicted RH in the Regensburg region for 2000-2021 (histogram in blue and 420 

corresponding boxplot above). 421 

Figure 4. Spatiotemporal RH patterns in Germany during 2000-2021. Plot 1: Spatial patterns of the 422 

predicted RH in Germany, averaged for 2000-2021. Plot 2: Difference between the predicted RH yearly 423 

averages and the predicted RH 21-year average (2001-2021), German-wide. 424 



Table 1. Prediction accuracy for the RF model: 10-fold CV results for the 
daily mean RH predictions over Germany during 2000-2021. 

Year R2 RMSE 
Sample size  

(number of cell-days) 

2000 0.75   6.07 100,699 

2001 0.75   5.84      121,225 

2002 0.75                   5.99 123,946 

2003 0.79   6.60 123,364 

2004 0.75   6.02 126,604 

2005 0.78   5.58      134,386 

2006 0.80      5.66      135,600 

2007 0.81          5.22            139,482 

2008 0.80   5.40      140,135 

2009 0.79   5.41      142,295 

2010 0.83   5.06      142,629 

2011 0.84   5.30     141,781 

2012 0.82   5.12 141,820 

2013 0.81         5.13            140,928 

2014 0.82      4.88            142,641 

2015 0.82   5.36 142,908 

2016 0.81 5.05 139,491 

2017 0.80   5.00            143,206 

2018 0.84   5.39 143,026 

2019 0.83  5.20             140,866 

2020 0.86                    5.32 116,670 

2021 0.83   4.72            116,544 

Overall 0.80 5.42 133,648 

 

 

Table 1 Click here to access/download;Table (Editable version);Nikolaou
et al_ rel humidity model_ table 1.docx

https://www.editorialmanager.com/envres/download.aspx?id=1277838&guid=3fa4fcab-7ab2-4f42-97a0-62eb08385c90&scheme=1
https://www.editorialmanager.com/envres/download.aspx?id=1277838&guid=3fa4fcab-7ab2-4f42-97a0-62eb08385c90&scheme=1


Table 2. Accuracy results from the validation with external data using the HOBO-Logger daily mean RH 
observations and 7-day averages over the Augsburg region during 2015-2019. 

Year R2 RMSE 
7-day 

average R2 
7-day 

average RMSE 

2015 0.85 5.45 0.89 4.17 

2016 0.80 5.59 0.83 4.41 

2017 0.83 5.40 0.84 4.39 

2018 0.87 6.21 0.91 5.22 

2019 0.83 6.90 0.85 5.92 

Overall 0.84 5.91 0.86 4.82 
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Table 3. Observed and predicted mean RH (%) over Germany during 2000-2021. 

Source Mean SD Min Q1 Median Q3 Max 

DWD stations  
(n = 406) 

79.05       12.38 3.00 71.00 81.00 88.75 100.00 

RF model 
(n = 366,536 cells) 

79.05 10.44 13.05 71.98 80.61 87.47 100.00 
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