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Abstract

In this article we deal with a class of strongly coupled parabolic systems that encompasses two

different effects: degenerate diffusion and chemotaxis. Such classes of equations arise in the mesoscale

level modeling of biomass spreading mechanisms via chemotaxis. We show the existence of an expo-

nential attractor and, hence, of a finite-dimensional global attractor under certain ’balance conditions’

on the order of the degeneracy and the growth of the chemotactic function.
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1 Introduction

In this work we continue our studies of the longtime behaviour of a degenerate system modelling a biomass
spreading in the presence of chemotaxis which was introduced in [15]:

∂tM = ∇ · (Mα∇M −Mγ∇ρ)− f(M,ρ) in R
+ × Ω, (1.1a)

∂tρ = ∆ρ− g(M,ρ) in R
+ × Ω, (1.1b)

M = 0, ρ = 1 in R
+ × ∂Ω, (1.1c)

M = M0, ρ = ρ0 in {0} × Ω, (1.1d)

where Ω is smooth bounded domain in R
N , N ∈ {1, 2, 3}, α and γ are two positive constants satisfying

certain conditions (we call them ’balance conditions’) to be specified below, and M0 ∈ L∞(Ω), ρ0 ∈
W 1,∞(Ω) are nonnegative functions.

Equations (1.1a)-(1.1b) can model, e.g., the spreading of a bacterial population under the influence
of chemotaxis. Chemotaxis systems have been much studied in the recent decades. We refer the inter-
ested reader to surveys [3, 22] which cover both modelling and analytical aspects. The available results
mostly focus on the uniform boundedness/blow-up for finite/infinite times and convergence of solutions
to an equilibrium. It is usually assumed that α = 0, γ = 1, and very specific nonlinearities f and g are
chosen. For example, in the case of the classic Keller-Segel model [22] one has f ≡ 0, i.e., the absence
of proliferation which is not realistic in general. Furthermore, the condition α = 0 corresponds to the
standard non-degenerate diffusion. It is has a well known property of the infinite speed of propagation
which entails that the population fills the domain instantaneously. Particularly in the case of a bacterial
biofilm this falls short to model the experimentally and numerically observed [6] moving fronts. Thus,
it was proposed in [15] to consider rather general nonlinearities f and g, thus allowing to model reac-
tion/interaction, and to take α > 0. The latter corresponds to the case of a degenerate diffusion (that
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is, the diffusion coefficient has at least one zero point) of the porous medium type. It is well known (see,
e.g., [27]) that such diffusion leads to solutions with a finite speed of propagation.

From the analytical point of view, system (1.1) is a blend of a porous medium equation with a
chemotaxis growth system. The dynamics of a single equation with a porous medium degeneracy has
been thoroughly studied in [8, Chapter 4] with the help of exponential attractors (see Definition 1 below).
For non-degenerate chemotaxis growth systems under the homogeneous Neumann boundary conditions
the existence of attractors and their dimension were studied in [1, 10–12, 16, 25, 26], see also [8, Section
3.6]. For system (1.1) the well-posedness and the existence of the global attractor were established in
[15, 18] and [19–21], respectively, (see also [8, Chapters 9-10] and [28]). The question of finiteness of the
attractor dimension has not as yet been studied. We address this issue in the present paper. The answer
turns out to be positive under suitable conditions on the problem coefficients. Thus, to the best of
our knowledge, system (1.1) is the second after the porous medium equation class of highly degenerate
problems which can exhibit finite-dimensional dynamics.

It is well known that the concept of global attractor has some essential drawbacks. It is in general
not stable under perturbations, the speed of convergence to it may be arbitrary slow, and it is usually
hard to express it in terms of the parameters of the system. Thus it is often difficult to observe the global
attractor in numerical simulations. The notion of exponential attractor (compare Definition 1 below)
was first introduced in [7] as an alternative way to capture the dynamics of a dynamical system. It is
a finite dimensional positively invariant attracting set that attracts bounded subsets of the phase space
with exponential speed. If such a set exists for a dynamical system, it necessarily contains the global
attractor of the system, and that global attractor has finite dimension (so it is also a way to show that
the global attractor is finite-dimensional). While generally stable and easier to handle, this (eventually
bigger) attracting set has it’s own faulty: it is not uniquely determined (while the global attractor is).

Unlike the nondegenerate dissipative equations and systems on bounded domains which, as a rule,
possess finite-dimensional global and exponential attractors, the dynamics of degenerate problems is much
more delicate. The porous medium and p-Laplace equations are two very first examples of autonomous
equations which -under rather general conditions- have infinite dimensional attractors, see [13, 14, 17], also
[8, Chapters 4-7]. Moreover, the asymptotics of their Kolmogorov ε-entropy turned out to be polynomial.
Even the attractors of nondegenerate problems in unbounded domains, which are known to be of infinite
dimension, always showed only logarithmic asymptotics of the entropy, see, e.g., [9].

Previous results on the well-posedness and the existence of the global attractor were obtained for (1.1)
under the balance conditions

α

2
+ 1 ≤ γ < α (1.2)

and the following assumptions on the nonlinearities f and g:

|f(M,ρ)| ≤ F1(1 + |M |ξ)
1
2 for all M,ρ ≥ 0 for some ξ ∈ [0, α− γ + 2) , F1 ∈ R

+
0 , (1.3)

f(M,ρ) ≥ F2M − F3 for all M,ρ ≥ 0 for some F2 ∈ R
+, F3 ∈ R

+
0 , (1.4)

g(M,ρ) = G1ρ+ g2(ρ)M, |g2(ρ)| ≤ G2 for all M,ρ ≥ 0 for some G1, G2 ∈ R
+
0 , (1.5)

f(M,ρ) = F4M + f̃
(
M1+α

2 , ρ
)

for all M,ρ ≥ 0 for some F4 ∈ R, (1.6)

f̃ ∈ W 1,∞
loc (R2), g2 ∈ W 1,∞

loc (R), f(0, ρ) = 0 for all ρ ∈ R, g2(0) ≤ 0. (1.7)

In this setting, we established in [21] the existence of the weak global attractor in the phase space
L∞(Ω)×W 1,∞(Ω). Note that in [8, Section 4.4] it was shown that the dimension of the global attractor
for the porous medium equation (thus, even without chemotaxis)

∂tM = ∇ · (Mα∇M)− f(M) (1.8)

may be infinite if −f ′(0) > 0. Observe that this includes the case of the standard logistic growth, i.e.,
when

−f(M) = rM

(
1−

M

K

)
(1.9)

for some growth rate r > 0 and carrying capacity K > 0. Conditions (1.2)-(1.7) therefore cannot
guarantee the finite dimension of the global attractor (and hence also the existence of an exponential
attractor) for (1.1) as the following example illustrates.

Example 1. Let

− f = −f(M) = M, g ≡ 0.
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Observe that this choice of f and g is in line with conditions (1.2)-(1.7). Let us assume further that

ρ0 ≡ 1.

In this special case equation (1.1b) together with the corresponding boundary condition can be easily
solved explicitly, the solution being ρ ≡ 1. Hence, the taxis flux in (1.1a) completely vanishes on Ω. As
a result, M solves the porous medium equation (1.8) with −f ′(0) = 1 > 0 thus leading to the infinite
dimensional global attractor already for M -component.

We improve conditions (1.2)-(1.7) in the following way: we consider now sharper balance conditions
than (1.2), namely

1 +
α

2
< γ < α (1.10)

and replace (1.6) by

f(M,ρ) = F5M + f̃
(
Mβ, ρ

)
, for some β > 1 +

α

2
, F5 > 0. (1.11)

The following choice of functions f and g satisfies conditions (1.3)-(1.5), (1.7) and (1.11):

Example 2.

f(M,ρ) = −M +
Mβ

Mβ + 1
arctan ρ,

g(M,ρ) = ρ+M
ρ

ρ+ 1
.

We recall a definition of the exponential attractor:

Definition 1 ([8, Chapter 3, Definition 3.1]). A set M is an exponential attractor for a semigroup S(t)
in a Banach space X if: it

(i) is compact in X;

(ii) is positively invariant, i.e., S(t)M ⊂ M, ∀t ≥ 0;

(iii) attracts bounded sets of initial data exponentially fast in the following sense: there exists a monotonic
function Q and a constant Crate > 0 (called below attraction parameters) such that

∀B ⊂ X bounded, distX(S(t)B,M) ≤ Q(‖B‖X)e−Cratet, t ≥ 0;

(iv) has finite fractal dimension.

Here distX(·, ·) denotes the nonsymmetric Hausdorff distance between subsets of X :

distX(A,B) := sup
x∈A

inf
y∈B

||x− y||X for all A,B ⊂ X.

Our main result deals with the existence of exponential attractors for system (1.1). It reads:

Theorem 1 (Exponential attractor for (1.1)). Let Ω be a smooth bounded domain in R
N , N ∈ {1, 2, 3}.

Let the functions f and g satisfy the assumptions (1.3)-(1.5), (1.7) and (1.11) and let the given constants
α and γ satisfy 1 + α

2 < γ < α. Then the initial boundary value problem (1.1) generates a well defined
semigroup S(t), t ≥ 0, in the (positive cone of the) space L∞(Ω)×W 1,∞(Ω). The semigroup S(t) possess
an exponential attractor M (in terms of Definition 1) which is a bounded subset of Cθ(Ω)×C2+θ(Ω) for
some Hölder exponent θ ∈ (0, 1). The number θ and such parameters of the attractor as: its diameter,
fractional dimension, the attraction parameters Crate and Q can be chosen such as to depend only upon
the parameters of the problem.

As a direct corollary of Theorem 1 we have that

Corollary 1 (Finite-dimensional global attractor for (1.1)). Under assumptions of Theorem 1 the semi-
group generated by system (1.1) possesses the finite-dimensional global attractor A ⊂ M. In particular,
upper bounds for the attractor diameter and fractal dimension can be chosen to depend upon the param-
eters of the problem alone.
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There are different constructions [8] of exponential attractors. We use the one based on the so-called
smoothing property (see [8] and references therein). One of its simplest abstract versions insures the
existence of an exponential attractor for a discrete semigroup Sn, n ∈ N0, and takes (see, e.g., [8, Chapter
3]) the form

‖S(u1)− S(u2)‖H1 ≤ K‖u1 − u2‖H for all u1, u2 ∈ C. (1.12)

Here H and H1 are two Banach spaces such that H1 is compactly embedded in H , S maps between H
and H1, C is a subset of some metric space X and is invariant under S, and the constant K ≥ 0 is
independent of a particular choice of u1 and u2. It is in general not difficult to establish such a property
for the semigroup corresponding to a dissipative nondegenerate problem. Moreover, in these cases the
ways to choose spaces H and H1 in an appropriate way are usually in abundance. Very often they are two
Hölder spaces or, alternatively, a Lebesgue and a Sobolev space, defined for the whole spatial domain.
However, a condition like (1.12) is in general unattainable for a semigroup of solution operators for a
degenerate equation, such as e.g. the porous medium equation. In [8, 17] the smoothing property could
be generalised to a form that allows to treat the latter case. It turned out that the underlying spaces,
such as H and H1, cannot be chosen once and for all, but that they need to be changed as one passes from
a neighbourhood of one point u0 in C to another. Thereby, it is necessary to work on functional spaces
set up not on the whole spatial domain, but, rather, on some sub- and superlevel sets of u0. This requires
localising techniques. In the present work we use the ideas which were originally developed in [8, 17] for
the porous medium equation in order to obtain an exponential attractor for system (1.1). The presence
of a chemotaxis transport term in addition to a degenerate diffusion is a considerable complication. It
further reduces the class of norms in which one can estimate the differences of two solutions. For example,
while the solution operators of the porous medium equation are Lipschitz continuous both in L1 (this
was essentially used in [8, 17]) and H−1, in our case they are Lipschitz only in H−1. Working in negative
Sobolev spaces is more difficult since they are much less suited for the localising techniques.

The rest of the paper is organised as follows. In Section 2 we fix some notation and then establish some
results concerning the regularity and stability of solutions, as well as some properties of an exponentially
absorbing set for system (1.1). In Section 3 we formulate and prove a smoothing property (Theorem 2
below) for the corresponding semigroup. The proof of Theorem 1 is given in Section 4.

2 Preliminaries

In this Section we collect some necessary preliminary observations and results.

Basic notation and functional spaces

We denote R
+ := (0,∞), R+

0 := [0,∞).
Partial derivatives in the classical or distributional sense with respect to a variable z are denoted by

∂z. Further, ∇ and ∆ stand for the spatial gradient and Laplace operators, respectively.
We assume the reader to be familiar with the standard Lp, Sobolev, and Hölder spaces and their usual

properties, as well as with the more general Lp spaces of functions with values in general Banach spaces,
and with anisotropic spaces, such as, for any open O ⊂ R

N and 0 < t1 < t, the parabolic spaces

H1((t1, t), H
1
0 (O), H−1(O)) :=

{
u ∈ L2((t1, t), H

1
0 (O))| ∂tu ∈ L2((t1, t), H

−1(O))
}

equipped with the norm

‖u‖H1((t1,t),H1
0(O),H−1(O)) :=

(
‖u‖2L2((t1,t),H1

0(O)) + ‖∂tu‖
2
L2((t1,t),H−1(O))

) 1
2

and

W (1,2),2((t1, t)×O) :=
{
u ∈ L2((t1, t), H

2(O))| ∂tu ∈ L2((t1, t), L
2(O))

}

equipped with the norm

‖u‖W (1,2),2((t1,t)×O) :=
(
‖u‖2L2((t1,t),H2(O)) + ‖∂tu‖

2
L2((t1,t),L2(O))

) 1
2

.
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As usual, Ck(Ω), k ∈ N0, denotes the space of k times continuously differentiable functions u :
Ω → R, and Dα = Dα1 . . .Dαn , αi ∈ N0, is the corresponding higher order partial derivative of order
|α| =

∑N
i=1 αi. A norm on Ck(Ω) is given by

‖u‖Ck(Ω) :=
∑

|α|≤k

max
x∈Ω

|Dαu(x)|.

We recall that a Hölder coefficient for a Hölder exponent θ ∈ (0, 1) and a real-valued function w defined
in a set A ⊂ R

k, k ∈ N, is given by

|w|Cθ(A) := sup
x,y∈A, x 6=y

|w(x) − w(y)|

|x− y|θ
.

This allows to introduce the standard Hölder spaces for k ∈ N0:

Ck+θ(Ω) :=
{
u ∈ Ck(Ω) : |Dαu|Cθ(Ω) < ∞ for all |α| = k

}

equipped with the norm

‖u‖Ck+θ(Ω) := ‖u‖Ck(Ω) +
∑

|α|=k

|Dαu|Cθ(Ω).

Recall also that due to the Sobolev interpolation inequality for any θ ∈ (0, 1) there exist numbers
θ1, θ2 ∈ (0, 1) and C1 > 0 such that following interpolation inequalities hold:

‖w‖L∞(Ω) ≤ C1‖w‖
1−θ1
Cθ(Ω)

‖w‖θ1
H−1(Ω) for all w ∈ Cθ(Ω), (2.1)

‖v‖W 1,∞(Ω) ≤ C1‖v‖
1−θ2

C2+θ(Ω)
‖v‖θ2

L2(Ω) for all v ∈ C2+θ(Ω). (2.2)

Finally, we make the following two useful conventions. Firstly, for all indices i, Ci denotes a positive
constant or, alternatively, a positive continuous function. Secondly, the statement that a constant depends
on the parameters of the problem means that it depends upon such parameters as: space dimension N ,
domain Ω, constants α, β, γ, Fi, Gi, and norms of f̃ and g2. This dependence is subsequently not

indicated in an explicit way.

Sub- and superlevel sets

In what follows we sometimes consider parts of solutions of problem (1.1) restricted to the sublevel sets
{M0 > δ} for δ ∈

(
0, ‖M0‖L∞(Ω)

)
. Observe that ifM0 ∈ Cθ(Ω), then, in fact, for all 0 < δ < 1

2‖M0‖L∞(Ω)

dR ({M0 ≤ δ} , {M0 ≥ 2δ}) ≥ δ
1
θ |M0|

− 1
θ

Cθ(Ω)
, (2.3)

where dR denotes the standard metric distance between sets in R:

dR(X,Y ) := inf
(x,y)∈X×Y

|x− y|.

Thus, we have a control over a lower bound for the distance between sub- and superlevel sets, and that
bound depends only upon the quantities which appear on the right-hand side of (2.3). An important
consequence of this observation is the existence for all 0 < δ0 < δ1 < 1

2‖M0‖L∞(Ω) of a smooth cut-off
function ϕ which satisfies the following:

ϕ ∈ C∞
0 (Ω), (2.4a)

ϕ ∈ [0, 1] in Ω, ϕ = 0 in {M0 < δ0} , ϕ = 1 in {M0 > δ1} , (2.4b)
∣∣Dkϕ(x)

∣∣ ≤ C2ϕ
1−ω(x) for all x ∈ Ω for all ω ∈ (0, 1) and k ∈ N, (2.4c)

C2 = C2

(
|M0|Cθ(Ω), δ0, δ1, θ, ω, k

)
. (2.4d)

A family of functions with such properties exists for all M0 ∈ Cθ(Ω) due to property (2.3), see Proposition
1.1 of [8].
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Regularity of solutions

From now on we assume that assumptions of Theorem 1 are fulfilled. A solution to (1.1) can be defined
as follows:

Definition 2 (Weak solution). Let (M0, ρ0) ∈ L∞(Ω) × W 1,∞(Ω). We call a pair of functions M,ρ :
R

+
0 × Ω → R

+
0 a global weak solution of (1.1) if for all 0 < T < ∞ it holds that

(i) M ∈ L∞ ((0, T )× Ω), Mα+1 ∈ L2
(
(0, T );H1

0 (Ω)
)
, ∂tM ∈ L2

(
(0, T );H−1(Ω)

)
;

(ii) ρ ∈ L∞((0, T );W 1,∞(Ω)), ∂tρ ∈ L2
(
(0, T );H−1(Ω)

)
;

(iii) (M,ρ) satisfies equations (1.1a)-(1.1b) in L2
(
(0, T );H−1(Ω)

)
;

(iv) (M,ρ)(0) = (M0, ρ0) in H−1(Ω)× L2(Ω).

It was proved in [15, 18] (see also [28, Section 3.2]) that for all (M0, ρ0) ∈ L∞(Ω)×W 1,∞(Ω) the initial
boundary value problem (1.1) possess a unique solution with regularity as stated in Definition 2 and,
moreover, this solution is uniformly bounded in L∞(Ω)×W 1,∞(Ω). In general, a solution of a degenerate
equation like (1.1a) is only weak and not classical [27]. Still, it is well-understood [2, 4, 5, 23, 29] that
under reasonable conditions on the equation coefficients bounded weak solutions are Hölder continuous.
In our case the following regularity result holds:

Lemma 1 (Regularity and positivity). Let (M0, ρ0) ∈ L∞(Ω)×W 1,∞(Ω) with ‖(M0, ρ0)‖L∞(Ω)×W 1,∞(Ω) ≤

R for some R > 0 and let (M,ρ) : [0, T ] × Ω → R
+
0 × R

+
0 be the corresponding weak solution to (1.1).

Then:

1. (Hölder regularity) There exists a number θ = θ(R) ∈ (0, 1) such that (M,ρ) belongs to C
θ
2 ,θ(R+ ×

Ω)× C1+ θ
2 ,2+θ(R+ × Ω), and for all 0 < τ < T it holds that

‖(M,ρ)‖
C

θ
2
,θ([τ,T ]×Ω)×C

1+ θ
2
,2+θ([τ,T ]×Ω)

≤ C3 (τ, T,R) . (2.5)

2. (Preservation of positivity) R
+ × {M0 > 0} ⊂ {M > 0}, and for all δ ∈

(
0, ‖M0‖L∞(Ω)

)
and T > 0

it holds that

inf {M(s, x)| t ∈ [0, T ], x ∈ {M0 > δ}} ≥ C4(δ, T,R). (2.6)

3. (Regularity on sublevel sets) M ∈ C1,2
(
R

+ × {M0 > δ}
)
, and for all δ ∈

(
0, ‖M0‖L∞(Ω)

)
and

0 < τ < T it holds that

‖M‖
C1,2([τ,T ]×{M0>δ}) ≤ C5 (δ, τ, T,R) . (2.7)

Proof. 1. Observe that equation (1.1a) can be written in the following form:

∂tM = ∇ · A(t, x,M,∇M) + b(t, x),

where we introduced

A(t, x,M, p) := Mαp−Mγ∇ρ(t, x),

b(t, x) := f(M,ρ)(t, x).

Clearly, functions A and b satisfy the following conditions:

|A(t, x,M, p)| ≤ Mα|p|+ ‖Mγ∇ρ‖(L∞(R+×Ω))n , (2.8)

|b(t, x)| ≤ ‖f(M,ρ)‖L∞(R+×Ω). (2.9)

Moreover, with the help of the Hölder inequality we deduce that

A(t, x,M, p) · p =Mα|p|2 +Mγ∇ρ(t, x) · p

=Mα|p|2 +M
α
2 p ·Mγ−α

2 ∇ρ(t, x)

≥Mα|p|2 −M
α
2 |p| ·Mγ−α

2 |∇ρ(t, x)|

6



≥
1

2
Mα|p|2 −

1

2

∥∥Mγ−α
2 ∇ρ

∥∥2
(L∞(R+×Ω))n

, (2.10)

Due to (2.8)-(2.10), α > 0, γ ≥ α
2 , and the fact that (M,ρ) is uniformly bounded in L∞(Ω) ×W 1,∞(Ω)

by a constant which depends only upon the parameters of the problem and R, we can apply Theorems 2.I
and 3.I from [23] on inner and boundary regularity for degenerate parabolic PDEs. These results imply

the existence of a number θ = θ (R) ∈ (0, 1) such that M ∈ C
θ
2 ,θ([τ, T ]× Ω) for all 0 < τ < T , and

‖M‖
C

θ
2
,θ([τ,T ]×Ω)

≤ C6 (τ, T,R) . (2.11)

Consequently, equation (1.1b) together with the boundary condition ρ ≡ 1 can be seen as a linear
parabolic equation for ρ with Hölder continuous coefficients. Thus, standard Schauder estimates entail
that ρ is a classical solution to (1.1b) and satisfies

‖ρ‖
C

1+θ
2
,2+θ([τ,T ]×Ω)

≤ C7 (τ, T,R) . (2.12)

Combining (2.11)-(2.12), we obtain (2.5).
2. We start by proving the quantitative estimate (2.6). For this purpose we make use of the classical

idea of propagation of Lp bounds. Since we aim at an estimate from below, we estimate M−1 from above.
Of course, this can only be done in those areas where the M -component is strictly bounded from below
by a positive constant. For that reason we use a cutoff function from (2.4) in order to eliminate the part
of Ω where M0 is small. More precisely, let us multiply equation (1.1a) by −aϕa

δM
−a−1 for a ≥ 2α and

ϕδ as in (2.4) while we choose δ0 := δ, δ1 := 2δ, so that, in particular, ϕδ = 0 in {|M0| ≤ δ}. Integrating
(formally) over Ω and using integration by parts where necessary we obtain that

d

dt

∥∥ϕa
δM

−a
∥∥
L1(Ω)

=− 4
(a+ 1)a

(a− α)2

∥∥∥ϕ
a
2

δ ∇M− a−α
2

∥∥∥
2

(L2(Ω))n
− 2a

a

a− α

(
ϕ

a
2

δ ∇M− a−α
2 ,
(
ϕδM

−1
) a

2−1
M

α−2
2 ∇ϕδ

)

(L2(Ω))n

+ 2a
a+ 1

a− α

(
ϕ

a
2

δ ∇M−a−α
2 ,
(
ϕδM

−1
) a

2 Mγ−1−α
2 ∇ρ

)

(L2(Ω))n

−a2
((

ϕδM
−1
)a−1

Mγ−2,∇ϕδ · ∇ρ
)

(L2(Ω))n
+a

(
ϕa
δM

−a,
f(M,ρ)

M

)

L2(Ω)

. (2.13)

Using the Young and Hölder inequalities, the assumptions on α, γ, and f , and the properties of ϕδ we
estimate the right-hand side of (2.13) on [0, T ] as follows:

d

dt

∥∥ϕa
δM

−a
∥∥
L1(Ω)

≤− C8

∥∥∥ϕ
a
2

δ ∇M−a−α
2

∥∥∥
2

(L2(Ω))n
+ C9(δ, T,R)a

∥∥∥ϕ
a
2

δ ∇M− a−α
2

∥∥∥
(L2(Ω))n

∥∥ϕa
δM

−a
∥∥ a−2

2a

L1(Ω)

+ C10(δ, T,R)a
∥∥∥ϕ

a
2

δ ∇M−a−α
2

∥∥∥
(L2(Ω))n

∥∥ϕa
δM

−a
∥∥ 1

2

L1(Ω)
+ C11(δ, T,R)a2

∥∥ϕa
δM

−a
∥∥ a−1

a

L1(Ω)

+ C12(δ, T,R)a
∥∥ϕa

δM
−a
∥∥
L1(Ω)

≤− C13(δ, T,R)
∥∥∥ϕ

a
2

δ ∇M−a−α
2

∥∥∥
2

(L2(Ω))n
+ C14(δ, T,R)a2

(∥∥ϕa
δM

−a
∥∥
L1(Ω)

+ 1
)

≤− C13(δ, T,R)

(
1

2

∥∥∥∇
(
ϕ

a
2

δ M
−a−α

2

)∥∥∥
2

(L2(Ω))n
−

a2

4

∥∥∥
(
ϕδM

−1
) a

2−1
M

α−2
2 ∇ϕ

∥∥∥
2

(L2(Ω))n

)

+ C14(δ, T,R)a2
(∥∥ϕa

δM
−a
∥∥
L1(Ω)

+ 1
)

≤− C15(δ, T,R)
∥∥∥∇
(
ϕ

a
2

δ M
− a−α

2

)∥∥∥
2

(L2(Ω))n
+ C16(δ, T,R)a2

∥∥ϕa
δM

−a
∥∥ a−2

a

L1(Ω)

+ C14(δ, T,R)a2
(∥∥ϕa

δM
−a
∥∥
L1(Ω)

+ 1
)

≤− C15(δ, T,R)
∥∥∥∇
(
ϕ

a
2

δ M
− a−α

2

)∥∥∥
2

(L2(Ω))n
+ C17(δ, T,R)a2

(∥∥ϕa
δM

−a
∥∥
L1(Ω)

+ 1
)
. (2.14)

The first consequence of (2.14) is due to the Gronwall lemma:

sup
t∈[0,T ]

∥∥ϕa
δM

−a(t)
∥∥
L1(Ω)

+ 1 ≤eTC17(δ,T,R)a2
(∥∥ϕa

δM
−a
0

∥∥
L1(Ω)

+ 1
)
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≤eTC17(δ,T,R)a2 (
δ−a + 1

)

=:C18(a, δ, T,R). (2.15)

This shows the a priori boundedness of
∥∥ϕδM

−1
∥∥
La(Ω)

for all a ∈ [2α,∞). To get an estimate for∥∥ϕδM
−1
∥∥
L∞(Ω)

observe that due to the interpolation inequality for Lebesgue spaces

∥∥ϕa
δM

−a
∥∥
L1(Ω)

=
∥∥∥ϕ

a
2

δ M
−a−α

2 M−α
2

∥∥∥
2

L2(Ω)

≤
∥∥M−1

∥∥α
L3α({M0≥δ})

∥∥∥ϕ
a
2

δ M
−a−α

2

∥∥∥
2

L3(Ω)

≤
∥∥∥ϕ δ

2
M−1

∥∥∥
α

L3α(Ω)

∥∥∥ϕ
a
2

δ M
−a−α

2

∥∥∥
2

L3(Ω)

≤Cα
18

(
3α,

δ

2
, T, R

)∥∥∥ϕ
a
2

δ M
−a−α

2

∥∥∥
2

L3(Ω)
. (2.16)

Combining (2.14) with (2.16), the Young inequality, and the Sobolev interpolation inequality

||u||L3(Ω) ≤ C19||u||
4N

6+3N

H1
0 (Ω)

||u||
6−N
6+3N

L1(Ω)

for u := ϕ
a
2

δ M
− a−α

2 yields

d

dt

∥∥ϕa
δM

−a
∥∥
L1(Ω)

≤− C20(δ, T,R)
∥∥∥∇
(
ϕ

a
2

δ M
− a−α

2

)∥∥∥
2

(L2(Ω))n

+ C21(δ, T,R)a2
∥∥∥∇
(
ϕ

a
2

δ M
−a−α

2

)∥∥∥
2 4N

6+3N

(L2(Ω))n

∥∥∥ϕ
a
2

δ M
− a−α

2

∥∥∥
2 6−N

6+3N

L1(Ω)
+ C17(δ, T,R)a2

≤C22(δ, T,R)a
12+6N
6−N

∥∥∥ϕ
a
2

δ M
−a−α

2

∥∥∥
2

L1(Ω)
+ C17(δ, T,R)a2

≤C23(δ, T,R)a
12+6N
6−N

∥∥∥ϕ
a
2

δ M
−a

2

∥∥∥
2

L1(Ω)
+ C17(δ, T,R)a2

≤C24(δ, T,R)a
12+6N
6−N

(∥∥∥ϕ
a
2

δ M
−a

2

∥∥∥
2

L1(Ω)
+ 1

)
. (2.17)

Integrating (2.17) over [0, T ] and taking maximum on both sides of (2.18) we obtain that

max
t∈[0,T ]

(∥∥ϕa
δM

−a(t)
∥∥
L1(Ω)

+ 1
)

≤
(∥∥ϕa

δM
−a
0

∥∥
L1(Ω)

+ 1
)
+ C24(δ, T,R)a

12+6N
6−N

∫ T

0

∥∥∥ϕ
a
2

δ M
−a

2

∥∥∥
2

L1(Ω)
+ 1 ds

≤
(
δ−a|Ω|+ 1

)
+ C25(δ, T,R)a

12+6N
6−N max

t∈[0,T ]

(∥∥∥ϕ
a
2

δ M
− a

2

∥∥∥
L1(Ω)

+ 1

)
2. (2.18)

Here we used the properties of the cutoff function ϕδ. Since for a ≥ 2α > 1 it holds that δ−a|Ω| + 1 ≤
C26

a(δ), estimate (2.18) leads to a recursive inequality

Aa ≤ C27(δ, T,R)aC28A2
a
2

(2.19)

for

Aa :=

max
s∈[0,t]

(
‖ϕa

δM
−a(t)‖

L1(Ω) + 1
)

Ca
26(δ)

+ 1.

A standard induction argument together with estimate (2.15) for a := 2α implies that

A
1

2n

2n+1α
≤
(
C27(δ, T,R)αC28

)∑n−1
k=0 2k−n

2C28

∑n−1
k=0 (n+1−k)2k−n

A2α

→
n→∞

C27(δ, T,R)αC2823C28A2α

≤C29(δ, T,R). (2.20)
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Thanks to (2.20) we obtain that

max
s∈[0,t]

∥∥M−1(s)
∥∥
L∞({M0≥δ})

≤max
s∈[0,t]

∥∥ϕδM
−1(s)

∥∥
L∞(Ω)

=max
s∈[0,t]

lim
n→∞

∥∥ϕδM
−1(t)

∥∥
L2n+1α(Ω)

≤lim sup
n→∞

C26(δ)A
1

2n+1α

2n+1α

≤C26(δ)C
1
2α
29 (δ, T,R)

=:C30(δ, T,R).

Consequently, it holds that

inf {M(s, x)| t ∈ [0, T ], x ∈ {M0 > δ}} ≥ (C30 (δ/2, T, R))
−1

=: C4(δ, T,R) > 0

for all δ ∈
(
0, ‖M0‖L∞(Ω)

)
and T > 0, which proves (2.6).

The above calculations -and thus also the quantitative estimate (2.6)- are only valid if M(t, ·) is
uniformly bounded from below on {M0 > δ} for all t ∈ [0, T ]. In order to justify the latter we apply a
standard approximation argument. In [15, 18] (see also [28, Section 3.2]) we proved that on the one hand
a weak solution is unique, and on the other hand it can be obtained as a limit of approximations which
solve a nondegenerate system such as, e.g., for n ∈ N the system

∂tMn=∇ ·

((
Mn +

1

n

)α

∇Mn

)
−∇ ·

((
Mn +

1

n

)γ

∇ρn

)
− f (Mn, ρn) in (0, T )× Ω,

∂tρn =∆ρn − g(Mn, ρn) in (0, T )× Ω

equipped with the same initial and boundary conditions as for the original system (1.1). Since Mn ≥ 0
solves a nondegenerate equation, its strict positivity is guaranteed. Moreover, it is not difficult to see that
family Mn, n ∈ N, satisfies a positive bound similar to (2.6) with some constant which is independent of
n. Consequently, the limit function M is indeed uniformly bounded from below by a positive constant
and satisfies (2.6).

3. Let M := u
1

α+1 . Under this change of variables equation (1.1a) takes the form

1

α+ 1
u

1
α+1−1∂tu =

1

α+ 1
∆u−

γ

α+ 1
u

γ
α+1−1∇ρ · ∇u− u

γ
α+1∆ρ− f

(
u

1
α+1 , ρ

)
. (2.21)

Dividing (2.21) by 1
α+1u

1
α+1−1, we obtain that

∂tu = u
α

α+1∆u− γu
γ−1
α+1∇ρ · ∇u − (α+ 1)u

α+γ
α+1 ∆ρ− (α+ 1)u

α
α+1 f

(
u

1
α+1 , ρ

)
, (2.22)

i.e.,

∂tu = a0∆u+ a1 · ∇u+ a3, (2.23)

with

a0 := u
α

α+1 ,

a1 := −γu
γ−1
α+1∇ρ,

a2 := −(α+ 1)u
α+γ
α+1 ∆ρ− (α+ 1)u

α
α+1 f

(
u

1
α+1 , ρ

)
.

Due to the results of parts 1. and 2. of this Lemma and assumptions on α, γ, and f , we have for all
0 < τ < T and δ ∈ (0, ‖M0‖L∞(Ω)) that in [τ, T ]× {M0 > δ} = [τ, T ]× {u0 > δα+1} equation (2.23) is
a nondegenerate linear parabolic PDE with Hölder continuous coefficients. Standard result [24, Chapter
10, Theorem 10.1] on interior regularity in Hölder spaces yields that

‖u‖
C1,2([τ,T ]×{u0>δα+1}) ≤ C31 (δ, τ, T,R) . (2.24)

Since the map u 7→ u
1

α+1 is smooth in R
+, (2.7) is a consequence of (2.24). Lemma 1 is proved.
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Stability

As was mentioned earlier, the initial boundary value problem (1.1) is well-posed (in the usual Hadamard
sense). In particular, the following stability result was proved in [15, 18]:

Lemma 2 (Lipschitz property, [15, 18]). There exists a function L0 : R+
0 × R

+
0 → R

+
0 with L0(0, ·) ≡ 1,

which is continuous, increasing in each variable, depends only upon the parameters of the problem, and
such that the following Lipschitz-type estimate holds:

max
s∈[0,t]

‖(M1 −M2, ρ1 − ρ2)(s)‖H−1(Ω)×L2(Ω)

+

(∫ t

0

(
Mα+1

1 −Mα+1
2 ,M1 −M2

)
L2(Ω)

ds

) 1
2

+ ‖ρ1 − ρ2‖L2(0,t;H1
0 (Ω))

≤L0(t, R)‖(M10 −M20, ρ10 − ρ20)‖H−1(Ω)×L2(Ω). (2.25)

It is possible to estimate the difference M1−M2 in L∞(Ω) by replacing (2.25) with a Hölder property:

Lemma 3 (Hölder property). There exists a constant θ∞ ∈ (0, 1) and a function L1 : R+
0 × R

+
0 → R

+

which is continuous, increasing in each variable, depends only upon the parameters of the problem, and
such that for all (M10, ρ10), (M20, ρ20) ∈ Cθ(Ω) × C2+θ(Ω) with ‖(M0, ρ0)‖Cθ(Ω)×C2+θ(Ω) ≤ R for some
R ≥ 0 it holds for all t > 0 that

max
s∈[0,t]

‖(M1 −M2, ρ1 − ρ2)(s)‖L∞(Ω) ≤ L1(t, R)‖(M10 −M20, ρ10 − ρ20)‖
θ∞
H−1(Ω)×L2(Ω). (2.26)

Proof. Combining (2.25) with the interpolation inequalities (2.1)-(2.2) applied to w = (M1 −M2)(s) and
v = (ρ1 − ρ2)(s), we deduce that

max
s∈[0,t]

‖(M1 −M2, ρ1 − ρ2)(s)‖L∞(Ω)×W 1,∞(Ω)

≤C32L
θ1
0 (t, R)(2R)1−θ1‖M10 −M20‖

θ1
H−1(Ω) + C32L

θ2
0 (t, R)(2R)1−θ2‖ρ10 − ρ20‖

θ2
L2(Ω)

≤L1(t, R)‖(M10 −M20, ρ10 − ρ20)‖
θ∞
H−1(Ω)×L2(Ω),

where θ∞ := min{θ1, θ2}.

Absorbing set

It was proved in [21] that the initial boundary value problem (1.1) generates a well defined semigroup
S(t), t ≥ 0, in the phase space L∞(Ω) × W 1,∞(Ω) which possesses a bounded exponentially absorbing
positively invariant set B0. In particular, the following dissipative estimate holds [21]:

‖(M,ρ)(t)‖L∞(Ω)×W 1,∞(Ω) ≤C∞‖(M0, ρ0)‖
r∞
L∞(Ω)×W 1,∞(Ω)e

−ω∞t +D∞ for all t ≥ 0, (2.27)

where the positive constants C∞, r∞, ω∞, D∞ depend only upon the parameters of the problem. Due to
Lemma 1, the absorbing set can actually be chosen in a nicer space:

Lemma 4 (Absorbing set). The semigroup S(t) possesses an exponentially absorbing positively invariant
set B ⊂ Cθ(Ω)×C2+θ(Ω) (θ ∈ (0, 1) as in Lemma 1) such that for some R > 0 which depends only upon
the parameters of the problem it holds for all (M0, ρ0) ∈ B that

‖(M0, ρ0)‖Cθ(Ω)×C2+θ(Ω) ≤ R. (2.28)

Moreover, the solutions (M,ρ) := S(·)(M0, ρ0) belong to
(
C

θ
2 ,θ([0,∞)× Ω) ∩C1,2 (R+ × {M0 > 0})

)
×

C1+ θ
2 ,2+θ([0,∞)× Ω) and satisfy for all δ ∈

(
0, ‖M0‖L∞(Ω)

)
and t > 0 the inequalities

‖(M,ρ)‖
C

θ
2
,θ([0,t]×Ω)×C

1+ θ
2
,2+θ([0,t]×Ω)

≤ C33(t), (2.29)

inf {M(s, x)| s ∈ [0, t], x ∈ {M0 > δ}} ≥ C34(δ, t), (2.30)

‖M‖
C1,2([0,t]×{M0>δ}) ≤ C35(δ, t). (2.31)

Proof. Set B := S(1)B0. Due to a standard argument, B remains an exponentially absorbing positively
invariant set for S(t). On the other hand, Lemma 1 ensures (2.28)-(2.31) (choose τ := 1 and T :=
t+ 1).
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3 A smoothing property

The aim of this section is to prove that the semigroup S(t) generated by system (1.1) is asymptoti-
cally smooth. Recall that due to the general theory presented in [8] (see also references therein) every
asymptotically smooth semigroup possesses an exponential attractor. More notation is needed first. Let

u := (M,ρ),

X := H−1(Ω)× L2(Ω). (3.1)

Following [17], we introduce for any u0 := (M0, ρ0) ∈ B some suitable u0-dependent spaces and an
operator. In our case a possible choice is as follows: for δ ∈ (0, ‖M0‖L∞(Ω)) and 0 < t1 < t set

Y (δ)
u0

:= L2((t1, t)× {M0 > δ})×
(
L2((t1, t), H

1({M0 > δ})) ∩ L2((t1, t)× Ω)
)
,

Z(δ)
u0

:= W (1,2),2((t1, t)× {M0 > δ})×
(
W (1,2),2((t1, t)× {M0 > δ}) ∩H1([0, t], H1

0 (Ω), H
−1(Ω))

)
,

K(δ)
u0

: B → Z(δ)
u0

, K(δ)
u0

(u10)(s) := (S(s)u10)|{M0>δ} for all s ∈ [0, t], u10 ∈ B.

Observe that since M0 is a continuous function, the level sets {M0 > δ} are open. Hence, the spaces Y
(δ)
u0

and Z
(δ)
u0 are well defined.

Now we can formulate a smoothing property for our case:

Theorem 2 (Smoothing property). Let Ω be a smooth bounded domain in R
N , N ∈ {1, 2, 3}. Let the

functions f and g satisfy assumptions (1.4)-(1.7) and (1.11) and let the given constants α and γ satisfy
α
2 + 1 < γ < α. Then there exist some constants A1, A2, δ, ε, T > 0 depending only on the parameters of
the problem and such that the following smoothing property holds for the operator S(T ):

‖(S(T ))(u10)− (S(T ))(u20)‖X ≤
1

2
‖u10 − u20‖X +A1

∥∥∥∥K
( δ
2 )

u0 (u10)−K
( δ

2 )
u0 (u20)

∥∥∥∥
Y

(δ)
u0

, (3.2a)

∥∥∥∥K
( δ

2 )
u0 (u10)−K

( δ
2 )

u0 (u20)

∥∥∥∥
Z
( δ

2 )
u0

≤ A2‖u10 − u20‖X (3.2b)

for ‖u0 − u10‖X , ‖u0 − u20‖X ≤ ε, u0, u10, u20 ∈ B, (3.2c)

where B is the absorbing set from Lemma 4.

Due to the presence of the taxis term it seems impossible to handle the difference M1 −M2 in L1, as is
done for the porous medium equation in [8, Chapter 4]. This is the reason why we use the H−1-norm
instead. It offers another convenient choice for a degenerate equation. We first recall some useful and
well known facts about the gradient operator (∇), its adjoint (∇∗), and pseudo-inverse (∇+):

H1
0 (Ω)

∇−
�====�−

∇+
(L2(Ω))N

∇∗

−
�====�−

∇+∗

H−1(Ω),

∇∗ = −∇·, ∇+ = ∇−1Π∇(H1
0 (Ω)),

∇+∇ = id, (3.3)

(−∆)−1 = ∇+∇+∗ (3.4)

∇(−∆)−1 = ∇+∗, (3.5)

‖∇+∗u∗‖(L2(Ω))N = ‖u∗‖H−1(Ω). (3.6)

Here Π∇(H1
0 (Ω)) denotes the orthogonal projection on ∇

(
H1

0 (Ω)
)
which is a closed subspace of (L2(Ω))N .

Proof of Theorem 2. Let us consider arbitrary points (M0, ρ0), (M10, ρ10), (M20, ρ20) ∈ B such that

‖(M0 −M10, ρ0 − ρ10)‖H−1(Ω)×L2(Ω), ‖(M0 −M20, ρ0 − ρ20)‖H−1(Ω)×L2(Ω) ≤ ε. (3.7)

for some ε > 0 which we will fix later on. Due to the interpolation inequality (2.1) we obtain that

‖M0 −M10‖L∞(Ω), ‖M0 −M20‖L∞(Ω) ≤ C36ε
θ1. (3.8)

Let (M,ρ), (M1, ρ1), (M2, ρ2) be the corresponding solutions to system (1.1). Subtracting equation (1.1a)
for solutions (M1, ρ1) and (M2, ρ2) we obtain with (1.11) that

∂t(M1 −M2) =
1

α+ 1
∆
(
Mα+1

1 −Mα+1
2

)
−∇ · ((Mγ

1 −Mγ
2 )∇ρ2)−∇ · (Mγ

1 ∇(ρ1 − ρ2))
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− F5(M1 −M2)−
(
f̃
(
Mβ

1 , ρ1

)
− f̃

(
Mβ

2 , ρ2

))
. (3.9)

Further, in order to shorten the notation we introduce the quantities

W := M1 −M2, W0 := W (0), v := ρ1 − ρ2, v0 := v(0),

Uδ,ε,T := max {M1(s, x),M2(s, x)| t ∈ [0, T ], x ∈ {M0 ≤ δ}} .

Our first goal is to progress towards the ’contractive’ part of estimate (3.2a). In order to achieve this we
need to obtain some kind of dissipativity estimate for ‖M‖H−1(Ω) with perturbation terms which do not
contain norms of M -component on level sets {M0 ≤ δ}. Multiplying (3.9) by (−∆)−1W and integrating
over Ω, we arrive at

1

2

d

dt

∥∥∇+∗W
∥∥2
(L2(Ω))n

=−
1

α+ 1

(
Mα+1

1 −Mα+1
2 ,M1 −M2

)
L2(Ω)

+
(
(Mγ

1 −Mγ
2 )∇ρ2,∇

+∗W
)
(L2(Ω))n

+
(
Mγ

1 ∇v,∇+∗W
)
(L2(Ω))n

− F5

∥∥∇+∗W
∥∥2
(L2(Ω))n

−

(
f̃
(
Mβ

1 , ρ1

)

L2(Ω)
− f̃

(
Mβ

2 , ρ2

)
,∇+∇+∗W

)

L2(Ω)

. (3.10)

Here we used the definition of the adjoint and properties (3.4)-(3.5). Using the inequalities

(
Mα+1

1 −Mα+1
2

)
(M1 −M2) ≥

α+ 1
(
1 + α

2

)2
(
M

1+α
2

1 −M
1+α

2
2

)2
, (3.11)

c

b
max {M1,M2}

c−b
b
∣∣M b

1 −M b
2

∣∣ ≥ |M c
1 −M c

2 | for all c ≥ b > 0, (3.12)

and assumptions γ, β > 1+ α
2 , we can estimate the terms on the right-hand side of (3.10) in the following

way:

−
(
Mα+1

1 −Mα+1
2 ,M1 −M2

)
L2(Ω)

≤ −C37

∥∥∥M1+α
2

1 −M
1+α

2
2

∥∥∥
2

L2(Ω)
, (3.13)

∣∣∣
(
(Mγ

1 −Mγ
2 )∇ρ2,∇

+∗W
)
(L2(Ω))n

∣∣∣

≤C38

∥∥∇+∗W
∥∥
(L2(Ω))n

(
‖Mγ

1 −Mγ
2 ‖L2({M0≤δ}) + ‖Mγ

1 −Mγ
2 ‖L2({M0>δ})

)

≤C39

∥∥∇+∗W
∥∥
(L2(Ω))n

(
U

2γ−2−α
α+2

δ,ε,T

∥∥∥M1+α
2

1 −M
1+α

2
2

∥∥∥
L2(Ω)

+ ‖W‖L2({M0>δ})

)
, (3.14)

∣∣∣
(
Mγ

1 ∇v,∇+∗W
)
(L2(Ω))n

∣∣∣ ≤C40

∥∥∇+∗W
∥∥
(L2(Ω))n

(
‖Mγ

1 ∇v‖
L2({M0≤δ}) + ‖Mγ

1 ∇v‖(L2({M0>δ}))n

)

≤C41

∥∥∇+∗W
∥∥
(L2(Ω))n

(
Uγ
δ,ε,T ‖∇v‖(L2(Ω))n + ‖∇v‖(L2({M0>δ}))n

)
, (3.15)

∣∣∣∣
(
f̃
(
Mβ

1 , ρ1

)
− f̃

(
Mβ

2 , ρ2

)
,∇+∇+∗W

)

L2(Ω)

∣∣∣∣

≤C42

∥∥∇+∗W
∥∥
(L2(Ω))n

(∥∥∥Mβ
1 −Mβ

2

∥∥∥
L2(Ω)

+ ‖v‖L2(Ω)

)

≤C42

∥∥∇+∗W
∥∥
(L2(Ω))n

(∥∥∥Mβ
1 −Mβ

2

∥∥∥
L2({M0≤δ})

+
∥∥∥Mβ

1 −Mβ
2

∥∥∥
L2({M0>δ})

+ ‖v‖L2(Ω)

)

≤C43

∥∥∇+∗W
∥∥
(L2(Ω))n

(
U

2β−2−α
α+2

δ,ε,T

∥∥∥M1+α
2

1 −M
1+α

2
2

∥∥∥
L2(Ω)

+ ‖W‖L2({M0>δ}) + ‖v‖L2(Ω)

)
. (3.16)

Combining (3.10) and (3.13)-(3.16) with the Young inequality, we conclude that

1

2

d

dt

∥∥∇+∗W
∥∥2
(L2(Ω))n

≤

(
−
F5

2
+ C44

(
U

2 2γ−2−α
α+2

δ,ε,T + U
2 2β−2−α

α+2

δ,ε,T

))∥∥∇+∗W
∥∥2
(L2(Ω))n

+ C45U
2γ
δ,ε,T ‖∇v‖

2
(L2(Ω))n
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+ C46

(
‖W‖

2
L2({M0>δ}) + ‖∇v‖

2
(L2({M0>δ}))n + ‖v‖2L2(Ω)

)

≤

(
−
F5

2
+ C47U

κ
δ,ε,T

)∥∥∇+∗W
∥∥2
(L2(Ω))n

+ C45U
κ
δ,ε,T ‖∇v‖

2
(L2(Ω))n

+ C48

(
‖W‖

2
L2({M0>δ}) + ‖∇v‖

2
(L2({M0>δ}))n + ‖v‖2(L2(Ω))n

)
, (3.17)

where

κ := 2min

{
2min {γ, β} − 2− α

α+ 2
, γ

}
= 2

2min {γ, β} − 2− α

α+ 2
> 0 (3.18)

due to the assumptions on α, β, and γ. We emphasise at this point that our new and sharper assumptions
γ, β > 1+ α

2 allow not only to absorb the L2 norms of the differences of some powers ofM1 and M2 coming

from the taxis and reaction terms, but also to obtain some dissipativity with respect to ‖∇+∗W‖
2
(L2(Ω))n

in (3.17). Indeed, as we will see later, Uδ,ε,T can be made arbitrary small by choosing ε and δ sufficiently

small. Thanks to κ > 0 this leads to a negative coefficient
(
−F5

2 + C47U
κ
δ,ε,T

)
. With γ or β equal to

1 + α
2 we would have κ = 0 instead and thus a potentially positive coefficient

(
−F5

2 + C47

)
which only

guaranties an estimate such as (2.25).
Leaving (3.17) for while we will now establish an bound for ‖v‖. Once again, we need to take care

so as not to include any Lp({M0 ≤ δ})-norms of W in our estimates. Subtracting equation (1.1b) for
(M1, ρ1) and (M2, ρ2) we obtain that

∂tv = ∆v −G1v − (g2(ρ1)− g2(ρ2))M1 − g2(ρ2)W. (3.19)

Multiplying (3.19) by v, integrating over Ω, and using (3.3), we obtain that

1

2

d

dt
‖v‖

2
L2(Ω) =− ‖∇v‖

2
(L2(Ω))n −G1 ‖v‖

2
L2(Ω) − (g2(ρ1)− g2(ρ2),M1v)L2(Ω) − (W, g2(ρ2)v)L2(Ω)

=− ‖∇v‖2(L2(Ω))n −G1 ‖v‖
2
L2(Ω) − (g2(ρ1)− g2(ρ2),M1v)L2(Ω)

−

(
∇+∗W, g2(ρ2)∇v + v

dg2
dρ

(ρ2)∇ρ2

)

(L2(Ω))n
. (3.20)

Using the assumptions on g2 and the Young inequality we conclude from (3.20) that

1

2

d

dt
‖v‖

2
L2(Ω) ≤− ‖∇v‖

2
(L2(Ω))n −G1 ‖v‖

2
L2(Ω) + C49

(
M1, v

2
)
L2(Ω)

+
∥∥∇+∗W

∥∥
(L2(Ω))n

(
‖∇v‖(L2(Ω))n + ‖v‖L2(Ω)

)

≤C50

∥∥∇+∗W
∥∥2
(L2(Ω))n

−
1

2
‖∇v‖

2
(L2(Ω))n + C51‖v‖

2
L2(Ω). (3.21)

Let us now multiply the inequality (3.21) by the constant C52 := F5

4C50
and add it to (3.17). This yields

1

2

d

dt

(∥∥∇+∗W
∥∥2
(L2(Ω))n

+ C52 ‖v‖
2
L2(Ω)

)

≤

(
−
F5

4
+ C47U

κ
δ,ε,T

)∥∥∇+∗W
∥∥2
(L2(Ω))n

+
(
−C53 + C45U

κ
δ,ε,T

)
‖∇v‖

2
(L2(Ω))n + C54‖v‖

2
L2(Ω)

+ C48

(
‖W‖

2
L2({M0>δ}) + ‖∇v‖

2
(L2({M0>δ}))n

)
. (3.22)

Observe that due to (2.26) and (3.7) it follows for all δ ∈ (0, ‖M0‖L∞(Ω)) that

Uδ,ε,T ≤ δ + L(T,R)εθ∞. (3.23)

Combining (3.22)-(3.23) and recalling that κ > 0 due to (3.18), we conclude that if δ and ε are chosen in
such a way that

δ + L(T,R)εθ∞ ≤ min

{
F5

8C47
,
C53

2C45

} 1
κ

, (3.24)

then

1

2

d

dt

(∥∥∇+∗W
∥∥2
(L2(Ω))n

+ C52 ‖v‖
2
L2(Ω)

)
≤−

F5

8

∥∥∇+∗W
∥∥2
(L2(Ω))n

−
C53

2
‖∇v‖

2
(L2(Ω))n + C54‖v‖

2
L2(Ω)
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+ C48

(
‖W‖

2
L2({M0>δ}) + ‖∇v‖

2
(L2({M0>δ}))n

)

≤− C55

(∥∥∇+∗W
∥∥2
(L2(Ω))n

+ C52 ‖v‖
2
L2(Ω)

)

+ C56

(
‖W‖2L2({M0>δ}) + ‖∇v‖2(L2({M0>δ}))n + ‖v‖2L2(Ω)

)
.

(3.25)

Using the Gronwall lemma, the Lipschitz property (2.25), and property (3.6) we obtain with (3.25) that
for all 0 < t1 < T

‖W (T )‖2H−1(Ω) + C52 ‖v(T )‖
2
L2(Ω)

≤e−2C55(T−t1)
(
‖W (t1)‖

2
H−1(Ω) + C52 ‖v(t1)‖

2
L2(Ω)

)

+ 2C56

∫ T

t1

e2C55(s−T )
(
‖W‖

2
L2({M0>δ}) + ‖∇v‖

2
(L2({M0>δ}))n + ‖v‖2L2(Ω)

)
ds

≤C57L
2
0(t1, R)e−2C55(T−t1)

(
‖W0‖

2
H−1(Ω) + C52 ‖v0‖

2
L2(Ω)

)

+ 2C56

∫ T

t1

‖W‖
2
L2({M0>δ}) + ‖∇v‖

2
(L2({M0>δ}))n + ‖v‖2L2(Ω) ds, (3.26)

which finally leads to the estimate

‖(W (T ), v(T ))‖X ≤C58L0(t1, R)e−C55(T−t1)‖(W0, v0)‖X + C59 ‖(W, v)‖
Y

(δ)
u0

≤
1

2
‖(W0, v0)‖X + C59 ‖(W, v)‖

Y
(δ)
u0

(3.27)

if t1 and T are such that

C58L0(t1, R)e−C55(T−t1) ≤
1

2
. (3.28)

Next, we study the pair (W, v) on the sets {M0 > δ}. On these sets the equation for M is non-
degenerate, which allows to use standard estimates for uniformly parabolic PDEs and thus obtain better
regularity. Starting once again with equations (3.9) and (3.19), we now rewrite them in the following
way:

∂tW = Mα
1 ∆W + b1 · ∇W + b2W + b3∆v + b4 · ∇v + b5v, (3.29a)

∂tv = ∆v + b6v + b7W, (3.29b)

where

b1 :=αMα−1
1 ∇(M1 +M2)− γMγ−1

2 ∇ρ1,

b2 :=
Mα

1 −Mα
2

M1 −M2
∆M2 + α

Mα−1
1 −Mα−1

2

M1 −M2
|∇M2|

2 −
Mγ

1 −Mγ
2

M1 −M2
∆ρ1 − γ

Mγ−1
1 −Mγ−1

2

M1 −M2
∇M1 · ∇ρ1,

−
f(M1, ρ1)− f(M2, ρ1)

M1 −M2
,

b3 :=−Mγ
2 ,

b4 :=− γMγ−1
2 ∇M2,

b5 :=−
f(M2, ρ1)− f(M2, ρ2)

ρ1 − ρ2
,

b6 :=−
g(M1, ρ1)− g(M1, ρ2)

ρ1 − ρ2
,

b7 :=−
g(M1, ρ2)− g(M2, ρ2)

M1 −M2
.

Observe that due to (3.8) we have for all δ0 ∈
(
0, ‖M0‖L∞(Ω)

)
that

inf {M10(x),M20(x)|x ∈ {M0 > δ0}} ≥δ0 − C36ε
θ1

≥
δ0
2
, (3.30)
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so that, due to (2.30),

inf {M(t, x)| s ∈ [0, t], x ∈ {M0 > δ0}} ≥ C34

(
δ0
2
, t

)
, (3.31)

if

C36ε
θ1 ≤

δ0
2
. (3.32)

Thus, for such δ0 and ε system (3.29a) is a nondegenerate linear parabolic system w.r.t. (W, v). Moreover,
coefficients bi are compositions of continuous functions with Mk and ρk, k = 1, 2, and their partial
derivatives up to the second order. Lemma 4 implies that bi’s all belong to L∞((0, T ) × {M0 > δ0}).
Altogether, standard results on interior regularity in Sobolev spaces (see, e.g., Theorems 9.1 and 10.1,
and the remark on local estimates in Sobolev spaces at the end of §10 in [24, Chapter IV]) together with
estimates from Lemma 4 imply that for all 0 < t0 < t1 < T and δ0 < δ1 < δ2 it holds

‖W‖W (1,2),2((t1,T )×{M0>δ2}) ≤ C60(δ1, δ2, t1, T )
(
‖W‖L2((t0,T )×{M0>δ1}) + ‖v‖W (1,2),2((t0,T )×{M0>δ1})

)
,

(3.33)

‖v‖W (1,2),2((t0,T )×{M0>δ1}) ≤ C61(δ, δ1, t0, T )
(
‖v‖L2((0,T )×{M0>δ0}) + ‖W‖L2((0,T )×{M0>δ0})

)
. (3.34)

Plugging (3.34) into (3.33), we obtain that

‖W‖W (1,2),2((t1,T )×{M0>δ2}) ≤C62(δ, δ1, δ2, t0, t1, t)‖(W, v)‖L2([0,t]×{M0>δ0}). (3.35)

Thus, choosing δ0 := δ
4 , δ1 := 3δ

8 , δ2 := δ
2 in (3.35) and δ0 := δ

4 , δ1 := δ
2 , t0 := t1 in (3.34) yields

‖(W, v)‖(W (1,2),2((t1,T )×{M0>
δ
2}))

2 ≤C63(δ, t1, T )‖(W, v)‖(L2((0,T )×{M0>
δ
4}))

2 . (3.36)

Combining (3.36) with (2.25), (3.31), and the inequalities (3.11) and

|M1 −M2| ≤
2

α+ 2
inf{M1,M2}

−α
2

∣∣∣M1+α
2

1 −M
1+α

2
2

∣∣∣ , (3.37)

we thus arrive at the estimate

‖(W, v)‖(W (1,2),2((t1,T )×{M0>
δ
2}))

2

≤C64(δ, t1, T )

(∫ T

0

(
Mα+1

1 −Mα+1
2 ,M1 −M2

)
ds

) 1
2

+ C63(δ, t1, T )‖v‖L2((0,T )×Ω)

≤C65(δ, t1, T )‖(W0, v0)‖H−1(Ω)×L2(Ω). (3.38)

Next, we recall that due to (2.25) it holds that

‖v‖L2(0,T ;H1
0 (Ω)) ≤ L0(T,R)‖(W0, v0)‖H−1(Ω)×L2(Ω). (3.39)

Going back to (3.19), we compute that

‖∂tv‖H−1(Ω)

=‖∆v −G1v − (g2(ρ1)− g2(ρ2))M1 − g2(ρ2)W‖H−1(Ω)

≤‖v‖H1
0 (Ω) +G1‖v‖H−1(Ω) + C66‖M1‖L∞(Ω)‖g2(ρ1)− g2(ρ2)‖L2(Ω) + C67‖g2(ρ2)‖W 1,∞(Ω)‖W‖H−1(Ω)

≤C68(R)
(
‖v‖H1

0(Ω) + ‖W‖H−1(Ω)

)
. (3.40)

Integrating (3.40) over (0, t) and combining with (2.25) and (3.39), we finally obtain that

‖v‖H1((0,T ),H1
0 (Ω),H−1(Ω)) ≤ C69(R, T )‖(W0, v0)‖H−1(Ω)×L2(Ω). (3.41)

With (3.27), (3.38), (3.41) we have the conditions of the smoothing property (3.2), it only remains to
choose the parameters in such a way that conditions (3.24), (3.28), and (3.32) (recall that δ0 = δ

4 ) are
satisfied, i.e., if

δ + L(T,R)εθ1 ≤ min

{
F5

8C47
,
C53

2C45

} 1
κ

, (3.42)
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C15L0(t1, R)e−C55(T−t1) ≤
1

2
, (3.43)

C36ε
θ1 ≤

δ

8
. (3.44)

Clearly, the exist such t1, T, δ, and ε, that conditions (3.42)-(3.44) are satisfied. Indeed, for any t1 > 0
one can choose T large enough so as to fulfil (3.43). Then, choosing δ := 8C36ε

θ1 in order to comply with
(3.44), it remains to choose ε so small as to meet (3.42). Theorem 2 is proved.

�

4 Proof of Theorem 1

We are finally ready for the

Proof of Theorem 1. Our proof goes through the following steps. First, we prove the existence of
an exponential attractor M in H−1(Ω)× L2(Ω)-metric. This we achieve with the help of the smoothing
property (3.2). Finally, we use the Sobolev interpolation inequality in order to show that M is at the
same time an exponential attractor in L∞(Ω)×W 1,∞(Ω)-metric.

Due to Theorem 2 the exists a number T > 0 such that for S(T ) the smoothing property (3.2) holds.
The existence of an exponential attractor for the discrete semigroup S(nT ), n ∈ N, in the set B ⊂ X is a

consequence of Remark 4.3 of [8], we only need to verify that Z
( δ
2 )

u0 is uniformly (w.r.t. u0 ∈ B) compactly

embedded in Y
(δ)
u0 . Due to Lions-Aubin lemma, we have that

H1
(
(t1, T ), H

1
0 (Ω), H

−1(Ω)
)
⊂⊂L2

(
(t1, T ), L

2(Ω)
)
. (4.1)

Therefore, we only need to study the (obviously continuous) canonical embedding

iu0 : W (1,2),2 ((t1, t)× {M0 > δ/2}) → L2((t1, t), H
1({M0 > δ})), iu0u := u|(t1,t)×{M0>δ}.

We proceed similar to [17, Proposition A.5], where the case of a Hölder space embedded in the space of
continuous functions on a smaller domain was considered. Let us define for each u0 ∈ B an extension
operator

pu0 : W (1,2),2 ((t1, t)× {M0 > δ/2}) → W (1,2),2 ((t1, t)× Ω) , pu0u :=

{
ϕM0u in {M0 > δ/2} ,

0 in
{
M0 ≤ δ

2

}
.

Here ϕM0 is any cutoff function which satisfies (2.4) for δ0 := 3δ
4 and δ1 := δ. Since ϕM0 is a test function

and compactly supported in {M0 > δ/2}, it follows that {pu0}u0∈B is a family of well defined continuous
linear operators. Moreover, even though these operators are defined on different spaces, their norms are
uniformly bounded:

‖pu0‖ ≤ Ap for all u0 ∈ B (4.2)

for some constant Ap > 0. This is a consequence of property (2.4c). Note also that our choice of cutoff
function guaranties that

pu0u = u in (t1, t)× {M0 > δ}. (4.3)

Next, we define a restriction operator

cu0 : L2((t1, t), H
1(Ω)) → L2((t1, t), H

1({M0 > δ})), cu0u = u|(t1,t)×{M0>δ}.

In this case, the value ranges depend upon u0, but, clearly,

‖cu0‖ ≤ 1 for all u0 ∈ B. (4.4)

Finally, we recall that due to the Lions-Aubin lemma the canonical embedding

j : W (1,2),2 ((t1, t)× Ω) → L2((t1, t), H
1(Ω)), ju = u

16



is compact. Observe that due to (4.3)

iu0 = cu0jpu0 . (4.5)

Using (4.2) and (4.4), we compute that

Nr

(
iu0

(
B
(
0, 1;W (1,2),2 ((t1, t)× {M0 > δ/2})

))
;L2((t1, t), H

1({M0 > δ}))
)

=Nr

(
cu0jpu0

(
B
(
0, 1;W (1,2),2 ((t1, t)× {M0 > δ/2})

))
;L2((t1, t), H

1({M0 > δ}))
)

≤Nr

(
jpu0

(
B
(
0, 1;W (1,2),2 ((t1, t)× {M0 > δ/2})

))
;L2((t1, t), H

1(Ω))
)

≤Nr

(
j
(
B
(
0, Ap;W

(1,2),2 ((t1, t)× Ω)
))

;L2((t1, t), H
1(Ω))

)
, (4.6)

where B(0, 1;V ) denotes the unit ball in a normed space V , and Nr(C;V ) denotes the minimum number
of balls of radius r > 0 needed in order to cover a compact set C ⊂ V . Since the bound on the right-hand
side of (4.6) is independent of u0, the embedding family {iu0} is indeed uniformly compact. Due to

the above observation this carries over to the embedding Z
( δ

2 )
u0 ⊂⊂ Y

(δ)
u0 . Therefore, with Remark 4.3

from [8] we conclude that there exists an exponential attractor MT for the semigroup S(nT ), n ∈ N, in
B (equipped with the H−1(Ω) × L2(Ω)-topology) and its dimension and attraction parameters depend
only upon the parameters of the problem. As usual (see, e.g., [8, Remark 3.2]), the required exponential
attractor M ⊂ B for the continuous-time semigroup S(t), t ≥ 0 can be defined via

M :=
⋃

t∈[0,T ]

S(t)MT ⊂ B.

For this construction to work, it suffices (compare [8, Remark 3.2]) to check that the map (t, u0) 7→ S(t)u0

is, say, Hölder continuous on [0, T ]×B. The Hölder continuity w.r.t. t is a consequence of the regularity
result (2.29) and the Sobolev embedding theorem. The Lipschitz continuity with respect to u0 is given
by the Lipschitz property (2.25). In both cases such parameters as the Hölder/Lipschitz constants and
the Hölder exponent can be chosen to depend upon the parameters of the problem. Consequently, M
is indeed an exponential attractor for S(t) in B equipped with the H−1(Ω) × L2(Ω)-topology and its
dimension and attraction parameters depend only upon the parameters of the problem.

Finally, we observe that due to the interpolation inequalities (2.1)-(2.2) the canonical embedding of
B equipped with (the norm-induced) H−1(Ω) × L2(Ω)-metric and B equipped with (the norm-induced)
L∞(Ω) × W 1,∞(Ω)-metric is Hölder continuous. Consequently, M is an exponential attractor for S(t)
in B equipped with L∞(Ω)×W 1,∞(Ω)-metric and, once again, its dimension and attraction parameters
depend only upon the parameters of the problem. Combining this with the fact that B is an exponentially
absorbing set in L∞(Ω) ×W 1,∞(Ω) and its diameter and absorption parameters depend only upon the
parameters of the problem, we conclude that M is an exponential attractor for S(t) in L∞(Ω)×W 1,∞(Ω)
and its dimension and attraction parameters depend only upon the parameters of the problem, as re-
quired. Theorem 1 is thus proved.

�
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