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ABSTRACT. We analyze the effect of Robin boundary conditions in a math-
ematical model for a mitochondria swelling in a living organism. This is a
coupled PDE/ODE model for the dependent variables calcium ion contration
and three fractions of mitochondria that are distinguished by their state of
swelling activity. The model assumes that the boundary is a permeable ‘mem-
brane’, through which calcium ions can both enter or leave the cell. Under
biologically relevant assumptions on the data, we prove the well-posedness of
solutions of the model and study the asymptotic behavior of its solutions. We
augment the analysis of the model with computer simulations that illustrate
the theoretically obtained results.

1. Introduction. The main function of mitochondria is to produce ATP as source
for chemical energy for many eukaryotic cells. However, these double-membrane
enclosed organelles also play an important role in cell death by their ability to
trigger apoptosis. One of the key factors in this process is the permeabilization of
the inner mitochondrial membrane, resulting in the swelling of the mitochondrial
matrix.

Mitochondrial permeability transition is effectuated by the opening of a pore in
the inner membrane, which happens under pathological conditions like high Ca?*
concentrations. The increased permeability leads to an osmotically driven influx
of solutes and water into the mitochondrial matrix, which in turn causes swelling.
This process culminates in the rupture of the outer membrane. Outer membrane
rupture is a critical event, because apoptosis is irreversibly triggered by the release
of several proapoptotic factors from the intermembrane space [8].
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Intact mitochondria store calcium in their matrix. If swelling is induced, this
stored calcium is additionally released [8] and the remaining mitochondria are con-
fronted with an even higher calcium load, leading to an acceleration of the process.

Swelling can be induced by Ca®" and it can be measured on the basis of light
scattering. While intact mitochondria show high light scattering values, the more
mitochondria are swollen the less light is deflected. The volume increase is indirectly
displayed by a decreasing optical density. This relation is shown to be linear [7],
[10].

Although the process of mitochondrial swelling induced by calcium has been
studied for more than 30 years, mathematical modeling has only started recently.
At this point, there are two conceptually different approaches: microscale models
focusing on a detailed description of all biochemical processes in single mitochondria,
and macroscale models which aim to describe the swelling of a whole population of
mitochondria [7].

Existing mitochondrial swelling models focus only on time evolution but do not
account for spatial effects, working with spatially averaged values instead, cf. [7]
and the references therein. However, experimental evidence suggests that spatial
heterogeneity might not be negligible. The same amount of Ca?* added in different
concentrations can lead to different shapes of the corresponding swelling curves,
which only can be traced back to the different calcium distributions. Obviously,
this implies the influence of spatial effects.

The dependence on local processes becomes particularly important when we think
of the mitochondrial swelling taking place in vivo. There are two mechanisms that
lead to intracellular Ca®" increase [11]: internal release from the endoplasmic retic-
ulum and the external calcium influx from the extracellular milieu. Both calcium
sources are highly localized.

The outline of the paper is as follows: In section 2 we state the governing equa-
tions and define the properties of the coefficient functions. In section 3 the well-
posedness of the problem is shown. Section 4 contains auxiliary results that are
needed in section 5, where we give some conditions under which the model predicts
partial or complete swelling of mitochondria and estimates for the convergence rates
to steady state. Section 6 contains some numerical simulations to illustrate the an-
alytical results. Finally, section 7 contains some concluding remarks.

2. The mitochondria model. In this paper, we further develop the model that
we introduced in [6] and that takes into account the above mentioned spatial ef-
fects. More precisely, two spatial effects directly influence the process of mitochon-
dria swelling: on the one hand, the extent of mitochondrial damage due to calcium
is highly dependent on the position of the particular mitochondrion and the local
calcium ion concentration there. On the other hand, at a large amount of swollen
mitochondria the effect of positive feedback becomes relevant as the residual mito-
chondria are confronted with a higher calcium ion load. This results in a coupled
ODE-PDE system, see (1)-(4) below. The extension vis-a-vis [6] is that we now
permit Robin boundary conditions instead of the homogenaous Neumann condi-
tions that were previously used, as suggested in [6] as future work. This generalises
the model, making it applicable to a wider range of biological and physical scenar-
ios, such as in vivo vs. in vitro systems, at the expense of requiring a substantial
extension of the mathematical theory.

In accordance with theoretical [7] and experimental [14] findings, we consider
three subpopulations of mitochondria with different corresponding volumes: Ny (z, t)
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describes the density of intact, unswollen mitochondria, Nz (z,t) is the density of mi-
tochondria that are in the swelling process but not completely swollen, and N3(z, t)
is the density of completely swollen mitochondria. The swelling process is con-
trolled by, and affects the local Ca®" concentration, which is denoted by u(z,t),
and subject to Fickian diffusion.

The transition of intact mitochondria over swelling to completely swollen ones
proceeds in dependence on the local calcium ion concentration. Furthermore we
assume that mitochondria do not move in any direction and hence the spatial effects
are only introduced by the calcium evolution. The evolution of the mitochondrial
subpopulations is modeled by a system of ODEs, that depends on the space variable
z in terms of a parameter.

We analyze the swelling of mitochondria on a bounded domain Q@ C R” with
n = 2,3. This domain could either be a test tube or the whole cell. The initial
calcium concentration u(z,0) describes the added amount of Ca?t to induce the
swelling process. This leads to the following coupled ODE-PDE system determined
by the non-negative model functions f and g:

Ou = diAu+ dag(u)Ny (1)
ON1 = —f(u)N; (2)
N2 = f(u)N1—g(u)N2 (3)
O:N3 = g(u)Na (4)

with diffusion constant d; > 0 and feedback parameter dy > 0.

As we are interested in the in vivo case, we assume the boundary to be the
permeable “limit membrane”. Here calcium ions can enter or leave the cell over
this membrane. The concentration gradient between the cell and the extracellu-
lar regime needs always be maintained, hence we assume inhomogeneous Robin
boundary conditions

—dyu(z,t) = a(z) (u(z,t) — B Ceyt) for z € 0. (5)

Here C¢zt > 0 denotes the constant extracellular calcium ion concentration and
B > 0 represents the concentration gradient.

For instance, with the constants reported in [11], we have Cj, = 100 nM =
10=7" M and Ceyy = 1 mM = 1073 M, and hence the concentration gradient is of
order 10~ and we take 8 = 1074.

Remark 1. 1) In general the extracellular calcium concentration is not constant,
however due to its largeness compared to the cell size, single calcium ion peaks are
dissolved very fast.

2) By the choice of the function a(z) we can distinguish between different parts of
the membrane. The previously mentioned case Q) = I'; UI's hence could be realized
by setting a(z) = 0 for = € I's representing the closed parts of the membrane. This
leads to zero flux on I'; and concentration-dependent flux on I'y, just as we described
the situation for the original membrane.

3) By the choice of a(-) we can switch between Dirichlet and Neumann type
boundary conditions. If a(-) is very small, the flux over the boundary is also
very small and in the limit case a(-) — 0 we have homogeneous Neumann bound-
ary conditions. On the other hand, for high values of a(-) the solution soon ap-
proaches u = [ Ceyt on the boundary, ie., we can expect a behavior similar to
non-homogeneous Dirichlet boundary conditions.
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The initial conditions are specified as
u(z,0) = uo(z), Ni(z,0) = Nio(z), Na(z,0)= Nag(z), Niz(z,0)= N3o(z).
Note that by virtue of (2)-(4), the total mitochondrial population
N(z,t) := Ni(z,t) + No(x,t) + N3(z, t) (6)

does not change in time, that is, 3; N (z,t) = 0, and is given by the sum of the initial
data:

N(z,t) = N(z) := N1 o(z) + Nag(z) + N3o(z) Vt>0 Vz € Q. (7)

Model function f. The process of mitochondrial permeability transition is
dependent on the calcium ion concentration. If the local concentration of Ca?™ is
sufficiently high, the pores on the inner membrane are forced to open and mito-
chondrial swelling is initiated. This incident is mathematically described by the
transition of mitochondria from N; to N3. The corresponding transition function
f(u) is zero up to a certain threshold C'~, denoting the calcium ion concentration
which is needed to start the whole process. Whenever this threshold is reached, the
local transition at this point from N; to N3 over Ns is inevitably triggered. Accord-
ing to [10], this process is calcium-dependent with higher concentrations leading to
faster pore opening. Hence the function f(u) is increasing in wu.

The transfer from unswollen to swelling mitochondria is related to pore opening
and the number and the size of pores have upper bounds, hence we also postulate
that there is some saturation rate f* displaying the maximal transition rate. This
is biologically explained by a bounded rate of pore opening with increasing calcium
concentrations.

Remark 2. The initiation threshold C~ of f is crucial for the whole swelling
procedure. Dependent on the amount and location of added calcium ions, it can
happen that in the beginning the local concentration was enough to induce swelling
in some region, but after some time due to diffusion the concentration may drop
below C'~. If this depletion occurs before all mitochondria engaged in swelling, we
only have partial swelling and eventually there will still be intact mitochondria left.

Model function g. The mitochondrial population N changes due to initiation
of swelling (N7 — N2, a source) and due to mitochondria swelling completely (No —
N3, asink). The transition from Ny to N3 is modeled by the transition rate function
g(u). In contrast to the function f, there is no initiation threshold and the transition
takes place wherever calcium ions are present, i.e. where u > 0. This property is
based on a biophysical mechanism. The permeabilization of the inner membrane
due to pore opening leads to water influx and hence unstoppable swelling of the
mitochondrial matrix. Due to a limited pore size, this effect also has its restriction
and, thus, we have saturation at level g*.

The third population N3 of completely swollen mitochondria grows continuously
due to the unstoppable transition from Nj to N3. All mitochondria that started to
swell will be completely swollen in the end.

Calcium evolution. The model consists of spatial developments in terms of dif-
fusing calcium ions. In addition to the diffusion term, the equation for the calcium
concentration contains a production term dependent on N, which is justified as
follows: in an earlier study [7], it was shown that it is essential to include a positive
feedback mechanism when modelling the swelling process. This accelerating effect
is induced by stored calcium ions inside the mitochondria, which are additionally
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released once the mitochondrion is completely swollen. Due to a fixed amount of
stored Ca’", we assume that the additionally released calcium amount is propor-
tional to the newly completely swollen mitochondria only, i.e., those mitochondria
leaving N> and entering N3. Here, the feedback parameter dy is the rate at which
stored calcium is released.

We now give precise mathematical assumptions on f and g.

Condition 2.1. The model functions f : R — R and g : R — R have the following
properties:

(i) Non-negativity:
f(s)>0 Vs € R,
g(s) >0 Vs € R.
(ii) Boundedness:
f(s)<f"<oo  VseR,
g9(s) < g" <0 Vs e R with f*,¢* > 0.
(iii) Lipschitz continuity:
|f(s1) = f(s2)| < L¢|s1 — s2| Vs1,s2 € R,
lg(s1) — g(s2)| £ Lg|s1 — s2| Vs1,s2 € R with Ls, Ly > 0.

In order to derive the uniform convergence of solutions, we need to introduce
additional structure conditions on f and g. To do this, we distinguish between two
cases, the cases @ = 0 and a > 0. For the case o = 0, we assume conditions similar
to those for Dirichlet BC case and for o > 0, similar to those for Neumann BC case.

Condition 2.2. (The case @ = 0) Let f and g fulfill Condition 2.1. In addition we
assume that there exist constants C~ > 0, m; > 0, ma > 0, dg > 0 and gg > 0 such
that the following assertions hold:

(i) Starting threshold:
f(s)=0 Vs<C~,
g(s)=0 Vs < 0.
(i) Smoothness of f and g near starting threshold [C~,C~ + &y] and [0, po]:
If'(9) <mgs  V¥s€[CT,C7 +d),
lg'(s)| <mgs Vs €0, po]-
(iii) Lower bounds:
f(s) > f(C™ 4+ d) >0 Vs > C™ 4+ dy,
9(s) = g(e0) >0 Vs > g0 > 0.
(iv) Dominance of g over f: There exists a constant B > 0 such that
f(s) < Bg(s) Vs € [0, 00).
Remark 3. It is easy to verify that Condition (2.2) is satisfied by monotone in-
creasing functions f, g € C?(R!) with f(0) = g(0) = f/(C~) = ¢’(0) = 0.

Condition 2.3. (The case @ > 0) Let f and g fulfill Condition 2.1. We furthermore
assume that there exist constants C~ > 0, 6o > 0 and K such that the following
assertions hold:
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(i) Starting threshold:
f(s)=0 V¥s<C7,
g9(s)=0 Vs <0.
(ii) Smoothness of f near starting threshold [C~,C~ + &) :
f(s)>0 Vs € (C7,C™ + 4o,
£ (s)I?
f(s)

< Ky Vs € (C_,C_+50].

(iii) Lower bound:
f(s) 2 F(C™ +80) >0  Vs>C™ + o,

Remark 4. The above condition is similar to but weaker than Condition 2 assumed
for Neumann BC case in [6],i.e.,
(C)y 3;m1,ma such that my(s—C7) < f'(s) <ma(s—C~) Vs € [C™,C™ +dy)].
In fact, since this gives mq(s — C7)2/2 < f(s) < ma(s — C7)?/2, we easily have

FEP _ mi(s—C)? _ 2m]

fls) 7 gmi(s=C)2 T my’

The boundedness of [V N2(t)|r2 can be derived also for Neumann BCs with (C)y

replaced by 2 of Condition 2.3 from much the simpler proof to be given later without
distinguishing between two cases u® < C~ and u® > C~.

3. Well-posedness and asymptotic behavior of solutions. For the analysis
of (1)-(4), we write the Robin boundary condition in the form

— dyu = a(z)(u — ) on . (8)

The constant o > 0 represents here the balance of concentration that is to be main-
tained. The boundary function a(z) may be used to distinguish between different
parts of the cell membrane.

As is mentioned in (2) of Remark 1, we here allow that a(z) can vanish somewhere
on 9%

a() € C'(89), 0<a(z) forae z€dQ anda()EO0. (9)

Remark 5. The assumption a(-) € C*(89) in (9) can be replaced by a(-) € L>=(8Q)
in the following arguments except in Proposition 2 and Theorem 5.2, where C1-
regularity of a(-) is needed to assure the classical regularity of some functions, e.g,
v(-) and ¢;(-) which appear in the proofs of Proposition 2 and Theorem 5.2.

In the following we denote by (u, N1, Na, N3) the corresponding solution of the
Robin problem (1) - (4) with (8). Here many of the mathematical tools used in
[4, 6] do not apply anymore and different arguments are required:

We state now our first main result:

Theorem 3.1. Let Q C R™ be bounded. Assume Condition (2.1) and (9), then it
holds:
1. For all initial data uo € L?(Q) and N;o € L®(Q) (i = 1,2,3), the sys-
tem (1)-(4) with boundary condition (8) possesses a unique global solution
(u, N1, N2, N3) the components of which satisfy u € C([0,T]; L*(Q));
Vo, VtAu € L*([0,T); L3(Q)); N; € L=([0,T]; L*®(Q)) (i=1,2,3) for all
T>0.
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2. Assume further thatug, N1,0, Na,o and N3 o > 0. Then the solution (u, N1, Na,
N3) preserves non-negativity. Furthermore, N1, No, N3 are uniformly bounded

in  x [0,00).
3. We have the strong convergence results :
Ny(z,t) 122 N®(z)>0 in L*(Q), 1<p< oo, (10)
Ny(z,t) 22 N°(z) >0 in LP(Q), 1<p< oo, (11)
N(z,t) 122 Ng°(z) < [Nz~ in LP(Q), 1<p < oo, (12)
u(z,t) 2225 u®(z) =a in L*(9). (13)

4. Let a > 0 and assume the following additional condition on g:

Condition 3.2. There exists pg > 0 such that g(s) is strictly monotone
increasing on [0, po] and g(po) < g(s) for all pg < s.

Then we have Ns°(z)=0.

Proof. 1. The existence of a unique global solution.
We put @ = u — a, then T satisfies the boundary condition

-0,k =qa(z)T on N (14)
and equations (1)-(4) with u, f(-), g(-) replaced by @, f(v) = f(v + ) and g(v) =
g(v + a) respectively. In what follows, we designate T, f(-) and g(-) again by u, f(-)

and g(-), if no confusion arises. Here we note that f and g also satisfy Condition

2.1. Set
l/ qu|2dz+l/ alul*dS ifu e H(Q)
e(u) =1 2 /g 2 Jaa
+ o0 ifue L2(Q)\ HY(Q).

Then it is easy to show that ¢ : L?(€2) — [0, 00] becomes a lower semi-continuous
convex functional and its subdifferential d¢ (a notion of generalized Fréchet deiva-
tive, see H. Brézis [2, 3]) coincides with the self-adjoint operator A defined by

Au=—-Au with domain D(4) = {ue€ H*Q); —0,u = a(z)uon dN}. (15)

In order to assure the local and global existence of a solution (u, N1, Na, N3) to the
original system, we can repeat the same arguments as for the Neumann boundary
case, see [6].

We first note that by (7) the essential unknown functions can be taken as
(u, N1, N»). Let X7 := C([0,T); L*(©2)) and define the mapping

B:ue Xpw— N":=(N{,N3') — 4= B(u).
Here for a given u € X7, N* = (N{*, N}) denotes the solution of the ODE problem:

ON" = (—f(WNY, f(u)Ny' = g(uw)N3') =: F*(N"), N*(z,0) = (N1,0(z), N2,o())
(16)
and @ denotes the solution of the PDE problem :

Oyt = d1 AU+ dog(W)NyY, 0,0 + a(z) ﬂlan =0, u(z,0)=up(z), (17)
which is reduced to the abstract problem in H = L%(Q) :

%ﬂ(t) +dy Op(u(t)) + B(a(t)) =0, @(0) =wup, with B(u)(-,t) = —dag(u(-,t)).
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Since, by Condition 2.1 F* is Lipschitz continuous from Y = L>®(Q2) x L*°() into
itself, the Picard-Lindel6f theorem assures the existence of the unique global solution
N* € C([0,00);Y) of (16) for each u € Xp. Furthermore, since the mapping
u — B(u) = g(u)N§ is Lipschitz continuous from L2(f2) into itself by Condition 2.1,
the standard argument shows that (17) has the unique solution @ € C([0, 00); L?(f2))
satisfying vt 0@, vt At € LE, ((0,00); L2(Q)) (see, e.g., [2, 3, 9] ).

Then, in view of the fact :

(Op(u),u) = / |Vu|?dz +/ alul*dS >0 Yu € D(A),
Q an '

we can repeat exactly the same arguments as for the Neumann BC case in [6]
and show that B becomes a contraction mapping in Xt for a sufficiently small
To € (0,1] and Tp > 0 does not depend on the choice of the initial data. Hence this
local solution can be continued up to [0, 7] for any T. O

In order to discuss the positivity and the asymptotic behavior of the solution,
we need to first prepare some auxiliary results.

Proposition 1 (Comparison Theorem). Let d >0, a € R, a(z) >0 and h():
R' — R! be Lipschitz continuous. Let u; € {u € C([0,T]; L*(Q); V yu, vVt Au €
L%(0,T; L*(Q))} (i = 1,2) satisfy

O —dAuy > h(up), (z,t) € Qx(0,7),
Opug —dAus < h(us), (z,t) € Qx(0,7),
—Ou1 < a(z)(u; — ), (z,t) € 9Qx(0,T),
—0yus > a(z) (ug — a), (z,t) € 0Qx(0,7),
ui(z,0) > wua(z,0), z € Q.

Then we have wuq(z,t) > uz(z,t) for a.e. x € Q and all t > 0.
Proof. Let w(t) = u1(t) — ua(t), then w(t) satisfies
Fpw(t) — dAw(t) 2 h(uy(t)) — h(uz(t)) in Q,
—-0,w(t) <a(z)w(t) ond, w(0)>0 in Q.
Then multiplying this by w™(t) = max (0, —w(¢) ), we get
15
2 dt
where Ly, is the Lipschitz constant of 2(-). Noting that d,w w™ > —aww™ = a|w™|?
on 012, we obtain
1d

3 3 10Ol +dIV0 Ol +d [ _alumPds < Lo @)1
on

o= ()12 + d |V~ (1)]2. +d /a Oww™ dS < Ly Jw” (O3

Then Gronwall’s inequality implies that |w=(¢)|> < |w™(0)|? et = 0, whence
follows w~(t) = 0, i.e., ua(t) < uy(t) for all ¢ > 0. O

Corollary 1 (Positivity). Let d >0, a >0 and a(z) > 0 and let u satisfy
Oru(t) —dAu(t) >0, —dyu(t)<a(z)(u(t)—a), u(0)>0.
Then it holds that u(z,t) >0 for a.e. z € Q and all t > 0.
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Proof. Since u(:,t) = 0 satisfies
Ocu(t) —dAu)=0, u(,0 =0, —9d,ut)=0

Proposition 1 with A(-) = 0 assures that u(z,t) u(z,t) = 0 for ae. = €
Q and all ¢t > 0. O

> —aa(z) = a(z) (u(t) — a),
%

Proposition 2 (Strict positivity). Let d >0, a > 0 and (9) be satisfied. Suppose
that u satisfies
Ou—dAu>0 (z,t)eQx(0,T),
-ou<a(z)(u—a) (z,t) €02 x(0,T),
u(z,0) = uo(z) > 0.
Then for any t. > 0, there exists p = p(t.) > 0 such that
u(z,t) > p forae z€Q andall t>t,.

Proof. Let v(-,t) be the unique solution of

Ov(t) =dAy(t) inQ, —-0,v(t)=a(z)(y(t)—a) ondQ, v(0)=wu inQ.
Then by Proposition 1 with h(-) = 0 and Corollary 1, we get u(z,t) > v(z,t) >0
for a.e. z € ©Q and all ¢ > 0. Furthermore, by the strong parabolic maximum
principle, we know v(z,t) > 0 for all (z,t) € Q x (0,T). For any ¢, > 0, suppose
that v(zo,t.) = 0 for some zo € 9, then by virtue of Hopf’s maximum principle,
we get 0,v(zo,tx) < 0, which implies

0 < =0y ¥(Z0,ts) = a(wo) (¥(0,t) — @) = —a(zo) a <0,

which leads to a contradiction. Hence there exists a positive constant pg = po(t.)
such that

u(z,t.) > v(z,t.) > min v(z,t.) = po for ae. z € Q.
z€Q

Then putting p = p(¢.) = min (po(t.), @) > 0, we get

(aﬁ —dA)p=0, - szoza(x)(p_a)v U(wvt*)ZP-
Then it follows from Proposition 1 with A(-) = 0 that u(z,t) > p for ae. z €
Q) and all t > ¢.. O

Now we are in the position to continue our proof of Theorem 3.1.

it Proof of Theorem 3.1(continued).

2. Non-negativity of solutions. Multiplying the corresponding equations for
N;(z,t) by N; (z,t) = max (—Ni(z,t),0) and using assumptions f(u) > 0, g(u) >
0, we can deduce that d|| N;(t)|| 12 /dt < 0, whence follows | N; (¢)||z2 < [N (0)]|z2 =
0, i.e., Ni(z,t) > 0. So u satisfies du(t) — d1 A u(t) = da g(u(t)) No(t) > 0,
then Corollary 1 assures that u(z,t) > 0. Furthermore the non-negativity of
N;(t) and the conservation law (7) imply the uniform boundedness of N; such that
0 < Ni(z,t) < || Nz~ (i =1,2,3) for a.e. z € Q and all ¢ > 0.

3. Convergence. (1) From (2) and the non-negativity result it holds in the
point-wise sense

0Ny (z,t) = — f(u(z,t))N1(z,t) <0 Vt>0 aez€Q.

Hence the sequence is non-increasing and bounded below by 0, whence follows the
convergence

Ny (z,t) 222 N*(z) >0 aexeq. (18)
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Furthermore, by (7) we get
INP°(z)| < |[N|lp, Ni(z,t) =|Ni(2,t)| < |[N|z= aezeQ, te(0,00).
Then by virtue of the Lebesgue dominated convergence theorem, we conclude that
Ni(:,t) converges to N{°(-) strongly in L!(f2) as t — co. Thus to deduce (10), it
suffices to use the relation
IN1(t) = NI < (N2 (@)l + [INF®[lze )" 1N () = NE°|l o

(2) As for N3(z,t), since (4) implies that N3(z,t) is monotone increasing, we
can repeat the same argument as above to get (12).

(3) Combining (7) with (10) and (12), we can easily deduce (11).

(4) Here we are going to show that if & > 0 and Condition 3.2 is satisfied, then
Ng°(z) = 0. To this end, we first note that the integration of (4) on (0,t) gives

t
0< / 9(u(z, s)) Na(z, s) dt = N3(z,t) — N3(z,0) < | Nz~ Vt>O0. (19)
Jo
Here take any t. > 0 and we put p = p(t.) := min (p(t.), po), then Proposition 2
and Condition 3.2 assure
0<g(p) <g(u(t)) forae z€Q and t>t,. (20)
Then by (19) and (20), we get

9(p) /°° INa(e)lzode < /Q | /0 9(u(z, ) Na(3, 5) ds dz < |9 [N -

Hence there exists a sequence {tx}ren with ¢ — co such that
lim “NQ(tk)”Ll(Q) =0.
k— oo

Then (11) implies

T /Ng(z,tk)dx=/ N(z)dz =0,
JQ Q

k— oo
whence follows N5°(z) =0 for a.e. z € Q.
(5) In the following we are going to show that u converges to a strongly in L?(Q).
Here we can neither apply Wirtinger’s nor Poincaré’s inequality, but the following
lemma finds a remedy:

Lemma 3.3 (Poincaré-Friedrichs’ inequality). Let (9) be satisfied, then there exists
a positive constant Cr such that

w|2: < Cp (||Vw||§2 + /BQ a(z)|w|2ds) Yw € HY(Q). (21)

See e.g. [1], [12].

We again put = u—a and g(v) = g(v+a) and recall that T satisfies the homoge-
neous boundary condition (14) and equation (1) with g replaced by g. Multiplying
(1) by w and using (9), we get

1d 4 i s s -
sl + [ IVaPdo+ds [ a@) P ds < o lg@Nalzellie . (22)
Ja an
Then by (21), we obtain
1d

_ dy e .
Il + 2Ll < o 3 Nallzo ol
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and Young’s inequality yields

1d d o _d3Cr
5 1% + 55l < 2o

Here we note that (19) and the boundedness of || Na(t)||L and g(-) imply

———lg(@) Na||Z- . (23)

/ng ) Na(8)|2dt < / [ otu(z,5)) Na(o,5) dods g [Nl < 100 [

24)

Then applying (ii) of Proposition 4 in [6](note that this result is stated for g/ €

C*([to, 0)), but it obviously holds also for y(t) = |[u(t)]2. € Whi(to,00) with

Yo = 2—‘3:_, a(t) = dg ff lg(%w) N2||3. and to = 0, we can deduce that ||T@(t)|zz — 0

as t — oo, which is equivalent to (13). O

As for the a priori estimates for w(¢), we can obtain more minute information.

If fact, integrating (22) over (0,00) and using Poincaré-Friedrichs’ inequality and
(24), we have

/0 @) d < Co, (25)

where Cy is a general constant depending on ||ug||g2. Furthermore, multiplying (1)
y —AT, we get
1d _ _ _— —
531 (17001 + [ @) @OP a5 ) +ai|ATOIE < da 90 Nl | AT0)
(26)
Here by (21) we have

[Av]L2 [[vll2 2 (=Av,v) L2 = 20(v)(t) = V2(v)(t) \/— lolle  Yue HY(SQ).

(27)
Hence combining (26) and (27), we obtain

d _ di a3

— p(u)(t) + & 7 1AT@IIZ: + ——o(@)(t) < 2 @) No@)[F2-  (28)

dt Cr dy
Since ||g(@(t)) Ng(t)llig € L(0,00) by (24) and w(6) € H'(Q) for some arbitrarily
small § 2> 0 by (25), (ii) of Proposition 4 in [6] with y(t) = w(T)(t), v = 2_dc’?v
a(t) = %f”g(ﬂ) N,||2, and to = &, we can deduce that ¢(a)(t) — 0 as t — oo, which
gives:

sup [[@(6)[|lar < Co(6),  [IVE(t)lI7- +/ a(z) [a(t)|?dS — 0 ast— oo, (29)
t>4 0N

where Cy(0) is a general constant depending only on |lug||zz and §. Moreover,
integrating (28) over (0, §), we obtain

[ 18T de= [ 1AuOIE: d < o). (30)
) J

4. Uniform convergence of u. In order to analyze more minute asymptotic be-
havior of solutions, we need the uniform convergence of u. For this purpose, we
first prepare the following lemma.
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Lemma 4.1. Let € be a bounded domain in R™ with n < 3 and assume Condition
(2.1) and (9). Furthermore suppose that the following estimate holds :

sup || Nao(t)]| g < Cn, < 0. (31)
>0
Then we have
max |u(z,t) —a| >0 ast— oo. (32)
€

Proof. We first note that H?(Q) is continuously embedded in the Holder space
C*(Q) with order « € (0,1), since n < 3. Furthermore by virtue of the interpolation
inequality, we get

llu(t) = alloa(e) < Collu(t) — allf ut) — alljz" 6 € (0,1). (33)
Hence, by virtue of (13) and (29), we find that in order to derive (32), it suffices
to show that [|Au(t)]|.2 is bounded on [1,00). So we are going to show below that
[|Au(t)|| L2 is uniformly bounded. In what follows, we again denote @, g, f simply

by u, g, f if no confusion arises. Here we recall the following facts on A?, the
fractional power of order % of the operator A defined by (15):

D(ah) = B'(@), 4} ulls = (Auw) = [Vul + [ aluPds. (34
J o0

Applying A? to (1), we consider the following auxiliary equation :
O, ATu+ diATu = dy A% (g(u)N) .
By (25), (31) and (34), it is easy to see that AZ (g(u)Ny) € L2 _([0,00); L2(52)).

loc

Standard regularity results assure that 9; Azu and A2w belong to L2, ((0, o0); L*(2)).

Then multiplying by A%u, we have for almost every ¢ € (0, c0)
1d
2dt

Hence by (34), we obtain

1d dy, 3 d2? 1

sglAu®lze + FlAzu@): < 3a; 147 (9(u(t)) N2 (1)) I1Z2

ds? .
< T (o' @) V) Na(0) 3 + (@) VN2 + llallo~(g") AN ()2 o0

2
< 2 (NI Va3 + (6" IV N1 + C llal= (9 1IN0 ).

dy
(35)

[ Au(®)|32 + dillAZu()|32 = d2(A? (9(u(t))Na(t)), A¥u(t)) .-

where C, is the embedding constant for ”w”%ﬂ(an) <Cy ||w[|§11(m.
Here we note that (21) and (34) yield |ju[|3. < Cr ||A%u]|2Lz. Hence we get

lA%ul3. = (A%u, APu)re = (Au,u)re < [|Au g2 [lull 2
< [l Aullz2 VOF | A ul 12

lA%u|2. < CrlAul2a

lAullf: = (Au, Au)e = (AT, A2u)pe < | A%ul|p2 [|A% w12
< VCr | Aulz2]|A% vl 2

[Au|?: < CrlA%u||Za.
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Hence by virtue of (35) and (36), we obtain
1d

d
3 g AUDIlE: + g lldu(®)lZ: < aa(t),

where
do® (o)~ " .
aa(t) = 7= (L5 N3 Vel + (") IV V()3 +Cs llallzox (67 INa(E) 3 )-

Here we recall that (29) and (31) assure that sup;c(s o) @4(t) < Ca(d) and that (30)
implies that there exists d; € (9,26) such that ||Au(61)||z2 < co. Thus applying (i)
of Proposition 4 of [6] with y(t) = [[Au(t)]|2., 70 = z—dcl;, a(t) = Ca(9), to =01
and t; = oo, we can deduce
sup [ Au(®)l3 < |du(a)|3 + 2EECAD),
te[d1,00) 1

whence follows the uniform boundedness of ||Au(t)||z2 on [1, c0). O

Boundedness of ||VN2(t)||rz: Here we are going to show the boundedness of
IV N2(t)|| L2, for which we here assume the following :

Condition 4.2. Ny, Nog € HY(Q).

( Case o > 0 ). As for the case where a > 0, our result is stated as follows.

Lemma 4.3. Let o > 0 and let all assumptions in Lemma /.1 except (31) be
satisfied. Further assume that Conditions 2.3, 3.2 and 4.2 are satisfied. Then there
exists a constant Cn such that

sup (IVNi(#®)llz2 + [VN2(2)]|2 ) < Cw. (36)

Proof. Solving (2) point-wisely, we first get Ni(z,t) = Nyo(z) e Js Flu(z,s)) ds
which implies N1(¢t) € H!(2) for all ¢ > 0. Then applying the gradient to (2),
we have

agVNl = ——f’(u) Vu N1 — f(u) VNl. (37)
7) by VNi(t), then we get

w

Multiply (

| =

VN1 ()]1Z S/nIf’(U(I,t))IIVU(%t)IINl(I,t)IIVNl(w,t)Idr

Do =
U

! (38)

- [ futa )Nz, 0 da.
Q
In view of Condition 2.3, we decompose 2 into 3 parts :
Q(t) :={z € Q; u(z,t) <C™ },
M(t) :={zeQ; C” <u(z,t) <C™ +d)}, (39)
Q3(t) :=={z € Q; C™+dp < u(z,t) }.

By virtue of Condition 2.3, we get

/Q P @)Vl N1 [V Ve <

L[ F@E e o 17 2
2 M| |Vul“dz + 5 VN, 2%
< 2/ﬂz(t)uﬂ3(t) F(u) |N1)* | Vul“dz + 2/Qf(u)] 12dx
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1 — L%|N|2 1
<: (Kf VI3 + ﬁ IVullzs + 5 /Q F(w) [V N |? de.
Hence
1d 1 _ L2|N|3-
sz VM@ < 5 (Kf INIZ~ + 75507 ) 1Vu®z: forale>o0.

Then integrating this over (0,t) and using (25), we deduce that there exists a
constant Cp, such that

iug IVN1(®)|| L2 < Ch,- (40)
>
By much the same argument as for (37), we get
0tV Ny = f'(u) Vu Ny + f(u) VN1 — ¢'(u) Vu Ny — g(u) VN,. (41)
Multiplication of (41) by V.Ns leads to
1d 5
S IVN2(O)llz2 =

:/Qf’(u(t))vu(t)Nl(t)VNg(t)d:z:+/Qf(u(t))VNl(t)VNz(t)dz (42)

- / ¢ (u(t)) V() Na(8) VN () des — / o (u(®) IV N2 (t)]? da
Q Q

Then Condition 2.1 yields

57V < (Ls + LNz~ [ [Vu@lIVNa(0)] ds
s /Q VN (8)[[V N ()| da — /Q o (u(t)) [V Na(8)]? d.

Hence by Young’s inequality and (40), for any n > 0, there exists a constant Cy, (1)
such that

%IIVNz(t)Iliz < [VN2(8)lI72 + Oz (n) (L + [[Vu(t)]17)

2 /Q o (u(t) [V Na ()] da.

Then (43) with 7 = 1 and Gronwall’s inequality give

(43)

ta
I9N20)122 < (IV V2013 +Co (1) (tat [ IVu(@F2de) e Vo€ [0,5.], (44)
0

where t. > 0 is the number given in Proposition 2. As in the verification for
N3°(z) = 0, Proposition 2 and Condition 4.2 assure that

g(ulz,t) > 9(p) >0 Vit (45)

with p = p(t.) = min(p(t«), po) as defined earlier. Substituting this into the last
term of (43) with n = g(p), we get

d
EllVNz(t)lliz +9(PIVN2 ()72 < Oy (9(p) (L4 IVu(@)F2) Vit > ta.
Then in view of (29), we can apply (i) of Proposition 4 in [6] with

y(t) = ||VN2(t)”%,27 o=t t1 =00, 7= g(ﬁ)’
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and
¢ = Cnu(oto) 1+ sup IVulOIE: )
Thus together with (44), we achieved (36). O

( Case a = 0 ). For the case where o = 0, we can not use the fact that u(z,t)
is bounded below by the positive constant p, so we here need to introduce more
complicated arguments than before. ~ Our result for the case where a = 0 is stated
as follows.

Lemma 4.4. Let o = 0 and let all assumptions in Lemma 4.1 except (31) be
satisfied. Further assume that Conditions 2.2 and 4.2 are satisfied. Then there
exists a constant Cn such that

sup (VN (@)l L2 + [VN2(2)l22 ) < Cn. (46)

Proof. We define again Q;(t) (¢ = 1,2,3) by (39), then in view of (38), by using
|f'(w)| < mylu| for z € Qa(t), we have

/ f'(u) Vu Ny VN dz = f'(u) Vu Ny VN dz + f'(u) Vu Ny VN dz
Q Q2(t) Q3(t)

u
SmanluLw/ [l [Vl [V do + [Nl | 'f )' 190l V) 90 da

Qg(t) \/
BN [ )
< my [[Nllze [ [ul|Vul|[V Ny | da e 1oy ]v | dz+ f(u |V N, |2 da.
Q F(C~ + do)
In view of (42), we put

Ji(t) == /Q |F ()| |Vu| |N1| |V No| dz, Jao(t) := /Qf(u) |VN1| |V N2 dz,

J3(t) == / lg'(w)| |Vu| [V No| | No| dz, Ja(t) := / g(u) |[VN,|? dz.
Q Q
It is obvious that for arbitrary K > 0 (which will be fixed later)
K 1
n® < [ 1IVNP e+ [ 1) VNP e
Q Q
To estimate J; and J3 we make the same trick as above:

IJl(lﬁ)IS/Q (t)lf'(U)HVUHVNﬂ|N2ld93+/ |f' (@) [Vul [VN2| |N2| da

Q3(t)

<my || Nall = / ] [V V| [ V] e
Q

f(w)
[ Nal e /Q o VU VT Vel o

” 1”L°° 24
< Ns||L= VNy||Vu|d Vu
<y Il | [l [V Val (Vs + - L [ o

1 f 9

1J3(8)] < /Q 19" ()] [Vu] [V No| | N da
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<[|Na - /{ 1o @IVl [V Noldo + [N / 10/ ()| [Vu] [V No| dx
u<po

{u>po}

<my [ Nall = / ] |Vu| [V No| de

u<po
IVu] vVg(u) |VNs| dz

+ [ Nall o= /
{u>po}V 9
lI .
< [Nl | ful [Vl [V o] do il e 2= [ (Vs
1
+ —/ g(u) |VN2[2 dz.
4/q
Hence there exists a constant C; such that
. . B £
0|V N1 (t)]132 gcl/ [u| |Vl |VN1|da:+Cl/ |Vu)? do — 1 / fuw) VN, |2 dz,
JQ JQ JQ
K
04|V N2(2)] 132 501/ [u] |Vl lVNg|dz+Cl/ |Vul? dz + Z/ f(w) | VN, |2 dz
Q Q Q
5 2 3 2
+ 1 [ 119N dr =2 [ ) VNP do.
Let y(t) :== K [VN1(t)[122 + [[VN2(t)[|2., then we have
B, y(t) < cl/ lul [Vl (K [V N3 + [V Na|) da + C (K+1)/ Va2 da
K
- [ 1@ NP+ | v ds
3
25 9 2
e / F(u) [V N[ dz /ﬂg(u) [V Ns|? dz.
Choosing K = 2B (B is given in Condition 2.2), we obtain
Ay y(t) < Cl/ |u| |[Vu| (K |VNy| + |V Ng|) dz + Cy (K + 1)/ |Vu|? dz
Q JQ

< 2C [|ull s IVl g+ (K VN1 [132 + [V N2]132)% + C1 (K + 1) [ Va2,
< 2Cs ||ullmllull = (K IVN[[32 + [|VN2][32)% + C1 (K +1) | Vull

< G [lullf (K IV 22 + [V N2)172) + Co flullfz + C1 (K +1) | Vull7
< Co [lullF y(t) + Ca lullf= + C1 (K +1) [ Vul|3s,

where C is a constant depending on C; and some embedding constants. Integrating
the last inequality over (d,t), we obtain

ot ot
y(t) < y(6) +/ Co ||ullF y(s) ds +/6 (Callullf + C1(K + 1) | Vul3:) ds
)

Hence, the Gronwall inequality leads to

y(t) < [y(é) +C, /ooo||u||§{g ds+Ci (K +1) /Ooo||Vu||%z ds] exp (/Ooccznulli{l ds).
(47)



ANALYSIS OF AN IN VIVO MODEL OF MITOCHONDRIAL SWELLING 17
Here in view of (38) and (42), we get

LIVNOllze < Ly [Nl V]2,

LIVNa0)lz2 < (L + Lo) [N l= 1V0llz= + £ VN (1)

Integrating these inequalities over (0,d) with respect to ¢ and using the fact that
Ni o, N2 € HY(Q) and (25), we can deduce the a priori bound for y(§). Thus (46)
is derived from (47) together with (25) and (30). O

5. Partial swelling and complete swelling. The mitochondrial swelling process
depends on the local calcium ion concentration. If the initial concentration ug stays
below the initiation threshold C'~ at all points z € Q, and if Na(z,0) = 0, then no
swelling will happen and we have N;(z,t) = N;o(z) Vo € Q, i = 1,2,3. Another
possible scenario that can be observed in experiments is “partial swelling”.

This occurs when the initial calcium concentration lies above C~ in a small
region, but decreases due to diffusion and falls below the initiation threshold even-
tually, say at T,, > 0. This leads to the fact that N,(z,t) = Ni(z,T,) Vt > T, and
after Tp, Nao(z,t) L N3°(z), N3(z,t) T N§°(z) as t T co. Thirdly, if the initial cal-
cium distribution together with the influence of the positive feedback is sufficiently
high, then it occurs “complete swelling”, which means Ny (z,t) — 0, Na(z,t) —
0, N3(z,t) —» N(z) for all z € Q as t — oo.

5.1. Partial swelling. We first consider the case where a € (0,C 7).

Casel. 0<a<C~.
For this case, it occurs the partial swelling. More precisely we have:

Theorem 5.1. Let all assumptions in Lemma 4.3 be satisfied and let o € (0,C 7).
Then there exists a finite time T}, > 0 such that

Nl(CL‘,t) = Nl(iL‘,Tp) Vi 2 Tp, (48)

and the following exponential convergences hold.

No(z,t) 2 in O(e~90Y  forae. €9,
N3(z,t 122 Nz — Ny(z,T, in O(e=9®Y)  for g.e. z € Q,
P
u(t) — af2, 220 in O(e~ ™),
L
IVu(t)]|2. 220 in O(e™ ™),

where p = p(Tp) = min(p(Ty), po) with p(-) earlier given in Proposition 2 and

1 is any number satisfying 0 < ;1 < min ( g—‘F,2 9(p) ). Here the terminology

v(t) L2200 oo in O(e~*t) means that there exists some constant C > 0 such that

lu(t) —v>®| < Ce ™ forallt > Tp.

Proof. By virtue of Lemmas 4.1 and 4.3, we find that u converges to « < C~
uniformly. Then there exists a finite time T, such that u(z,t) < C~ for all ¢t > Ty,
which together with (i) of Condition 2.3 implies f(u(z,t)) =0 for all ¢ > T},. Then
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by (2), we get Ni(z,t) = Ni(z,Tp) Vt > Tp,. Hence by (3) and (20) ( or (45) ), we
get
O NQ(xat) = -g(u(m,t))Ng(:c,t) < —g(ﬂ) NQ(Iat) t> Tpv
Na(z,t) < No(z,Tp) exp(—g(p) (t —Tp)) Vit € [Tp,00), (49)

where p = p(T,) = min (p(Tp), po) > 0 and p(-) is given in (20) and Proposition
2. In order to see the exponential convergence of N3(z,t), it suffices to recall the
conservation law (7) for N(z,t).

As for the convergence of T(t) = u(t) — o, by putting 79 = &-, we obtain by (23)

and (49) forall ¢t > T;, that
d — 2 = =112 <d%——N 2 <d5 %2 N2 92 29(p)Ty ,—2g(p)t
7 IOz + o [2lze < %Ilg(u) 2llz2 _%(9) [Nlzeo | e79'2%r e==9120%,
(50)

Here let v; be any number satisfying
d
0<m< min(C—I,Zg(B)).
F
Then by (50), we get
8 (emt ()32 ) < Cye~9@=1t v >T,,
where
d3 2 1772 2 _2g9(p)T,
Cy= 7(9*) N7 |9 @),

Hence integrating this over (7j,,t), we obtain the exponential decay of [[u(t)||%.:
C
a()||2. < (e ™ sup ||u(s)]|%. + ——L— e_(QQ(E)_““)TP) e~ Mt
IO < (&% suple)Es + o
which implies
l@(t)||%- 122, 0in O(e™™*) for any v € (0,min (d1/Cr,29(p))) -
As for p(u(t)), from (28) we now get
d d; d2
@) + —<P( )(t) < (9 IN2(t)l172 -

Thus repeating the same argument as for ||u(t)|] 42, we can obtain the convergence
— t— ; .
@Ol = IVu@)l|Ze + lu(t) — a7 =30 in O(e™™F).
O

Case 2. o = 0. We next consider the case where @ = 0. For this case, it also
occurs partial swelling.

However the asymptotic behavior of Na(z,t) is quite different from that of the
previous case.

Theorem 5.2. Let all assumptions in Lemma 4.J be satisfied. Then there exists a
finite time T), > 0 such that (48) holds. Furthermore, if g(s) is monotone increasing
in [0, po] (po is the parameter given in Condition 2.2) and if there exist Ty € [0, c0)
and p1 > 0 such that No(z,T1) > p1 for a.e. x € Q. Then there exists py > 0 such
that

N3°(z) > p2  a.e. xz € Q.
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Proof. The first part can be derived from Lemmas 4.1 and 4.4 as before. To establish
the positive lower bound for N§°(z), we are going to construct a sub-solution for
Na(z,t). To this end, we first construct a super-solution for u(z,t) by making use
of the first eigenfunction of the following eigenvalue problem:

—Ap=Ayp in Q
(E)x
—Oyp=a(z)p on IN.

Let X _
_ ./Q [Vo|? dz + .IQ a(z)|e(z)|? dz

.[Q lo(z)|? dz

Using the standard compactness argument, one can easily prove that there exists a
global minimizer ¢; of R(-) in H(Q). Since R(|¢|) = R(y), without loss of gener-
ality we can take ¢y such that 1 > 0, i.e., @1 satisfies R(p1) = infyepi(q) R(v) =
A1 > 0 and A is the first eigenvalue and ¢; the first eigenfunction for (E),. Here
we normalize the first eigenfunction such that max g ¢1(z) = 1. From the strong
maximum principle, it follows that ¢;(z) > 0in . Moreover it holds that ¢ (z) > 0
in Q. Indeed, assume on the contrary that there exists zg € 8§ such that v1(zo) =0
, then Hopf’s strong maximum principle assures d,¢1(zp) < 0, which contradicts
the boundary condition 8,¢1(zg) = —a(z) p1(z0) = 0. Hence, pi(z) > 0 on Q
and there exists C* such that min_ g5 ¢1(z) > % > 0, where pg is the same as in
Condition 2.2. Since |[u(t)||L= — 0 as t — oo, there exists Ty > 0 such that

do My ||N2I|Loo ||u(t)||Loo < dj A, ||u(t)|]Lm < min ( cr, po, C~ ) for all t > Ty.
Then due to the inequality |g'(s))| < mg |s| for all |u| < pg in Condition 2.2, we

have

1 1
|d2g(u(t)) N2(8)] < d2 5 my [u(®)]? | N2(t)]| = < 3
Let @(z,t) :== A(t) p1(z) and A(t) be the solution of

R(p) :

di A |u(t)| for all t > Tp. (51)

N(t) + % diMA(E) =0 fort > T,
AMTo) = po,
more explicitly
1
A(t) = po exp (—5 dy A (t— T0)> for t > Tp.
Then
[a(z, )] = [A(t) pr(z)| < po  for t > T
and u(z,t) satisfies
1
0 u(z,t) = d1 Au(z,t) + 5 di M a(z,t)  (z,t) € Q x (Tp, 00),
u(z,Tp) = pop1(z) z€Q, =0,T=qa(z)u(z) (z,t) € dN x (Tp, ).
Here by (51), we note
1
Oru—di Au=ds g(u) Na(z,t) < 5 di M u(z,t) for ae z€Qandallt> T,

*

C
u(z,To) < C* = o P < ¢1(x) - AM(To) = u(z, To)-
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Thus by the comparison theorem Proposition 1 with h(u) = %dl A1 v and with 0
replaced by Ty, we have

w(z,t) < Uz, t) < A(t) < poe~ 24 E=To) vt > Ty for ae. z € Q and all t > Tp.

Since g(s) is monotone increasing on [0, pg], by the 2nd property of Condition
2.2, we obtain

g(u(z,t)) < g(po e_%d‘)“(t_TO)) S % pae”aME=To) for ae 2 € Q andV ¢t > Tp.

Moreover, taking into account that |u(z,t)||p= < C~ for t > Ty, we have
f(u(z,t)) = 0 and consequently

O Nao(z,t) = —g(u(z,t)) Na(z,t).

Thus 0; No(z,t) > —; Mg P2 e~ 1 i(t=To) N,(z,t) for all t > Tp, whence follows

t t
dN. 1
X / Mg /)3 e~ hM(t=To) gy

To N2 - To 2
Hence
Na(z,1) 11 2 —aa(e—mo)| T _ Mgpl [ —
log s |2 121 (s—To) _ Mgpo [ di (t To)_l].
o8 NZ(I7T0) - |:2 dl/\l Mg Po € s=To 2d1)\1 a
Since 0¢No(z,t) < 0 for t > Ty we have
NQ(-’L‘,t) NQ(w,t)
——— <1 and log———= < 0.
No(z, To) ® Na(z, To)
Consequently,
Nz(I,Tg) mgpd [1—e=9121(:=T0))

< ezd'l,\l

NQ(IL',t) -
and letting t — oo, we get

mg ;)2
N$°(z) > No(z, Tp) e .

Then to complete the proof, it suffices to show that inf,ecq No(z,Tp) > 0. For the
case where Ty < 77, it is clear that we can repeat the same argument above with
To replaced by T7. Hence the conclusion is obvious. As for the case where T7 < Tp,
we note that N, satisfies

OtNa(z,t) > — g* Nao(z,t) for all t > 0,
which implies
8 [Nz(z,t) e9‘<t—T1>} >0 = Na(z,t)e? =T > No(z, T)).
Thus we obtain
No(z,Tp) > e~ 9 (To—T1) No(z,Th) > e~9 (To—Th) p1 >0 forae z€q.
O
Remark 6. The following two assumptions are sufficient conditions for No(T3,z) >
p1 > 0 for a.e. z € Q with T3 € [0, c0).

(1) 1rE1§2 Ny(z,0) >0 .
(2) ingu(z,O) >C7, 12& Ni(z,0) >0 and f(s) is strictly monotone increas-
kA4S x
ingon [C~,C~ + do].
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In fact, it is clear that we can take T; = 0 for the case (1). As for the case (2), by
assumption, there exist ¢; > 0 and p; > 0 such that
f(u(z,t)) Ni(z,t) > p1 >0 forall ¢ € [0,1].
Here we note that Ny satisfies
OyNa(z,t) > f(u(z,t)) Ni(z,t) — g" Na(z,t).

Hence we get
¢
No(z,t) > 6_9“/ 9" f(u(s,z)) Ni(s,z)ds > p1t forall t € (0,t4].
0
Thus we can take 77 = t; and p; = p1 t;.

5.2. Complete swelling. We here consider the case where C~ < a.

Theorem 5.3. Let C~ < a, then there exists some T, > 0 such that the following
exponential convergences hold.

t— oo

Ni(z,t) ——= 0 in O(e™™%)  for a.e. z € Q,

Na(z,t) Lad Yy in O(e™™%)  for a.e. z € Q,

N3(z,t) Lo, N(z) in O(e™™%)  for a.e. z € Q,
llu(®) = ez <=2 0 in 0(e2"),
[Vu()]|2. <=0 in O(e™121),

where ny is a positive number depending on f(-) and C~+ dy, 12 is any number
satisfying 0 < me < min (m1,9(p) ) with p = p(Tc) > 0 and 2 is any number

satisfying 0 < 72 < min ( %,2 72 ). Here the terminology v(t) L1290 v in
O(e~*t) means that there exists some constant C > 0 such that
lu(t) —v®| < Ce™* forallt>T,.
Proof. The uniform convergence of u(z,t) to a implies that for any 3 € (0,a—C™),
there exists a finite time T, = T.(8) > 0 such that
u(z,t) >C +8>C~ VzeQ Vt>T,.

In order to derive the strict positivity of f(u(z,t)), we have to distinguish between
two cases in accordance with Condition 2.3:

(i) Case where 3 > &g ( dp is the parameter appearing in Condition 2.3)
Since u(z,t) > C~+ f > C~+ dy, it follows from (iii) of Condition 2.3 that
flu(z,t)) > f(CT+8) >0 Ve Vt>T,.
(ii) Case where 0 < 8 < dg

For this case, since u(z,t) € [C~+ B8,C~ + dg), from (ii) of Condition 2.3, we
get

flu(z,t)) > no:==min{ f(s); s€ [C™+B,C "+ ]} >0 Ve Vt>T,.
In summary we conclude
flu(z,t)) >m :=min(f(C 4+ d),m0) >0 Vze Vt>T.. (52)
Substituting (52) into (2), we obtain the exponential decay estimate for N (z,t):
Ni(z,t) < Ni(z,T.) e mET) < ||N||poo emTee™™t Vo eQ VE> Ts.
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Furthermore substituting this into (3) and recalling (20), we get
0 Na(2,1) < Coe™™" = g(p) Na(z,t), p=p(Te), Co=f"|N|p=e™™. (53)

Let 72 be any number satisfying 0 < n2 < min (91,9(p)). Then by (53), we easily
get

O; (e™* No(z,t)) < Coe™ M=)t vz e Vi>T. (54)
Hence integrating (54) over (T¢,t), we obtain the exponential decay of Na(z,t) :

— C

No(z,t) < (e”zTC IN|ze + 0 ¢=(m _"Z)TC> e ™t VzeQ Vt>T..
m —1n2

In analogy to the previous case, the conservation law together with the exponential

decay obtained above implies

N§°(z) = N(z) and Ns(z,t) = N(z) in O™ VeeQ Vt>T..

The exponential convergence of ||u(t) — al|7. and ||Vu(t)||2, can be derived from
the same reasoning as for the partial swelling case in Theorem 5.1 with g(p) replaced
by 1s. O

Remark 7. If C~ < «a and up(z) > «, then assertions of Theorem 5.3 hold true
without assuming any structure conditions on f and g except Condition 2.1. In
fact, let u®(z,t) = «, then u® satisfies

O u(x,t) —dy Au* =0<dpg(u*) N2 inQ, -09,u*=aqa(z)u*—a) ondQ

Then from Proposition 1, we derive that u(z,t) > u®(z,t) = « for a.e.xz € Q and
all ¢ > 0. Hence we can repeat the same arguments in the proof of Theorem 5.3.

6. Numerical illustrations. We illustrate the previous results on longtime behav-
ior with numerical simulations. For this, we have to specify appropriate functions
f(u) and g(u). Following [4, 5] we choose

0, 0<u<C,
flu) = %(l—cos%), C~-<u<CH, (55)
=, u>Ct,
and . ( )
9_ (1 — cos 4T 0<u<Ct
— 2 Cct/» — — ’

The model parameters used are summarized in Table 1. They have been chosen
primarily to support, demonstrate, and emphasize the mathematical results. As in
[4], as domain Q C R? we choose a disc with diameter 1. In our simulations we use
the radially symmetric initial data

4
u(0,2) = 2C* [(1—\/$§+m§) <1+\/w%+x§)J , ri=4/z2+23 z€Q

and
Ni(0,z) =1, N»(0,z) =0, N3(0,z)=0, ze€,
i.e. we assume that initially swelling has not yet been initiated.

According to Theorems 5.1,5.2,5.3, important for the qualitative behavior of so-
lutions is the external Ca?* concentration value c, relative to the swelling induction
threshold C~. This is the parameter that we vary in our simulations. We choose
a € {0,10,17,25,100,250}. The first of these values reflects the situation in Theo-
rem 5.2, the next two values represent the case 0 < a < C~ of Theorem 5.1, and



ANALYSIS OF AN IN VIVO MODEL OF MITOCHONDRIAL SWELLING 23

TABLE 1. Default parameter values, cf also [5]

parameter symbol value remark
lower (initiation) swelling threshold Cc- 20  (varied)
upper (maximum) swelling threshold ct 200

maximum transition rate for N3 — Np f* 1

maximim transition rate for No — N3 g* 1

diffusion coefficient dy 0.2 (varied)
feedback parameter do 30

the three largest values correspond to C~ < « as in Theorem 5.3. Note that for
the largest value we have a > C*, whereas C~ < a < Ct holds for the other two
values.

In Figure 1 we show for selected time instances u, N1, No, N3 for the simulation
with external calcium ion concentration @« = 10 < C~. The numerical results
confirm the analysis in Theorem 5.1: The calcium ion concentration eventually
attains u = « everywhere. The unswollen mitochondrial population N; remains
unchanged after some initial period. In particular we note that in a layer close to
the boundary almost no swelling is induced, whereas in the inner core swelling is
induced everywhere. The mitochondrial population N, in the intermediate swelling
state eventually goes to 0 everywhere.

Finally, the completely swollen mitochondria attain values close to 1 in the inner
core and and close to 0 in an outer layer at the boundary, mirroring the distribution
of Nl.

For the case @ = 0 we show in Figure 2 the spatial distribution of unswollen
mitochondria V7 for selected time instances. As predicted in Theorem 5.2, this
distribution does not change after some finite time. Note that the second part of
the assertion of Theorem 5.2, an assertion on the mitochondria in the swelling stage,
Nj, does not apply to the case of our initial conditions, which are chosen such that
at the boundary of the domain u = 0. Since also the boundary condition enforces
very small values for u at the boundary for ¢ > 0, the swelling threshold C~ is
never exceeded there, wherefore the hypothesis of the theorem that Ny(T1,z) > p1
almost everywhere for some positive p; is not satisfied (see Remark 6).

To illustrate this claim, we ran a second set of simulations, with different initial
conditions for u, chosen such that initially u > 0 everywhere in the domain. More
specifically we used initial data defined using

[l

uo(Z) = Upase + 2C~ (57)

where the heterogeneity 4 is defined as

W(z) = 22V Lsin ((z 4 y)7) + 1 (58)

and the base concentration upese € {0, 15,50,100, 150,220} was varied.

In Figure 3 we plot the minimum values of Ny in Q as a function of ¢ for these
different choices. We observe that in all cases N3 is bounded from below by a
constant that depends on the initial data. For the base concentrations upgse > C
the minimum value of N plateaus first at some high level (the higher the higher
Upgse and then at some T* (the smaller the higher upqse) begins to drop to a lower
value (the lower the higher upqs.) that it eventually attains. Also in Figure 3 we plot
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t =0.01

t =4.89

t = 68.3

t =390

FIGURE 1. Model simulation with ¢ = 10 < C~: Shown are
u, N1, No, N3 for selected times.

for upase = 100 the spatial distribution of mitochondrial populations Ny, N3, N3 at
steady state, showing that N; > 0 a layer close to the boundary, illustrating partial
swelling. Not that the spatially heterogeneities of the initial data of u have been
largely obliterated and nearly, but not exactly, radially symmetric mitochondrial
populations are found. The lack of complete radial symmetry is due to the fact that
close to the boundary u drops below the swelling induction threshold C'~ quickly,
preventing further initiation of swelling there. Due to diffusion, the calcium ion
concentration eventually attains 0 everywhere (data not shown).
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t=70.15 t = 95.02 t=143.29

FIGURE 2. Model simulation with @ = 10 < C~: Shown is N; for
selected times.

To verify the longterm exponential convergence of the solutions we plot in Figure
4 for each of our choices of o the mitochondrial population densities N; and Ny as
a function of time for three different points of the domain that lay on a line through
its center: point A is close to the boundary, B half way between the boundary and
the center, and C' is close to the center.

In all cases, for large enough ¢ these curves negative sloped lines in the logscale,
indicating exponential decrease.

In case a = 250 very rapidly the calcium ion concentration is above C* in the
entire domain leading to maximum swelling rates everywhere, whence the corre-
sponding curves in all points overlay each other. In the cases a = 25 and o = 100
complete swelling occurs, i.e. both N; and N, go to 0 in all three points, where
the curves of corresponding populations have the same or similar slope. In the
cases a = 10 and o = 17, where partial swelling is observed, N; attains horizontal
tangents for large ¢ whereas the curves for Ny decline. Note that convergence of
N, is much slower for the lower external calcium ion concentration o = 10 than for
a = 17. In the case a = 0 eventually both N; and N» have horizontal tangents.
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0.1

ubase=0 ——
ubase=15 ----

min N2

0.001 ¢

0.0001 A
0.01 0.1 1 10 100

Hoevriry

FIGURE 3. Simulation to illustrate partial swelling in Theorem 5.2,
using initial data (refT2init:eq): shown is the minimum value of Ny
as a function of time for different base calcium ion concentrations
Upase (top left), along with the steady state distributions for N
(top right), N (bottom left), and N3 (bottom right) in the case
Upase = 100.

In the two simulations with lowest external calcium ion concentrations, a = 0
and o = 10 no swelling is induced at the point A close to the boundary, and N;
remains at unity there, whereas Ny = N3 = 0.

The simulation for case & > C~, i.e Theorem 5.3, in Figure 4 shows that for the
larger calcium ion concentrations, o: = 100 and a = 250 both N; and N» converge
to 0 and thus complete swelling occurs. For the remaining case o = 25 > C ™, i.e.
the case with lowest external calcium ion concentration, N; and N, also eventually
decrease, but the simulation was stopped before the both populations approached
0. Comparing the cases for a € {25,100,250} shows, as suggested by the analysis
that the rate at which the populations N; and N, decline depend on the boundary
data.

7. Conclusion. Biologically the convergence of u(z,t) to « is exactly the result
we expected. Additional Ca®* is removed from the cell and the calcium gradient is
again stabilized. Furthermore we have a complete classification of the swelling, i.e.,
a > C~ leading to complete swelling and a < C'~ inducing partial swelling.

Here it is interesting to take a look at the relation with the classification of partial
and complete swelling, obtained for the in vitro model in [6], where it is shown that

e u converges to a constant function u., and No — 0 as t — oo,
e If up, < C7, then partial swelling occurs,
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FIGURE 4. Mitochondria populations N; and Ny as a function of
time in three points of the domain on a line through the center
point: A (close to the boundary), B (half way between boundary
and center), C (in the center), for six different values of the external
calcium ion concentration a.

o If C~ < uw, then complete swelling occurs.

The threshold for C~ to determine partial swelling or complete swelling is given by
Uso for the in vitro model and « for our n vivo model. The limit constant function
U depends heavily on the choices of parameter values and initial data. To the
contrary, o depends only on the constant extracellular calcium ion concentration
Cext and the concentration gradient 8. In this sense, our in vivo model is regarded
as more robust than in vitro model.
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