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ABSTRACT 
A hybrid optical and acoustic resolution optoacoustic endoscopy is proposed. Laser light is transmitted to tissue 
by two types of illumination for optical and acoustic resolution imaging respectively. An unfocused ultrasound 
detector is used for recording optoacoustic signals. The endoscopy probe attains 3.6 mm diameter and is fully 
encapsulated into a catheter system. We examine the performance of the hybrid endoscope with phantoms and 
tissue sample, which shows that the hybrid endoscopy can obtain optical resolution in superficial microscopic 
imaging and ultrasonic tomography reconstruction resolution when imaging at greater depths. 
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1. INTRODUCTION

High-resolution optical imaging techniques (e.g., white-light endoscopy, fluorescence microscopy, multi-photon 
microscopy or confocal microscopy) are commonly employed for endoscopic applications [1, 2]. White light 
endoscopy (WLE) allows the collection of color video of the entire gastro-intestinal track and can inspect for 
obstructions and overt stress and damage of the tissue, however it is only capable of visualizing the lumen 
surface. Confocal laser endomicroscopy (CLE) on the other hand enables subsurface imaging in vivo, which 
could lead to earlier detection of latent gastrointestinal pathologies or prodromal cancers compared to WLE[2]. 
Due to intrinsic limitations of pure optical imaging, both modalities have limited imaging penetration depth and 
interrogate superficial layers of the lumen (<1mm2 at a time), which prevents their application to surveillance 
endoscopy. In addition, accurate disease readings with fluorescence probes typically require systemic or local 
administration of reporter agents with high specificity [2].  

Label-free optoacoustic imaging allows high-resolution optical interrogation much deeper than intra-vital 
microscopy[3]. Moreover, detection of histopathological and molecular information can be enhanced by the 
application of multispectral optoacoustic tomography (MSOT), which can identify different tissue chromophores 
and exogenous photo-absorbing agents based on changes in their absorption spectra using spectral unmixing 
techniques[3, 4]. Indeed, MSOT has been shown to reveal several anatomical, pathophysiological (tissue hypoxia, 
ischemia) or molecular features (expression of receptors and proteases) in vivo [3-5].  

Optoacoustic endoscopes, that combine ultrasonic diffraction limited resolution using focused ultrasound 
detectors, have been proven to achieve from hundreds to tens of micro-meters lateral resolution with an imaging 
depth up to several millimeters[6, 7]. Improved resolution but limited penetration depth can be achieved by 
optical-resolution optoacoustic endoscopy using a focused laser beam, in analogy to intra-vital optical 
microscopy [8-11]. The development of hybrid systems utilizing optical- and ultrasound-resolution optoacoustic 
systems has been proposed for enhancing the imaging scalability. Herein, we propose a principle of optical 
resolution (OR) and acoustic resolution (AR) optoacoustic (OR/AR) endoscope to improve the resolution and 
penetration ability of the hybrid system.  
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2.1 Endoscopic imaging configuration 

Fig.1 (a) presents the schematic overview of the OR/AR-endoscope. A custom-designed unfocused ultrasound 
transducer (Imasonic, France) with a center frequency of 20 MHz is used for the detection of ultrasound signals. 
The diameter of the transducer is 2 mm and the sensing area has a rectangular shape with a length of 0.25 mm 
and a width of 1.6 mm, yielding an acceptance angle of 80 degrees as derived experimentally from point-source 
measurements. A GRIN-lens fiber (GT-MMFP-10 µm, GRINTECH, Germany) is secured beneath the 
transducer for OR illumination. This fiber has a core diameter of 10 µm, a numerical aperture of 0.1, and 
consisting of a gradient index lens, a coreless spacer and a prism. To align the illumination focus, the GRIN-lens 
is placed with a tilt angle of 5 degrees in relation to the transducer. Such arrangement prevents the fiber tip from 
blocking the transmission path of optoacoustic signals. Using a beam profiler (SP620U, OPHIR Beam Gauge, 
US), we measured the beam diameter based on the full width at half-maximum (FWHM) value, which at the 
focus region estimates to be ~8.7 µm [Fig. 1(b)]. For implementing AR imaging, a multi-mode fiber (400 µm 
diameter) with a broad side-view illumination has been aligned with the transducer at a tilt angle of 30 degrees. 
With such an arrangement, the overlapping areas between the laser beam and the acoustic axis begin at about 1 
mm distance from the transducer sensing surface, and extend over a large depth. Illumination is provided by a 
532 nm laser, with a pulse repetition rate of 2 kHz and energy of 1 mJ⁄pulse and pulse width of 0.9 ns (Wedge 
HB532, BrightSolutions SRL, Pavia, Italy). The beam is attenuated, collimated and guided through a pinhole 
(Thorlabs) to ensure spatial filtering. It is then passed into a telescopic lens array (Thorlabs) to adjust the beam 
diameter to match the back aperture of a low NA microscope objective (L-4X, Newport) which is mounted on a 
manual fiber coupler (F-91TS, Newport). Finally, the beam is tightly focused and coupled into the OR and AR 
fibers respectively. The light fluence at the surface of the sample is measured about 6 mJ/cm2 for OR imaging 
and about 10 mJ/cm2 for AR imaging. The recorded optoacoustic signals are amplified by a low noise amplifier 
(63 dB, AU-1291, Miteq Inc., Hauppauge, New York, USA) and sampled by a high-speed digitizer, operating at 
1 GS⁄s (NI PCI-5124, USA; 12 bit resolution; max sampling rate 4 GS⁄s).  

The endoscope probe is encapsulated in a medical-grade (polyethylene terephthalate) tube with an outer diameter 
of 3.6 mm, which can readily pass through 3.8 mm working channels of commercial optical endoscopes. Fig.1(c) 
shows the enlarged photograph of the probe. To obtain volumetric images, fast linear and rotational stages 
(Oriental Motor, Japan) were employed. The probe was first scanned linearly along the direction of the lumen 
and then rotated to get adjacent cross-sectional images. This scanning mode is suitable only for limited-view 
imaging of the lumen volume, i.e. an imaging mode that is appropriate for operation under optical endoscope 
guidance, whereby the hybrid optoacoustic endoscope is operated through the working channel of an optical 
endscope. However, 360-degree rotation could be also contemplated for endoscopes designed to operate in 
stand-alone mode, i.e. without white-light endoscopy guidance. In the current implementation, OR and AR scans 
were performed by sequentially coupling the light into the corresponding fiber. The linear and rotational 
scanning step sizes were 0.01 mm and 0.01 degrees for OR imaging, and 0.08 mm and 0.1 degrees for the AR 
imaging. Hilbert transform was performed to process the OR data; the filtered back-projection method was used 
to reconstruct the AR data as described previously [12].  

2. MATERIALS AND METHOD
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